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Abstract. In this paper, new sufficient conditions are established for the oscillation of solutions of the
higher order dynamic equations[

r(t)(z∆n−1(t))α
]∆

+ q(t) f (x(δ(t))) = 0, for t ∈ [t0,∞)T,

where z(t) := x(t) + p(t)x(τ(t)), n ≥ 2 is an even integer and α ≥ 1 is a quotient of odd positive integers.
Under less restrictive assumptions for the neutral coefficient, we employ new comparison theorems and
Generalized Riccati technique.

1. Introduction

In this paper, we introduce new sufficient conditions for the oscillation of solutions to the nonlinear
neutral delay dynamic equation[

r(t)(z∆n−1(t))α
]∆

+ q(t) f (x(δ(t))) = 0, for t ∈ [t0,∞)T, (1)

where z(t) := x(t) + p(t)x(τ(t)) and α ≥ 1 is a quotient of odd positive integers. We assume that the following
conditions hold.

(H1) r ∈ Crd([t0,∞)T,R), r(t) > 0, r∆(t) > 0;

(H2) τ, δ ∈ C1
rd([t0,∞)T,T), τ∆(t) ≥ τ0 > 0, δσ(t) ≤ t δ∆(t) > 0, τ ◦ δ = δ ◦ τ, limt→∞ τ(t) = ∞, limt→∞ δ(t) = ∞;

(H3) p, q ∈ C1
rd([t0,∞)T,R), 0 ≤ p(t) ≤ p0 < ∞, and q(t) > 0, where p0 > 0 is a constant;

(H4) f ∈ C(T,T), x f (x) > 0 for all x , 0, and there exists a positive constant k such that f (x)
x ≥ k for all x , 0.
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Throughout this paper, we will consider the following two cases:∫
∞

t0

r−
1
α (s)∆s = ∞, (2)

and

ζ(t) =

∫
∞

t
r−

1
α (s)∆s < ∞. (3)

The theory of time scales was introduced by Hilger [11] in 1988 to unify continuous and discrete
analysis. A time scale, which inherits standard topology on R, is a nonempty closed subset of reals. Here,
and throughout this paper, a time scale will be denoted by the symbol T, and the intervals with a subscript
T are used to denote the intersection of the usual interval with T. For t ∈ T, the forward jump operator
is defined as σ : T → T by σ(t) := inf(t,∞)T, while the backward jump operator ρ : T → T is defined by
ρ(t) := sup(−∞, t)T, and the graininess function µ : T → R+ is defined as µ(t) := σ(t) − t. A point t ∈ T is
called right-dense if σ(t) = t and/or equivalently µ(t) = 0 holds; otherwise, it is called right-scattered. Similarly
left-dense and left-scattered points are defined with respect to the backward jump operator.

The set of all such rd-continuous functions is denoted by Crd(T,R). The set of functions f : T → R
which are differentiable and whose derivative is an rd-continuous function is denoted by C1

rd(T,R).The
Delta derivative of a function f : T→ R is defined by

f ∆(t) =


f σ(t)− f (t)
µ(t) , µ(t) > 0

lims→t
f (t)− f (s)

t−s , µ(t) = 0

The derivative of the product of two differentiable functions f and 1 is defined by

( f1)∆(t) = f ∆(t)1(t) + f (σ(t))1∆(t).

and the derivative of the quotient of two differentiable functions f and 1 , 0: is given by( f
1

)∆

(t) =
1(t) f ∆(t) − f (t)1∆(t)

1(σ(t))1(t)
.

F is called an antiderivative of a function f defined on T if F∆ = f holds on Tk. In this case integration
of f is defined by∫ t

s
f (τ)∆τ = F(t) − F(s), where s, t ∈ T.

An antiderivative of 0 is 1 and the antiderivative of 1 is t; however it is not possible to find a polynomial
that is an antiderivative of t .The role of t2 is therefore played in the time scales calculus by∫ t

0
σ(τ)∆τ and

∫ t

0
τ∆τ.

