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Abstract. In this paper, we propose a new lifetime model as a discrete version of the continuous weighted
exponential distribution which is called discrete weighted exponential distribution (DWED). This model
is a generalization of the discrete exponential distribution which is originally introduced by Chakraborty
(2015). We present various statistical indices/properties of this distribution including reliability indices,
moment generating function, probability generating function, survival and hazard rate functions, index of
dispersion, and stress-strength parameter. We first present a numerical method to compute the maximum
likelihood estimations (MLEs) of the models parameters, and then conduct a simulation study to further
analyze these estimations. The advantages of the DWED are shown in practice by applying it on two real
world applications and compare it with some other well-known lifetime distributions.

1. Introduction

Although, the continuous distributions are more widely used for modelling the lifetime of a component
or system, but there would be are situations that discrete lifetime distributions are more plausible to
apply due to the nature of the problem. For instance, the discrete distributions would be better choices
for modelling the lifetime of an on/off switch or lifetime of a device that is exposed to shocks, etc. The
geometric, negative binomial and the multinomial are among more popular discrete models which have
been widely used in the reliability analysis and other related applications (Meeker and Escobar, 1998). The
common way to construct discrete distributions is based on the discretization of some suitable continuous
distributions for example Chakrabortry and Chakravarty (2012, 2014, 2016), Chakrabortry and Gupta (2015),
Chakrabortry (2015a, 2015b) and Chakrabortry and Bhati (2016). One of the simplest ways to implement
discretization is briefly explained here. We assume a continuous random variable X has the survival
function (SF) SX(x) = P(X ≥ x), and a random variable Y is defined as Y = [X]. The probability mass
function (PMF) of Y is then given by (Kotz et al., 2006)

P(Y = y) = P(y ≤ X < y + 1) = P(X ≥ y) − P(X ≥ y + 1) = SX(y) − SX(y + 1), for y = 0, 1, 2, . . . (1)
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The discretization of a continuous distribution using this method retains the same functional form of the
survival function, SX(.). As a result, many reliability characteristics remain unchanged. This method which
is widely applied to generate new discrete distributions has received attention in the last four decades. In
this regard, Nakagawa and Osaki (1975) obtained the discrete Weibull distribution, Roy (2004) proposed
and studied discrete Rayleigh distribution, Kemp (2008) examined the discrete half-normal distribution,
Krishna and Singh (2009) obtained the Burr and Pareto discrete distributions, Aghababaei Jazi et al. (2010)
introduced and studied properties of the discrete inverse Weibull distribution, and Gomez-Deniz and
Calderin (2011) studied the discrete Lindley distribution. Gomez et al. (2014) introduced a weighted
exponential distribution (denoted by EE(α, β)) with the following probability density function (PDF) and
SF

fX(x;α, β) =
α2(1 + βx)e−αx

α + β
, x, α > 0 , β ≥ 0, SX(x) =

(
1 +

αβx
α + β

)
e−αx, (2)

respectively. Where, α and β are respectively, shape and scale parameters. The PDF of EE(α, β) which is a
mixture of an exponential density with the inverse scale α (denoted by E(α)), and a Gamma distribution
with the parameters (2, α) (denoted by G(2, α)), is given by

fX(x;α, β) =
α
α + β

αe−αx +
β

α + β
α2xe−αx. (3)

It should be noted that the exponential distribution, E(α) can be derived from EE(α, β) by setting β = 0.
The main aim of this paper is to construct a new and novel discrete distribution, so-called discrete weighted
exponential distribution, from the weighted exponential distribution presented in Equations (2) and (3). We
also study important features and properties of DWED and show its usefulness in reliability analysis. It is
interesting to note that the DWED enfolds the discrete exponential distribution of Chakraborty (2015) and
geometric distribution for some specific values of its parameters. The various generalizations of Geometric
distribution (Jain and Consul, 1971; Philippou et al., 1983; Tripathi et al., 1987; Mačutek, 2008; and Gomez-
Deniz, 2010) can be also derived similar the DWED. We denote the DWED with its parameters, (α, β) by
DWE(α, β), where α > 0, β ≥ 0. We will show that the DWED exhibits both constant and increasing hazard
rates, and it can be applied to a wide range of applications. The advantages of this distribution over other
alternative discrete models will be examined and compared through several illustrations.
The paper is organized as follows: Section 2 introduces the DWE(α, β) distribution and presents some of
its important statistical features and properties including cumulative distribution function (CDF), moment
generating function, probability generating function, moments, quantile, modality, survival and hazard
rate functions, index of dispersion, entropy and stress-strength parameter. In Section 3, we provide the
MLE of the DWEDs parameters. We analyze two real world applications using the DWED in Section 4.
Finally, some concluding remarks are given in Section 5.

