Filomat 29:5 (2015), 1127-1136
DOI 10.2298/FIL1505127G

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

re/ 8
U o
Ut @a\di‘

&
0 W
Zpppor

Approximation by Complex Szasz-Mirakyan-Stancu-Durrmeyer
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Abstract. In the present paper, we deal with the complex Szdsz-Stancu-Durrmeyer operators and study
Voronovskaja type results with quantitative estimates for these operators attached to analytic functions of
exponential growth on compact disks. Also, the exact order of approximation is found.

1. Introduction

In 1985, Mazhar and Totik [23], studied the approximation properties in the real domain for the Szasz-
Durrmeyer operators. Then, Gupta and Agrawal [15] estimated the rate of convergence for functions of
bounded variation. Also, very recently, approximation properties for several real operators including the
Szész-Durrmeyer operators are presented in the papers [1], [22], [25], [28] and in the book Gupta and
Agarwal [14].

In the complex domain, the overconvergence phenomenon holds, that is the extension of approximation
properties from real domain to complex domain. In this context, the first qualitative kind results were
obtained in the papers [4], [30], [31]. Then, in the books of Gal [6], [9] quantitative approximation results
are presented for several type of approximation operators. For Szdsz-Mirakjan operator and its Stancu
variant in complex domain, we refer the readers to [2], [3], [17], [5], [19], [20], [29] and [16]. Also for
complex Bernstein-Durrmeyer operators, several papers are available in the literature (see e. g. [7], [8],
[11], [12], [13], [21], [24], [26], [27]), for complex Szadsz-Durrmeyer operators see [10], while for complex
g-Baldsz-Szabados operators see [18].

In this paper, we extend the studies and we discuss approximation properties of the Stancu variant for
the complex Szdsz-Durrmeyer operator given (for 0 < a < f8) by

qua/ﬁ)(f)(z) =n ;)‘ Sn,0(2) f:m Sna(t)f (f:g) o

—nz (12)°

where s, ,(z) = e =~
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Voronovskaja type results with quantitative estimates for these operators attached to analytic functions
of exponential growth on compact disks and the exact order of approximation are found.
Throughout the present article we denote D = {z € C : |z| < R}. By Hg, we mean the class of all functions

satisfying : f : [R, +00) U Dg — C is continuous in (R, +o0) U Dg, analytic in Dg i.e. f(z) = Y1y oz, for all
z € Dg.

2. Auxiliary Results
We need the following auxiliary results.
Lemma 2.1. Let 0 < o <, then
k k—
@) (6)(2) ( )
KI\Z T Su 6])(2)
-L)asn
where S, denotes S,(?'O).

Proof. It is immediate. [J

Lemma 2.2. Let 0 < a < f and suppose that f : [R, +co) | Dg is analytic in Dy and there exists B, C > 0 such that
|f(x)| < CeB~, for all x € [R, +c0). Denoting f(z) = Y10 crZk, z € Dy, we have Sg’"g)(f)(z) =Yoo ckSE,a’ﬁ)(ek)(z),for
all z € Dg.
Proof. Forany m € N and 0 < r <R, let us define

fu@) =) ciZ if |zl <rand fu(x) = f(x) if x € (r, +0).

=0

Since |f(2) < Z}io lcjl - ri:=C, forall |zl <rand m € N, f is continuous on [r, R], from the hypothesis on f
it is clear that for any m € IN it follows | f,,(x)| < C,reP, for all x € [0, +c0). This implies that for each fixed
m,n €N, n>Band z,

< ) [
ISP (F)@ < Cole™ - ePolinem y LED (n [ e
= o It

ke j j+1
— Cr,R|e_nZ| . eBa/(n+ﬁ) Z (n|z'|) . n _ < oo,
]':0 ] (n_Bn/(n+ﬁ))]

since by the ratio criterium the last series is convergent. Therefore Si,a’ﬁ ) (fm)(z) is well-defined.
Denoting

fmx(z) = crep(z) if |z| < rand fi k(%) =

it is clear that each f,,x is of exponential growth on [0, ) and that f,(z) = Y.iL, fuk(z). Since from the