In general, the functions

10(t, s) ≡ 1, and 1k+1(t, s) =

∫ t

s
1k(σ(τ), s)∆τ, k ≥ 0,
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and

h0(t, s) ≡ 1, and hk+1(t, s) =

∫ t

s
hk(τ, s)∆τ, k ≥ 0,

may be considered as the polynomials on T. The relationship between 1k and hk is

1k(t, s) = (−1)khk(t, s) f or all k ∈N.

The following is the dynamic generalization of the well-known Taylor’s formula.

Lemma 1.1. Let n ∈N, s ∈ T, and f ∈ Cn
rd(T,R). Then,

f (t) =

n−1∑
k=0

hk(t, s) f ∆k(s) +

∫ t

s
hn−1(t, σ(η)) f ∆n(η)∆η f or t ∈ T.

By a solution of (1), we mean a nontrivial function x ∈ Crd([Tx,∞)T,R), where Tx ∈ [t0,∞)T, which has
the property that

[
r(t)(z∆n−1(t))α

]
∈ C1

rd([Tx,∞)T,R) and satisfies (1) identically on [Tx,∞)T. A solution x
of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is
nonoscillatory. Equation (1) is called oscillatory if all its solutions oscillate.

In recent years considerable researchs has been completed on oscillatory theory, see [1, 4, 9, 12, 16–
18, 21, 22, 24].

For instance, in 2015 Karpuz [13] studied the qualitative behavior of solutions to the higher-order delay
dynamic equations of the form[

x(t) + A(t)x(α(t))
]∆n

+ B(t)x(β(t)) = 0, for t ∈ [t0,∞)T,

where n ∈N, A ∈ Crd([t0,∞)T,R), and α(t), β(t) ≤ t for all t ∈ [t0,∞)T.

Chen [8] established sufficient conditions for the oscillation and asymptotic behavior of solutions of the
nth-order nonlinear neutral delay dynamic equations

{a(t)ψ(x(t))[|(x(t) + p(t)x(τ(t)))∆n−1
|
α−1
|(x(t) + p(t)x(τ(t)))∆n−1

|]γ}∆ + λ f (t, x(δ(t))) = 0,

where α > 0 is a constant, γ > 0 is a quotient of odd positive integers, λ = ±1; p(t) ∈ Crd(T,R) and 0 ≤
p(t) ≤ 1.

In the last two decades, several special cases of (1) have been discussed by numerous authors in the
literature, we mention for instance Li et al. [15] established a new oscillation criteria for the neutral delay
differential equations[

x(t) + p(t)x(τ(t))
](n)

+ q(t) f (x(σ(t))) = 0, t ≥ t0,

where 0 ≤ p(t) ≤ p0 < ∞.

More recently , Baculı́ková et al. [3] combined new generalization of the classical Philos and Staikos
lemma (see[19, 20]) together with a suitable comparison technique to introduce new oscillation criteria for
the nth-order differential equation[

r(t)(z′(t))γ
](n−1)

+ q(t)xγ(σ(t)) = 0,
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where γ is the ratio of two positive odd integers, n ≥ 3 , p(t) ≥ 0 and q(t) > 0.

In 2016, Karpuz and Öcalan [14] presented new sufficient conditions for the oscillation of first-order
delay dynamic equation on time scales

x∆(t) + p(t)x(τ(t)) = 0, (4)

provided that p(t) > 0 and τ(σ(t)) ≤ t.

For completeness, we outline some known results, which will be useful for proving our main results.

Theorem 1.2. [6] Assume that v : T→ R is strictly increasing and T̃ := v(T) is a time scale. Let y : T̃→ R . If
y∆̃[v(t)] and v∆(t) exist for t ∈ Tk , then(

y[v(t)]
)∆ = y∆̃[v(t)]v∆(t).