2. Discrete Weighted Exponential Distribution

2.1. Probability Mass Function, Survival and Hazard Rate Functions
The discrete weighted exponential distribution is formally defined as follows:

Definition 2.1. A random variable Y has a discrete weighted exponential distribution with parameters α > 0 and
β ≥ 0 denoted by DWE(α, β), if

fY(y;α, β) = P(Y = y) =
{
(α + β + αβy)(1 − e−α) − αβe−α}

α + β
e−αy ; y ∈ {0, 1, 2, . . .} . (4)

In other words, the PMF of the DWED is derived by substituting the SF of EE distribution given in Equation
(2) into Equation (1). The resulting PMF, presented in (4), has an explicit form in terms of (α, β). It is trivial
to show that DWE(α, 0) distribution coincides with the discrete exponential distribution of Chakraborty
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(2015). In addition, the geometric distribution with parameter, 0 < p < 1 can be derived from DWE(α, 0),
by setting α = ln( 1

1−p ).
The CDF, SF and hazard rate function of Y ∼ DWE(α, β) are respectively given by

FY(y) = 1 −
e−α(y+1) (α + β + αβ(1 + y)

)
α + β

, (5)

SY(y) =
(
1 +

αβ

α + β
y
)

e−αy, (6)

and

HY(y) =
αβ

{
y(1 − e−α) − e−α

}
+ (α + β)(1 − e−α)

α + β + αβy
. (7)

It can also be illustrated that HY(y) is bounded for all y with the following bounds

HY(0) = 1 − e−α(1 +
αβ

α + β
), HY(∞) = 1 − e−α,

HY(0) ≤ HY(y) ≤ HY(∞).

The ratio of successive probabilities, given in (8) can be used to calculate the probabilities of the DWE(α, β)
distribution, recursively.

ry =
P(Y = y + 1)

P(Y = y)
= e−α

(
1 −

αβ

((eα − 1)(α + β) − αβ) + αβ(eα − 1)y

)
, y ∈ {0, 1, 2, 3, . . .} . (8)

It is trivial to show that for any value of α and β, ry is a non-increasing function of y. In addition, the DWED
is a unimodal distribution as illustrated in the following proposition.

Proposition 2.2. The discrete weighted exponential distribution is strongly unimodal.

Proof. It is trivial to show that ry is a decreasing function. Therefore, we can conclude that the corresponding
PMF, P(Y = y) is a log-concave function, and thus strongly unimodal (see also Chakraborty and Chakravarty
(2016) for a similar argument).

An immediate result of Proposition 2.2 is that the DWED has a non-decreasing failure rate. It can be also
seen the PMF of DWE(α, β) distribution for different shape parameter values and fixed scale parameter
(β = 3) is a unimodal distribution (Figure 1(a)), and the PMF of DWE(α, β) distribution with different scale
parameter values and the fixed shape parameter (α = 0.5) is a deceasing function. The PMF becomes
decreasing for all values of α satisfying in the following inequality, e−α(2 − e−α) ≤ 1.
Figure 2 shows the hazard rate function of the DWED, given in (7), for different values of (α, β). It can be
seen that the hazard rate function could be constant, or increasing with respect to y based on the different
parameters values.

2.2. Moments, mean, variance and quantiles
In this subsection, we present the quantiles, moment and probability generating functions, moments

and variance of the DWE(α, β) distribution. In the following proposition, we present the general forms of
moment and probability generating function of the DWED which can be used to compute moments and
variance.

Proposition 2.3. Let Y ∼ DWE(α, β). The moment and probability generating functions of Y are

MY(t) = ((α+β)(1−e−α)−αβe−α)+et−α(αβ−(α+β)(1−e−α))
(α+β)(1−et−α)2 ; t < α,

ϕY(t) = ((α+β)(1−e−α)−αβe−α)+te−α(αβ−(α+β)(1−e−α))
(α+β)(1−te−α)2 ; t < eα,

respectively.
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Figure 1: Probability mass function of the discrete weighted exponential distribution for (a) different values of α and the fixed β = 3;
and (b) for the fixed α = 0.5 and different values of β.
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Figure 2: Hazard rate function of the discrete weighted exponential distribution.