T if x € (r, 00),

linearity of Sff’ﬁ ) we have
m

S (@) = ) St @)@, forall 2l <,

k=0
it suffices to prove that lim,, Sf,a’ﬁ ) (fm)(z) = Sﬁ,a’ﬂ ) (f)(z) for any fixed n € N and |z| < r. But this is immediate
from limy,—e0 || fin = flly = O, from || fis — fllBjo,+e0) < Il fi — fll- and from the inequality
1S5 P ()@ = Sy P (@] <l - " - 11 = Fllsio.0) < Miallfor = fll,

valid for all |z| < r. Here || - ||g[0,+c0) denotes the uniform norm on C[0, +o0)-the space of all complex-valued
bounded functions on [0, +00). [
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Lemma 2.3. If we denote S,(ex)(z) =: Sﬁ,o’o)(ek)(z), where ex(z) = Z¥, then for all |z| < r withr > 1, n € N and
k=0,1,..,2.., we have the estimate |S,(ex)(z)| < (2k)! - r*.

Proof. We will use the next recurrence formula after Remark 1 in [10] :

Su(e)@) = 25300 + ZE LS, 0)(2), Sy(e0)@) = 1.

For k =0, we get [S,(e1)(z)| < r + %, forall |zl <r,n € N. Fork =1, we get
1S, (e2)(2)] < % IS el + (r +2/n)(r + 1/n) < % . %(r +1/n)+ (r+2/n)(r +1/n)

= (r+1/n)(r + 3/n).

In general, taking into account that S,,(e)(z) is a polynomial of degree k and that by the Bernstein inequality
we have [|S/,(ex)(2)|| < % “|ISn(ex)ll;, by mathematical induction we easily arrive at the inequality

k 2] _
s <[] [r+
j=1

forall |zl <randk,neIN. O

k k
ﬂ:wfm+ar4mM»s#ﬂﬁ+%—h=N%n
1 =1

3. Main Results

Theorem 3.1. Let 0 < a < B, f € Hg,1 < R < +oo0 and suppose that there exist M > 0 and A € (%,1), with the
property that |cx| < MA- forallk =0,1, ..., (which implies | f(z)| < MeAH forall z € D) and |f(x)| < CeBx,for all
x € [R, +00).

(2k)' ’

() Letl <r< %. Then for all |z| < r and n € N with n > B, we have

(@p) 1’1(‘8 + 1) + ‘B
1S, ()2 = f@) < Cra- W

where Cop = M- Y00 1(rA) < o0;

(i) If 1 < r <1y < % are arbitrary fixed, then for all |z| < r and n,p € N withn > B,
prCna nB+1)+p
(rn—rptt n(n+p)

[SYPIP (@) - FP@R) <

where C,, 4 is given as at the above point (i).
Proof. (i) By Lemma 2.1, we get
ak-i

k= i k=i
qua,ﬁ)(ek)(Z) —exl(z Z( )(Ziﬁ)k aﬁ)(ej)(z — € (2)) + Z( ) + ‘3)" ]( z)

nk

Tt pr

< @ j-
2n

——Su(en (@) - e(2),

which by using the estimate for ||S,(e;) — ¢jll, <

- . .
w X (a ) wa*i .
”Sn ﬁ(ek)_ekllf—Z( )(n+ﬁ)k” ﬁ(e])_e]”r"'Z( )( +ﬁ)k 2

!in the proof of Theorem 1, (i) in [10], implies
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k

k

+—(n e 1S, (ex) — exll; + (1 "W j ﬁ)k) 7k
<(n+a)k.@ _1+rk[(n+a)k_ nk nk (20! 5y
T (m+p 2n m+pk m+pk| m+pr 2n