Lemma 1.3. [6] Let n ∈ N, f ∈ Cn
rd(T,R) and supT = ∞. Suppose that f is either positive or negative, f ∆nis not

identically zero and is either nonnegative or nonpositive on [t0,∞)Tfor some t0 ∈ T. Then, there exist t1 ∈ [t0,∞)T
and m ∈ [0,n)Z such that (−1)n−m f (t) f ∆n(t) ≥ 0 for all t ∈ [t0,∞)T with

• f (t) f ∆ j(t) > 0 for all t ∈ [t0,∞)T and all j ∈ [0,m)Z;

• (−1)m+ j f (t) f ∆ j(t) ≥ 0 for all t ∈ [t0,∞)T and all j ∈ [m,n)Z.

Lemma 1.4. [13] Let supT = ∞, n ∈ N and f ∈ Cn
rd([t0,∞),R+

0 ) with f ∆n
≤ 0 on [t0,∞)T. Let Lemma 1.3 hold

with m ∈ [0,n)Z and s ∈ [t0,∞)T. Then

f (t) ≥ hm(t, s) f ∆m(t) f or all t ∈ [s,∞)T (5)

Lemma 1.5. [10] Let supT = ∞ and f ∈ Cn
rd(T,R+) as well as (n ≥ 2). Suppose that Kneser’s theorem holds with

m ∈ [1,n)N and f ∆n(t) ≤ 0on T. Then there exists a sufficiently large t1 ∈ T such that

f ∆(t) ≥ hm−1(t, t1) f ∆m(t), f or all t ∈ [t1,∞)T.

In this article, we introduce new comparison theorems in which we compare the higher-order dynamic
equation (1) with first order dynamic equations of the form (4). The obtained results supplement and
improve those reported in the literature.

2. Main results

We begin with the following lemma.

Lemma 2.1. Let the conditions (H1)-(H3) be satisfied . If x(t) is an eventually positive solution of (1), then there
exists t1 ∈ [t0,∞)T such that

z∆n−1(t) > 0, z∆n(t) ≤ 0, z∆(t) > 0, t > t1. (6)

Proof. Since x(t) is an eventually positive solution of (1), then there exists t1 ∈ [t0,∞)T such that

x(t) > 0, x(δ(t)) > 0 and x(τ(t)) > 0, f or t ≥ t1.

Now from (1) and the assumptions (H3) and (H4), we have z(t) ≥ x(t) > 0. Then (1) implies that[
r(t)(z∆n−1(t))α

]∆
≤ −kq(t)xα(δ(t)) < 0, t ≥ t1. (7)
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Therefore, r(t)(z∆n−1(t))α is decreasing and either z∆n−1(t) > 0 or z∆n−1(t) < 0 eventually for t ≥ t1. If
z∆n−1(t) < 0, then there exists a constant c such that

z∆n−1(t) ≤ −c
1

r
−1
α (t)

.

Integrating from t1 to t, we obtain

z∆n−2(t) ≤ −c
∫ t

t1

1

r
−1
α (s)

∆s.

Letting t → ∞, it follows from (2), that limt→∞ z∆n−2(t) = −∞ . Therefore, limt→∞ z(t) = −∞ which is a
contradiction. Consequently, z∆n−1(t) > 0 for t ≥ t1.
Now, we prove that z∆n(t) ≤ 0. Since[

r(t)(z∆n−1(t))α
]∆

= r∆(t)(z∆n−1(t))α + rσ(t)
[
(z∆n−1(t))α

]∆
≤ 0. (8)

Using the Pötzche chain rule [6] with fact that α ≥ 1, we obtain

[(z∆n−1(t))α]∆ =

{
α

∫ 1

0

[
z∆n−1(t) + µhz∆n(t)

]α−1
dh

}
z∆n

≥ α(z∆n−1(t))α−1z∆n(t).