The quantile function of the discrete weighted exponential distribution, denoted by Q(u), derived as the
root of F(Q(u)) = u, is given by(

e−α(α + β + αβ)
α + β

+
αβe−α

α + β
Q(u)

)
e−αQ(u) = 1 − u. (9)

By taking logarithm from the both sides of Equation (9), we have

log
(

e−α(α + β + αβ)
α + β

+
αβe−α

α + β
Q(u)

)
− αQ(u) = log(1 − u). (10)

It can be illustrated that the solution of the following equation

log(A + Bx) + Cx = log(D)

is given by

x =
1
C

W
(CD

B
e

AC
B

)
− A

B
,
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where W(.) is the Lambert function for the input values A,B,C,D, and B,C , 0 (Valluri et al., 2000).
Therefore, the quantile function, Q(u) for β , 0, can be similarly obtained as follows:

Q(u) =


(−1)

αβ + α + β + βW

 (α+β)(u−1)e
− α+ββ

β


αβ

 , (11)

where 0 < u < 1, and [.] denotes the floor function (Valluri et al., 2000).
It should be noted that when β = 0, the DWE distribution will be reduced to discrete exponential

distribution (or geometric distribution) and its quantile is the same as their quantiles.
It is thus trivial to show that the median of the DWE distribution, when β , 0, is given by

Q(
1
2

) =


(−1)

αβ + α + β + βW

− (α+β)e
− α+ββ

2β


αβ

 .
By using the series expansion of Lambert W function, the quantile function given in Equation (11) can be
rewritten as follows:

Q(u) =



(−1)

αβ + α + β + β
∞∑

i=1

(−i)i−1

 (α+β)(u−1)e
− α+ββ

β


i

i!


αβ


.

The non-central moments of the DWE distribution are formally presented in Proposition 2.4.

Proposition 2.4. Let Y ∼ DWE(α, β), the rth (r = 1, 2, . . .) moment of Y is given by

µr = E (Yr) =
(α + β)(1 − e−α) − αβe−α

α + β
Φ(e−α,−r, 0) +

αβe−α

α + β
Φ(e−α,−(r + 1), 0), (12)

where Φ(.) is the Lerch function (Gradshteyn and Ryzhik, 2000) which is defined as

Φ(z, s, a) =
∞∑

k=0

zk

(a + k)s ; |z| < 1.

The mean and second-order moment about zero of Y can be respectively obtained by replacing r = 1 and
r = 2 in (12) as follows:

E(Y) = 1
eα−1 +

3αβ
(eα−1)3(α+β)

,

E(Y2) = {1+eα−2e2α+e4α−e5α}
(eα−1)3eα(−1+2eα−e2α)

+
2αβ(1−2eα−2e2α)

(eα−1)3(α+β)(−1+2eα−e2α)
.

(13)

It is then trivial to compute variance of Y, Var(Y), based on the first and second moments. Figure 3 and
Table 1 illustrate the means of the DWE(α, β) distribution for different α and β. It can be observed that E(Y)
increases with β (for the fixed α) and decreases with α (for the fixed β). Figure 3 and Table 1 illustrate the
variances of the DWE(α, β) distribution for different α and β. For the fixed α, Var(Y) decreases with β, and
for the fixed β, Var(Y) decreases with α (Figure 3 and Table 1).
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Table 1: Mean and Variance for fixed α and fixed β.

α β Mean α β Variance
0.3 0.5 15.99 0.3 0.5 473.63
0.3 2 21.13 0.3 2 432.40
0.3 6 22.87 0.3 6 406.46
0.2 0.7 47.51 0.2 0.7 2262.18
0.6 0.7 2.96 0.6 0.7 26.03
3 0.7 0.05 3 0.7 0.05
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Figure 3: Means and variances of the DWE distribution for the different values of (α, β).
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2.3. Index of Dispersion
In probability theory and statistics, the index of dispersion is a normalized measure of the dispersion

of a probability distribution (Upton and Cook, 2006). It is a measure used to quantify whether a set of
observed occurrences is dispersed compared to a standard statistical model. The index of dispersion (ID) is
defined as variance divided by the mean of a distribution. If ID value is greater than one, the corresponding
distribution is over-dispersed, and if it is less than one, the distribution is under-dispersed. Figure 4
represents the ID plot of the DWE distribution for different values of α and β. It can be observed that ID
is greater than 1 for all values of α and β. Therefore, we can conclude that the DWE distribution is always
over-dispersed. The ID decreases as β increases for fixed value of α and also decreases, as α increases for
fixed value of β.