§ (2k)! - k K)! kp
+(1—(nzﬁ)k)rks ~ r“+2rk[1 o :B)k] A 2 T
<MEEDE o

n(n + B)

Above we upper estimated 1— by using the inequality 1— j8 =1%j < vk i=1(1—x;), valid forall0 < x; <1,
i=1,..k

In conclusion, by Lemma 2.2 we can write S,(f(’ﬁ )( ) = Yo ckaf’ﬁ )(ek)(z) for all z € Dg, n > B, which
from the hypothesis on ¢, immediately implies for all |z| < r

(n +ﬁ)k

S5 PN - f@l < Y led 157 (@0) - )
k=1

(]

n(ﬁ +1)+p
Z (2k D (2K

_n(ﬁ+1)+ﬁ MZ _ rA‘n(ﬁ+1)+ﬁ
n(n + p) = n(n + p)
where C, 4 = M- Y2, (rA)f < oo for all 1 < r < 1, taking into account that the series Y ;; u* is uniformly
convergent in any compact disk included in the open unit disk.
(ii) Denoting by y the circle of radius r; > r and center 0, since for any |z| < r and v € y, we have
|v — z| > r1 —r, by the Cauchy’s formulas it follows that for all |z| < r and n € IN with n > B, we have

ISP (f)(2) - FP ()] =

(ZJ Z)p+1

jﬂ”%ﬁ@ ﬂwv‘

np+1)+ [3 p' 271
n(n + ) 2 (r1 = ryp*t’

S CrlA

which proves (ii) and the theorem. [
The following Voronovskaja type result holds.

Theorem 3.2. Let f € Hg,2 < R < +co and that there exist M > 0 and A € (§,1), with the property that
el < M(Zk),,for all k =0,1,..., (which implies |f(z)| < Me¥ for all z € Dg) and |f(x)| < CeP¥, for all x € [R, +c0).
If1 <r<r+1< % then there exists a constant Cop, > 0 (depending only on a, B and r), such that for all |z| < r

and n € N withn > 1“‘2 , we have
a+1-pz
e (NE - f@) - ————

f@-=f")

Cr,A,M(f) MCapr
e Zk(k 1)(Ar,

T/Uhere C?’,A,M(f) r(l—Ar) },+1)2 Zk 2(k 1)[A(r + 1)]
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Proof. For all f € Dg, let us consider

1-
o9 (e ~ - T pe g

=50 - f@) - f©) - 2f'()

+00(@ - 5N - L fe).

Taking f(z) = Ypo, ck2k, we get

1-
S0~ £ - T ey - 2

oo K2z
=Zc (S (ex,z) — 2~ — )
=0

+ (s,i“'ﬁ%ek, 2) = Suler, 2) - ’3 g 1)

k=0
By Theorem 2 of [10], for all n > max{Ar/(1 — Ar), B} and |z| < r we have

- 2. k-1 Cr
ch (Sn(ek,z) _p K i ) < Am(f)

2
n
k=0

7

where C, 4 m(f) = r(l Ar) +Grip +1)2 Yo, (k=1)[A(r+1)]F < 0o. Next to estimate the second term, by using Lemma
2.1 we obtain

S,(f'ﬁ)(ek’ z) — Sn(ek, Z) — #kzk_l_
To estimate the second series we rewrite it as follows
Sﬁa/ﬁ) (ex,2) — Sy (e, 2) — a ;'BZ Jzk1
k=1 .
) e () S0
=Y S (e,2) +| —— ~1|Suler2) - — ke
J'—O( 1) (n+p)f () (n+B)" ‘
k=2 S
k'\ niaki kLo
= . S, (e, S, ,
J'Z—(;(])(”Jfﬁ)k e Z)+(n+[3) (€-1,2)
k-1 —_ )
—Z( k ) wp Jks,, (e,2) — L PP g
j=0 J'] (n+p) n
k=2 o
k '\ niaki k-1 »
= S?’l . M= Sn " _
1—0(])(”+5)k (e )+(n+ﬁ)k( (€-1,2) =2 )
k=2 —_ o
) n a k-1
_ | ———5,, (e, 1 ‘
J'=o(])(n+ﬁ)k (8k2)+((n+ﬁ)k‘1 Jn+ﬁz
knk_lﬁ k le 1 ﬁz
+(n+ﬁ)k(z —Sn(ek,z))+(1 o +ﬁ)k1]l/l+ﬁ
pla—p2),
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By using Lemma 2.3 and the inequality