This with (8), leads to

r∆(t)(z∆n−1(t))α + αrσ(t)(z∆n−1(t))α−1z∆n(t) ≤ 0,

since z∆n−1(t) > 0, r∆(t) and r(t) > 0, we then obtain

z∆n(t) ≤ 0.

Applying Lemma1.3 and Lemma1.5, we obtain

z∆n−1(t) > 0, z∆n(t) ≤ 0, z∆(t) > 0, t > t1.

Theorem 2.2. Suppose that (2) and (H1)-(H3) . If∫
∞

t0

Q(s)∆s = ∞, (9)

where Q(t) = min{kq(t), kq(τ(t))}, then every solution of (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t) on [t0,∞), such that x(t) > 0, x(τ(t)) > 0, x(δ(t)) > 0
on [T0,∞). Then by Lemma 2.1, we have z(t) > 0, z∆(t) > 0, z∆n−1(t) > 0, and z∆n(t) ≤ 0. Then we obtain[

r(t)(z∆n−1(t))α
]∆
≤ −kq(t)xα(δ(t)) < 0, t ≥ t1. (10)

It follows from Theorem 1.2 and
[
r(τ(t))(z∆n−1(τ(t)))α

]∆
=

[
r(t)(z∆n−1(t))α

]∆
τ∆(t), that there exists a t2 ≥ T such

that

pα0

[
r(τ(t))(z∆n−1(τ(t)))α

]∆

τ∆(t)
≤ −kpα0 q(τ(t))xα(δ(τ(t))).
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But since τ∆(t) ≥ τ0 > 0, for t ≥ t2, we have

pα0
τ0

[
r(τ(t))(z∆n−1(τ(t)))α

]∆
≤ −kpα0 q(τ(t))xα(δ(τ(t))). (11)

Combining (10) and (11) and using the assumption that δ ◦ τ = τ ◦ δ , we obtain(
r(t)(z∆n−1(t))α

)∆
+

pα0
τ0

(
r(τ(t))(z∆n−1(τ(t)))α

)∆

≤ −

(
kq(t)xα(δ(t)) + pα0 kq(τ(t))xα(δ(τ(t)))

)
≤ −min{kq(t), kq(τ(t))}

(
xα(δ(t)) + pα0 xα(τ(δ(t)))

)
= −Q(t)

(
xα(δ(t)) + pα0 xα(τ(δ(t)))

)
. (12)

Since 0 ≤ p(t) < p0 < ∞, then by the following inequality (see[5],Lemma1)

xα1 + xα2 ≥
1

2α−1 (x1 + x2)α, (13)

where α ≥ 1, x1 ≥ 0 and x2 ≥ 0, we have

xα(δ(t)) + pα0 xα(τ(δ(t))) ≥
1

2α−1

(
x(δ(t)) + p0x(τ(δ(t)))

)α
≥

zα(δ(t))
2α−1 . (14)

Substituting (14) into (12), for t ≥ t2, we obtain(
r(t)(z∆n−1(t))α

)∆
+

pα0
τ0

(
r(τ(t))(z∆n−1(τ(t)))α

)∆
+ Q(t)

zα(δ(t))
2α−1 ≤ 0. (15)

Integrating from t1 to t, we have∫ t

t1

(
r(s)(z∆n−1(s))α

)∆
∆s +

pα0
τ0

∫ t

t1

(
r(τ(s))(z∆n−1(τ(s)))α

)∆
∆s +

1
2α−1

∫ t

t1

Q(s)zα(δ(s))∆s ≤ 0, (16)

i.e.,

1
2α−1

∫ t

t1

Q(s)zα(δ(s)) ≤ −

∫ t

t1

(
r(s)(z∆n−1(s))α

)∆
∆s −

pα0
τ2

0

∫ t

t1

(
r(τ(s))(z∆n−1(τ(s)))α

)∆
∆(τ(s))

≤ r(t1)z∆n−1(t1) − r(t)z∆n−1(t)

+
pα0
τ2

0

(
r(τ(t1))(z∆n−1(τ(t1)))α − r(τ(t))(z∆n−1(τ(t)))α

)
. (17)

Since z∆(t) > 0 for t ≥ t1, then there exists a constant c > 0 such that z(δ(t)) ≥ c, t ≥ t1. Using the fact that
r(t)z∆n−1(t) is decreasing, we obtain from (17)∫

∞

t1

Q(s)∆s < ∞.