0 5 10 15 20
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4
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8

β

ID

α=0.5
α=1
α=2

Figure 4: Index of Dispersion Plot of discrete weighted exponential distribution.

2.4. Entropy
The concept of entropy plays a vital role in information theory. Entropy measures provide important

tools to indicate variety in distributions at particular moments in time and to analyze evolutionary processes
over time. These measures are the variation of the uncertainty in the distribution of a random variable. In
this section, we compute the Renyi entropy of DWE(α, β) distribution. The Renyi entropy is defined as

IR(γ) =
1

1 − γ log

∑
y

(P(Y = y))γ
 , (14)

where γ > 0 and γ , 1 (Renyi, 1961). For the DWE distribution and when γ is an integer number, we can
write

∞∑
y=0

(
P(Y = y)

)γ = γ∑
j=0

(
(α + β)(1 − e−α) − αβe−α) j(αβe−α)γ− j(

α + β
)γ Φ

(
e−αγ, j − γ, 0), (15)

where Φ(.) is the Lerch function. This series will be convergent if eαγ > 1 by the ratio test. As a result, the
equation given in (14) will become

IR(γ) =
1

1 − γ log

 γ∑
j=0

(
(α + β)(1 − e−α) − αβe−α) j(αβe−α)γ− j(

α + β
)γ Φ

(
e−αγ, j − γ, 0) .
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The cumulative residual entropy (Rao et al., 2004) is also defined by

IC = −
∞∑

y=0

P(Y > y) log
(
P(Y > y)

)
. (16)

By using the Taylor series expansion for lo1(1 + x) and substituting it in Equation (16), we have

IC = (1 + αβ
α+β )e

−α
∞∑
j=1

j∑
k=0

(−αβ
α+β

) j
(

j
k

)
Φ(e−α,−k, 0)

+e−α
∞∑
j=1

j∑
k=0

(−1) j
(
αβ
α+β

) j+1
(

j
k

)
Φ(e−α,−(k + 1), 0)

+
α(e2α(α+β+αβ)−eα(α+β−αβ))

(α+β)(eα−1)3 .

2.5. Stress-strength parameter
In the context of reliability, the stress-strength model describes the life of a component which has a

random strength Y subjected to a random stress X. A component fails at the instant when the stress applied
to it exceeds the strength, and the component will function satisfactorily if Y > X. Therefore, R = P(X < Y)
can be considered as a measure for the component reliability. It has many applications, particularly in
engineering concepts such as structural reliability, deterioration modeling of rocket motors, assessment of
static fatigue of ceramic components, evaluating fatigue failure of aircraft structures, and modeling the
ageing of concrete pressure vessels.

Suppose Y and X are independent discrete weighted exponential random variables with parameters
(α1, β1) and (α2, β2), respectively. The R = P(X < Y) can be then expressed as

R = P(Y > X) =
∞∑

x=0
(α1+β1+α1β1(x+1)

α1+β1
)e−α1(x+1)( (α2+β2+α2β2x)(1−e−α2 )−α2β2e−α2

α2+β2
)e−α2x

=


e2(α1+α2) (−α1β2 − β1α2 − α1α2(1 + β2 + β1) − β1β2 (α1α2 + α2 + α1 + 1)

)
+eα1+2α2

(−2α1β2 − 2β1α2 − α1α2(2 + β1 − β2 − 2β1β2) − β1β2(α1 − α2)
)

+eα1+α2
(
2α1β2 + 2β1α2 − α1α2(β1β2 − 2 − β2 − β1) − β1β2(−2 − α2 − α1)

)
+

(
α1α2 + α1β2 + β1α2 + β1β2

)
(eα2 − 1)


(α1+β1)(α2+β2)(eα1+α2−1)3 .