(n+ﬁ) i( n+ﬁ) nkfﬁ’

=
we get
Ml B
k=2 .
T4 %( k;z )% Su(e12)
< (kz_ . (n izﬁ)z 2%k - 2))! g (Z]j’:k%
< @ " ‘f : P2k - ).

K < @0
|S2n

Therefore, taking into account the inequality |5, (ex)(z) — z 1 forallk,n € N, |z| < r in the proof of

Theorem 1 in [10], it easily follows that

Sga’ﬁ) (ex,z) — Su (e, 2) — D(_Tﬁzkzk‘1

RED o 2y KEZDE

_2(71 e 2k -2)! + 20+ 5)2(( H)lr (n+ﬁ)27(2 )!
k(k Dap kp vy kk=1)B . B+ Bk
gt | e g T wwep

and that there exists a constant C, 5, > 0 (depending only on «, 8, r, which could be explicitly found by
some calculation, but for simplicity we don’t make it here), such that

o — pz
ﬁ kzk—l
n

s ¢ Capr - @R

<
T (n+py

ek, z) — Sy (ex, 2) —

In conclusion,

ch (Smﬁ) ex,z) — Su(ex, z) — ﬁzk k= 1)

k=0

(o)
<Y ol
k=0

ﬁz

5P er,z) — Suler, z) - ——kzt!

M a,p,r
= +p)*

which finally leads to the estimate in the statement. [

Z k(k — 1)(Ar),

The following exact order of approximation can be obtained.
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Theorem 3.3. (i) In the hypothesis of Theorem 3.2, if f is not a polynomial of degree < O then forall1 <r <r+1 <R

we have
Ar

1-Ar

a, 1
ISSP(F) = fllr ~ p foralln >

where the constants in the equivalence depend only on f and r.
(ii) In the hypothesis of Theorem 3.2, if r < r1 <r1 +1 < 1/A and if f is not a polynomial of degree < p, (p = 1)

then
Ar

1-Ar

SSP1O) Ol ~ ., forall n >
where the constants in the equivalence depend only on f, v, ¥ and p.

Proof. (i) For all |z| < r and n € N, we can write

SAOIORSONE %[(a +1-p2)f @) +2f" (@)

1-
b (Si“’ﬁkf)(z) - fo -

4 _ E 44
f@-2f (z))]
Applying the inequality

IE + Gl = [IIFIl = [IGIH = IFIl = [IGII,

we obtain

1SS () - flls
(@t 1-pe)f +erf”

n

SYPf) - f

1
_—.n2
ron

> % [H(a +1—Be)f +erf”

|

Since f isnot a polynomial of degree < 0 (i.e. a constant function) in IDg, we get “(04 +1-Be))f" +eif”
Indeed, supposing the contrary, it follows that

r>0.

(@+1-B2)f'(z2)+zf"(z) =0, forall|z| <~

Denoting f’(z) = y(z), we get (o + 1 — Bz)y(z) + zy'(z) = 0, forall |z| < r. Since y(z) is analytic, let y(z) =
Yoo iz, Replacing in the above equation, by the coefficients identification we easily arrive at system
(a+1)bo=0,(a+1+k)br=pb—1,k=1,2,...,.

Therefore we easily get by = 0 for all k = 0,1, ..., and y(z) = 0, for all |z| < r. This implies that f is a
constant function, in contradiction with the hypothesis.