This contradicts (9), and completes the proof.

Theorem 2.3. Assume that for all sufficiently large s ∈ [t0,∞)T, (2) holds and τ(t) ≥ t . If the first-order dynamic
equation

u∆(t) + Q(t, s)u(δ(t)) = 0, for t ∈ [t0,∞)T, (18)

where Q(t, s) = Q(t)
hαn−1(δ(t),s)
2α−1r(δ(t)) , is oscillatory, then (1) is also oscillatory.
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Proof. Assume that (1) is nonoscillatory. Without loss of generality there is a solution x of (1) and t1 ∈ [t0,∞)T
with x(t) > 0, x(τ(t)) > 0 and x(δ(t)) > 0 for all t ∈ [t1,∞)T. Proceeding as in the proof of Theorem 2.2, we
arrive (15). By Lemma 1.4 for all t ∈ [s,∞)T, we obtain

(
r(t)(z∆n−1(t))α

)∆
+

pα0
τ0

(
r(τ(t))(z∆n−1(τ(t)))α

)∆
+ Q(t)

hαn−1(δ(t), s)

2α−1 (z∆n−1(δ(t)))α ≤ 0. (19)

Let y(t) = r(t)(z∆n−1(t))α > 0. Then

(
y(t) +

pα0
τ0

y(τ(t))
)∆

+ Q(t)
hαn−1(δ(t), s)

2α−1r(δ(t))
y(δ(t) ≤ 0. (20)

Now, define

u(t) := y(t) +
pα0
τ0

y(τ(t)), for t ∈ [t1,∞)T, (21)

since y(t) is decreasing and τ(t) ≥ t. Then

u(t) ≤
(
1 +

pα0
τ0

)
y(t), for t ∈ [t1,∞)T. (22)

Using (20), we obtain

u∆(t) + Q(t)
hαn−1(δ(t), s)

2α−1r(δ(t))
u(δ(t) ≤ 0. (23)

Therefore,

u∆(t) + Q(t, t1)u(δ(t)) ≤ 0 for t ∈ [t1,∞)T. (24)

By [7, Theorem 3.1], Eq.(18) also presents a nonoscillatory solution. This contradiction proves that (1) is
oscillatory.

In view of Theorem 1 and Theorem 2 in [14] as well as Theorem 2.2, we obtain the following oscillation
criteria for (1).

Corollary 2.4. If

lim sup
t→∞

∫ σ(t)

δ(t) Q(s, t1)∆s

1 − [1 − µ(δ(t))Q(δ(t), t1)]µσ(t)Qσ(t, t1)
> 1, (25)

then every solution of (1) is oscillatory.

Corollary 2.5. If there exists γ ∈ [0, 1]R such that

lim inf
t→∞

∫ t

δ(t)
Q(s, t1)∆s > γ and lim sup

t→∞

∫ σ(t)

δ(t)
Q(s, t1)∆s > 1 −

(
1 −

√
1 − γ

)2
, (26)

then every solution of (1) is oscillatory.