(17)

3. Estimation of Parameters

In this section, we provide the point estimations of the parameters of the discrete weighted exponential
distribution using the maximum likelihood method. Let Y1,Y2, . . . ,Yn be a random sample drawn from a
DWE(α, β) distribution. The log-likelihood function of this sample is given by

ℓ = log L = −αnȳ − n log(α + β) +
n∑

i=1

log
(
(α + β + αβyi)(1 − e−α) − αβe−α). (18)

The likelihood equations are then given by

dℓ
dα = 0

⇒ −nȳ − n
α+β +

n∑
i=1

(1+βyi)(1−e−α)+e−α(α(1+β(yi+1)))
(α+β+αβyi)(1−e−α)−αβe−α = 0, (19)

and
dℓ
dβ = 0

⇒ − n
α+β +

n∑
i=1

(1+αyi)(1−e−α)−αe−α

(α+β+αβyi)(1−e−α)−αβe−α = 0.
(20)
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The solutions of likelihood Equations (19) and (20) provide the maximum likelihood estimators (MLEs) of
α and βwhich can be obtained by a numerical method such as the two dimensional Newton-Raphson type
procedure.

The Fisher’s information matrix is given by

Iy(α, β) =

 −E
(

d2

dα2 Lo1L
)
−E

(
d2

dαdβLo1L
)

−E
(

d2

dβdαLo1 L
)
−E

(
d2

dβ2 Lo1L
)  . (21)

where the second partial derivatives are given below:

d2ℓ
dα2 =

n
(α+β)2 +

n∑
i=1

(
2e−α(1+βyi−α−β−αβyi+β−αβ)

(α+β+αβyi)(1−e−α)−αβe−α

− ((1+βyi)(1−e−α)+e−α(α+αβyi+αβ))2

((α+β+αβyi)(1−e−α)−αβe−α)2

)
,

d2ℓ
dβ2 =

n
(α+β)2 −

n∑
i=1

(
((1+αyi)(1−e−α)−αe−α)2

((α+β+αβyi)(1−e−α)−αβe−α)2

)
,

d2ℓ
dβdα =

n
(α+β)2 +

n∑
i=1

( yi(1−e−α)+αe−α(yi+1)
(α+β+αβyi)(1−e−α)−αβe−α

− ((1+αyi)(1−e−α)−αe−α)((1+βyi)(1−e−α)+e−α(α+αβyi+αβ))
((α+β+αβyi)(1−e−α)−αβe−α)2

)
.

One can show that the DWE distribution satisfies the regularity conditions which are fulfilled for
parameters in the interior of the parameter space, but not on the boundary (see, e.g., Ferguson, 1996, p.

121). That is, I
1
2
y (α, β)

(
(α̂, β̂)

T − (α, β)T
)

converges in distribution to bivariate normal with the (vector) mean
zero and the identity covariance matrix. The Fisher’s information matrix given in Equation (21) can be
approximated as follows

Iy(α̂, β̂) ≈
 − d2

dα2 Lo1L
∣∣∣∣(α̂,β̂) − d2

dαdβLo1L
∣∣∣∣(α̂,β̂)

− d2

dβdαLo1L
∣∣∣∣(α̂,β̂) − d2

dβ2 Lo1L
∣∣∣∣(α̂,β̂)

 ,
where α̂ and β̂ are the MLEs of α and β, respectively (see also Gomez-Deniz, 2010).

3.1. Simulation study
In this section, we study the performance and accuracy of the MLEs of the parameters of the DWED by

conducting various simulations for different sample sizes and different parameter values. To generate data
from DWE distribution, we can simply use the PDF given in Definition 1 and CDF given in Equation (5). A
code written in R is provided in Appendix A.

The simulation study using Monte Carlo method is conducted for N = 5000 iteration and for different
sample sizes n = 200, 500, 1000 and different parameter values (α, β) = (0.3, 0.7), (α, β) = (0.7, 0.3), (α, β) =
(0.9, 0.9), (α, β) = (0.2, 0.2), (α, β) = (1.1, 0.4) and (α, β) = (0.7, 1.4). In this simulation, mean bias and mean
square error of the MLE of the parameters, defined below, are computed and discussed.

1. Mean bias (Bias) of the MLE of the parameter of interest, θ (e.g., α or β) is defined as follows:

Biasθ(n) =
1
N

N∑
i=1

(
θ̂i − θ

)
.

2. Mean squared error (MSE) of the MLE of the parameter of interest, θ is defined as follows:

MSEε(n) =
1
N

N∑
i=1

(
θ̂i − θ

)2
,
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Table 2: Monte Carlo Simulation Results: Mean Bias and MSE in parenthesis.