Now by Theorem 3.2, there exists a constant C > 0 independent of 1, such that we have

B (@+1-PBe))f" +ef”

n

1’12

Ar
< C, for all .
r_C, or a n>1—Ar

P () - f

Ar
1-Ar

Thus, there exists 19 > such that for all n > ny, we have

(@ +1-pBe))f" +eif”

(@p)
Sn (f) - f - n

1
__.nz
rn

@+ 1= perf +erf”

|

r’

> % ”(a +1-Be))f" + elf”‘

which implies that

ISP - £l = % (@ + 1= Ben)f +erf”

r
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for all n > ny.

For ;4 <n <ny-1, wegetIIS;“’ﬁ)(f)—er > M%(f)withMm,(f) = n.||551“’ﬁ)(f)—f||r > O(sincellef"g)(f)—f||r =0
for a certain n is valid only for f a constant function, contradicting the hypothesis on f).

Therefore, finally we have
G(f)

n

ISSP(f) ~ fll, =

for all n > 42 where
Ar

1-

C(f) = (M) o Mo 1D 5 [+ 1= en)f + en

min
no—1>n>Ar/(1-Ar)

r} ’
which combined with Theorem 3.1, (i), proves the desired conclusion.
(ii) The upper estimate is exactly Theorem 3.1, (ii), therefore it remains to prove the lower estimate.
Denote by I' the circle of radius r; and center 0. By the Cauchy’s formulas for all |z| < r and n € IN we get

P8 - fe),

2ni Jr (v—2z)p+!

[SYPND (@) - fP(2) =

7

where [v —z| > r; —rforall |z <rand v eT.
Forallv € I'and n € IN we get

SO (@) - f(v)
= % {(a+1-Bo)f'(v) +0f"(v)

1 (a+1-po)f'(v) +vf"(v))]}

+ [n2 (Sff“"”(f)(v) - f@) -

n

which replaced in the Cauchy’s formula implies

P(@tl-po)f @) +of'@)

27 Jr (v —z)p+!

[SCP10()e) - ) = {

do

+ 1
n 2

p' n? (S,(f’ﬁ)(f)(v) _ f(v) _ (a+1—ﬁv)f’(v)+vf”(v))
J

(v — z)p*1

= i@ +1-p7 @) + 21" @)

1 p fnz(sff'ﬁ)(f)(v)_ f(v)_wlw)
duy.
T

n 2mi (v —z)pt!

Passing to the norm || - ||, for all n € IN we obtain

ISP () - £,
> e+ 1= pens +er 17,

1

n

do

7

P' n2 (Si,a'ﬁ)(f)(v) _ f(’U) _ (a+1—,8v)f’(v)+vf"(v))
I

2n (v —z)p+!

r
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where by Theorem 3.2, for all n > 4% it follows

p. n? (S(arﬁ)(f)(v) _ f(v) _ (a+1—ﬁv)f’(v)+vf”(v))
I

21 (v —z)p+! do
! 2mrn? (@+1-=Be)f +ef” Ir
P2 g - f - beof raf”) o P
2 (rp —r) n " (r1 =1y

Now, by hypothesis on f we have ”[(a +1-Be))f' +e f”](p)Hy > 0. Indeed, supposing the contrary it
follows that (a +1—fz)f"(z) +zf"(z) = Qp-1(2) is a polynomial of degree < p—1. Denoting again y(z) = f'(z)
we arrive at the linear equation (a + 1 - z)y(z) + zy'(z) = Qp-1(z), with its homogenous equation having
only the zero solution.

In consequence, clearly that this equation in real variable x can have as solution y(x) only polynomials
of degree p —1in x, and from the the analyticity of y and the identity theorem, the equation in the z variable
will have as solution only polynomial of degree p — 1 in z. This implies that f necessarily is a polynomial
of degree < p, in contradiction with the hypothesis.

For the rest of the proof, reasoning exactly as in the proof of the above point (i), we immediately get the
required conclusion. [
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