The following theorem introduces a new oscillation criterion when δ(t) ≤ τ(t) ≤ t.
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Theorem 2.6. Assume that (2) holds. If there exists a real-valued function
ρ ∈ C1

rd([t0,∞)T, (0,∞)) such that

lim sup
t→∞

∫ t

t0

( 1
2α−1ρ(s)Q(s) −

(1 +
pα0
τ0

)

(α + 1)α+1

(ρ∆(s))α+1r(δ(s))
(δ∆(s))αhαn−2(δ(s), t1)ρα(s)

)
∆s = ∞, (27)

Then (1)is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0 and x(δ(t)) > 0 for
t ∈ [t1,∞)T . Define a Riccati substitution as

ω(t) = ρ(t)
r(t)(z∆n−1(t))α

zα(δ(t))
, t ∈ [t2,∞)T. (28)

Clearly ω(t) > 0, and

ω∆(t) =
ρ(t)

zα(δ(t))
[r(t)(z∆n−1(t))α]∆ + [r(t)(z∆n−1(t))α]σ

[ ρ(t)
zα(δ(t))

]∆

= ρ(t)
[r(t)(z∆n−1(t))α]∆

zα(δ(t))
+
ρ∆(t)
ρ(σ(t))

ω(σ(t)) − αδ∆(t)
ρ(t)
ρ(σ(t))

z∆(δ(t))
z(δ(t))

ω(σ(t)), (29)

since by Lemma 1.5 , we have

z∆(δ(t)) ≥ hn−2(δ(t), t1)z∆n−1(δ(t)). (30)

Substituting (30) into (29), we get

ω∆(t) ≤ ρ(t)
[r(t)(z∆n−1(t))α]∆

zα(δ(t))
+
ρ∆(t)
ρ(σ(t))

ω(σ(t)) − αδ∆(t)
ρ(t)
ρ(σ(t))

hn−2(δ(t), t1)z∆n−1(δ(t))
z(δ(t))

ω(σ(t)). (31)

Since

ω
1
α (σ(t)) = ρ

1
α (σ(t))

r
1
α (σ(t))(z∆n−1(σ(t)))

z(δ(σ(t)))
. (32)

Since δ∆ > 0 and δ(t) ≤ t ≤ σ(t). In view of the fact r(t)(z∆(t))α is decreasing and z∆ > 0, then we obtain

ω
1
α (σ(t))

ρ
1
α (σ(t))r

1
α (δ(t))

≤
z∆n−1(δ(t))

z(δ(t))
. (33)

Substituting (33) into (30) , we obtain

ω∆(t) ≤ρ(t)
[r(t)(z∆n−1(t))α]∆

zα(δ(t))
+
ρ∆(t)
ρ(σ(t))

ω(σ(t)) − αδ∆(t)hn−2(δ(t), t1)
ρ(t)

ρ
α+1
α (σ(t))r

1
α (δ(t))

ω
α+1
α (σ(t)). (34)

Define another function ν(t) by

ν(t) := ρ(t)
r(τ(t))(z∆n−1(τ(t)))α

zα(δ(t))
, t ∈ [t2,∞)T. (35)

Then ν(t) > 0 , and

ν∆(t) =
ρ(t)

zα(δ(t))
[r(τ(t))(z∆n−1(τ(t)))α]∆ + [r(τ(t))(z∆n−1(τ(t)))α]σ

[ ρ(t)
zα(δ(t))

]∆

= ρ(t)
[r(t)(z∆n−1(t))α]∆

zα(δ(t))
+
ρ∆(t)
ρ(σ(t))

ν(σ(t)) − αδ∆(t)
ρ(t)
ρ(σ(t))

z∆(δ(t))
z(δ(t))

ν(σ(t)). (36)
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This with (30), leads to

ν∆(t) ≤ρ(t)
[r(τ(t))(z∆n−1(τ(t)))α]∆

zα(δ(t))
+
ρ∆(t)
ρ(σ(t))

ν(σ(t)) − αδ∆(t)
ρ(t)
ρ(σ(t))

hn−2(δ(t), t1)z∆n−1(δ(t))
z(δ(t))

ν(σ(t)). (37)

From the definition of ν(t), with the facts that τ∆ > 0, δ∆ > 0, z∆ > 0 and r(t)(z∆(t))α is decreasing, we get

ν
1
α (σ(t)) = ρ

1
α (σ(t))