(α, β) α̂ β̂
n = 200
(0.3,0.7) 0.0026(0.0006) 0.2088(0.5099)
(0.7,0.3) -0.0036(0.0119) 0.2180(0.2809)
(0.9,0.9) -0.0004(0.0149) 0.5332(2.9958)
(0.2,0.2) -0.0003(0.0004) 0.0400(0.0266)
(1.1,0.4) -0.0004(0.0376) 0.4956(1.4359)
(0.7,1.4) -0.0001(0.0047) 0.6787(5.1876)
n = 500
(0.3,0.7) -0.0021(0.0002) 0.0427(0.0810)
(0.7,0.3) 0.0002(0.0057) 0.0781(0.0737)
(0.9,0.9) 0.0078(0.0044) 0.0145(0.3717)
(0.2,0.2) 0.0018(0.0001) 0.0286(0.0096)
(1.1,0.4) -0.0116(0.0195) 0.2162(0.3029)
(0.7,1.4) 0.0005(0.0015) 0.1753(0.7302)
n = 1000
(0.3,0.7) 0.0001(0.0001) 0.0333(0.0394)
(0.7,0.3) -0.0047(0.0029) 0.0177(0.0251)
(0.9,0.9) 0.0060(0.0021) 0.0109(0.1540)
(0.2,0.2) -0.0004(7×10−5) 0.0064(0.0036)
(1.1,0.4) -0.0179(0.0108) 0.0462(0.0726)
(0.7,1.4) 0.0001(0.0008) 0.0849(0.1938)

where θ̂i is the MLE of θ based on a sample of size n.
Table 2 illustrates Bias, and MSE values of α and β for the different sample sizes. It can be concluded

that as the sample size n increases, the Bias and MSE decay toward zero.

4. Application

In this section, we analyze two real world data sets to examine the fitness of the proposed model in
comparison to other alternative distributions. We use the maximum likelihood method to estimate the
parameters of the DWED. The numerical algorithm as explained in the previous section is required to
compute MLEs of parameters. The mean and variance of data sets presented in Table 3 which shows
the number of European redmites on apple leaves (Gupta and Ong, 2004; Chakraborty and Gupta, 2015;
Alamatsaz et al., 2016) are respectively x̄ = 1.146 and s2 = 2.273. Similarly, the mean and variance of the
data sets presented in Table 4 which illustrates the numbers of fires in Greece for the period from 1 July 1998
to 31 August of the same year (Karlis and Xekalaki, 2001; Nekoukhou and Bidram, 2015) are respectively
x̄ = 5.398 and s2 = 30.044. It can be concluded that both of these data sets are overdispersed since the
sample variances are greater than the respective sample means. We now compare and discuss fitting the
discrete weighted exponential distribution and other distributions to the data sets mentioned above. The
alternative distributions considered in this comparison are:

• Exponentiated Geometric (EG) with parameters α > 0 and 0 < q < 1 (Chakraborty and Gupta, 2015);

• Generalized Geometric (GG) with parameters α > 0 and 0 < θ < 1 (Gomez-Deniz, 2010);

• Kumaraswamy Geometric (KG) with parameters α > 0, β > 0 and 0 < q < 1 (Akinsete et al., 2014);

• Discrete Generalized Exponential second type (DGE2) with parameters α > 0 and 0 < p < 1 (Nek-
oukhou et al., 2013);
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• Exponentiated Discrete Weibull (EDW) with parameters α > 0, γ > 0 and 0 < p < 1 (Nekoukhou and
Bidram, 2015);

• Negative binomial (NB) with parameters n > 0, 0 < p < 1.

The comparison between the discrete weighted exponential distribution and other distributions is per-
formed based on χ2 goodness-of-fit test, Akaike Information Criterion (AIC = −2Lo1(L(θ̂ | data)) + 2k) and
Bayesian Information Criterion (BIC = −2Lo1(L(θ̂ | data)) + kLo1(n)), where k and n are the number of
estimated parameters and number of observations, respectively. In the set of competing models, a model
is selected as the best fitted model to the data that has the smallest AIC and BIC values.

The MLEs of the parameters of the DWE distribution fitted to the data presented in Table 3 are given by

α̂ = 0.7356, β̂ = 0.1554,

and the variance-covariance matrix of the MLEs is given by(
0.0374 0.0677
0.0677 0.132

)
.

The MLEs of the parameters of the DWE distribution fitted to the data presented in Table 4 are given by

α̂ = 0.2631, β̂ = 0.3211,

and the variance-covariance matrix of the MLEs is given by(
0.0010 0.0066
0.0066 0.0587

)
.

The goodness of fit’s statistics including χ2, AIC and BIC reported in Tables 3 and 4, reveal that the DWE
distribution is the best fitted distribution to the data. Since, the computed AIC and BIC of the DWE
distribution are the smallest among other alternative distributions.



Mahdi Rasekhi et al. / Filomat xx (yyyy), zzz–zzz 12

Table 3: The European redmites on apple leaves dataset and its goodness of fit statistics

Count Observed DWE EG GG KG
0 70 68.23 69.87 69.52 69.56
1 38 38.79 37.33 37.55 37.92
2 17 19.85 19.94 20.10 19.62
3 10 10.82 10.65 10.71 10.92
4 9 5.80 5.69 5.69 5.13
5 3 3.18 3.04 3.02 3.34
6 2 1.65 1.62 1.60 1.61
7 1 0.72 0.87 0.85 0.95
≥ 8 0 0.96 0.99 0.96 0.95
Total 150 150 150 150 150

α̂ = 0.7356 α̂ = 1.000 α̂ = 1.027 α̂ = 0.993
β̂ = 0.1554 q̂ = 0.534 θ̂ = 0.529 β̂ = 0.550

q̂ = 0.3213
log L - 222.382 -222.441 -222.437 -222.440
χ2 3.452 3.510 3.545 4.431
d. f 4 4 4 3
p − value 0.485 0.476 0.471 0.218
AIC 448.765 448.882 448.875 450.881
BIC 463.186 463.303 463.295 472.512

5. Conclusion

In this paper, we introduce a new discrete distribution for lifetime modelling which originated from a
continuous weighted exponential distribution. We present various important distributional and reliabil-
ity properties and features of this distribution. We illustrate that several discrete distributions, including
discrete exponential and geometric distributions can be easily derived from this distribution.We also inves-
tigate the efficiency and benefits of using the proposed distribution in practice by applying it to analysis
two real world data sets. By comparing the goodness-of-fit measures computed for this distribution with
the ones derived for other plausible distributions, we can conclude that the DWE distribution is as good as
the EG and GG distributions, but better fitted to the data than the KG distribution. Further investigation
is required to explore in which circumstances the proposed model could produce better performance in
fitting this model to the corresponding data.
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Table 4: The numbers of fires in Greece dataset and its goodness of fit statistics

Count Observed DWE DGE2 EDW NB
0 16 14.70 14.54 15.82 14.28
1 13 13.95 15.39 14.44 15.19
2 14 13.40 14.45 13.42 13.49
3 9 12.60 12.88 11.50 12.40
4 11 10.65 11.23 9.48 10.59
5 13 9.25 9.34 8.51 9.84
6 8 8.22 7.85 7.12 8.52
7 4 6.77 7.06 6.65 6.90
8 9 6.67 5.41 5.63 5.85
9 6 4.85 4.23 4.96 4.72
10 3 4.07 3.81 4.46 3.78
11 4 3.43 3.16 3.12 3.20
12 6 2.77 2.47 2.46 2.64
13 0 2.04 2.13 2.14 2.15
14 0 1.67 1.54 2.05 1.85
15 4 1.40 1.25 1.65 1.15
≥ 16 3 6.56 6.26 9.59 6.45
Total 123 123 123 123 123

α̂ = 0.2631 α̂ = 1.2547 α̂ = 1.0806 n̂ = 1.3360
β̂ = 0.3211 p̂ = 0.8224 γ̂ = 1.0929 p̂ = 0.1983

p̂ = 0.8597
log L - 339.512 -339.852 -339.793 -339.649
χ2 19.60 24.44 24.61 23.344
d. f 9 9 8 9
p − value 0.020 0.003 0.001 0.005
AIC 683.024 683.704 685.585 683.298
BIC 688.648 689.329 694.022 688.923
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Appendix A. An R code to generate data from a discrete weighted exponential distribution is as follows:

rEE<−funct ion (N, alpha , Beta ) {
probs = c ( ( alpha / ( alpha+Beta ) ) , 1 − ( alpha / ( alpha+Beta ) ) )
d i s t s = r u n i f (N)
data = vector ( length=N)
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f o r ( i in 1 :N) {
i f ( d i s t s [ i ]<probs [ 1 ] ) {

data [ i ] = rexp ( 1 , r a t e=alpha )
} e l s e {

data [ i ] = rgamma ( 1 , shape =2 , s c a l e = (1 / alpha ) )
}

}
re turn ( data )
}