[r
1
α (τ(t))z∆n−1(τ(t))]σ

z(δ(σ(t)))
≤ ρ

1
α (σ(t))

r
1
α (τ(t))z∆n−1(τ(t))

z(δ(t))
, (38)

But since δ(t) ≤ τ(t) and r(t)(z∆(t))α is decreasing, (38) takes the form

ν
1
α (σ(t)) ≤ ρ

1
α (σ(t))

r
1
α (δ(t))z∆n−1(δ(t))

z(δ(t))
(39)

i.e.,

ν
1
α (σ(t))

ρ
1
α (σ(t))r

1
α (δ(t))

≤
z∆n−1(δ(t))

z(δ(t))
. (40)

Substituting (40) into (37), we obtain

ν∆(t) ≤ρ(t)
[r(τ(t))(z∆n−1(τ(t)))α]∆

zα(δ(t))
+
ρ∆(t)
ρ(σ(t))

ν(σ(t)) − αδ∆(t)hn−2(δ(t), t1)
ρ(t)

ρ
α+1
α (σ(t))r

1
α (δ(t))

ν
α+1
α (σ(t)). (41)

Combining (41) and (34), we obtain

ω∆(t) +
pα0
τ0
ν∆(t) ≤ρ(t)

[r(t)(z∆n−1(t))α]∆ +
pα0
τ0

[r(τ(t))(z∆n−1(τ(t)))α]∆

zα(δ(t))

+
( ρ∆(t)
ρ(σ(t))

ω(σ(t)) −
αδ∆(t)hn−2(δ(t), t1)ρ(t)

ρ
α+1
α (σ(t))r

1
α (δ(t))

ω
α+1
α (σ(t))

)
+

pα0
τ0

( ρ∆(t)
ρ(σ(t))

ν(σ(t)) −
αδ∆(t)hn−2(δ(t), t1)ρ(t)

ρ
α+1
α (σ(t))r

1
α (δ(t))

ν
α+1
α (σ(t))

)
.

(42)

Applying the following inequality

Bu − Au
α+1
α ≤

αα

(α + 1)α+1

Bα+1

Aα
. (43)

on (42), we obtain

ρ∆(t)
ρ(σ(t))

ω(σ(t)) −
αδ∆(t)hn−2(δ(t), t1)ρ(t)

ρ
α+1
α (σ(t))r

1
α (δ(t))

ω
α+1
α (σ(t)) ≤

1
(α + 1)α+1

(ρ∆(t))α+1r(δ(t))
(δ∆(t))αhαn−2(δ(t), t1)ρα(t)

, (44)

and

ρ∆(t)
ρ(σ(t))

ν(σ(t)) −
αδ∆(t)hn−2(δ(t), t1)ρ(t)

ρ
α+1
α (σ(t))r

1
α (δ(t))

ν
α+1
α (σ(t)) ≤

1
(α + 1)α+1

(ρ∆(t))α+1r(δ(t))
(δ∆(t))αhαn−2(δ(t), t1)ρα(t)

. (45)

This with (15), (44) and (42) leads to

ω∆(t) +
pα0
τ0
ν∆(t) ≤

−1
2α−1ρ(t)Q(t) +

(1 +
pα0
τ0

)

(α + 1)α+1

(ρ∆(t))α+1r(δ(t))
(δ∆(t))αhαn−2(δ(t), t1)ρα(t)

. (46)



M. M. A. El-sheikh et al. / Filomat 32:7 (2018), 2635–2649 2644

Integrating from t2 > t1 to t, we obtain

∫ t

t2

( 1
2α−1ρ(s)Q(s) −

(1 +
pα0
τ0

)

(α + 1)α+1

(ρ∆(s))α+1r(δ(s))
(δ∆(s))αhαn−2(δ(s), t1)ρα(s)

)
∆s ≤ ω(t2) +

pα0
τ0
ν(t2). (47)

Taking lim supt→∞, we get a contradiction with (27). This completes the proof

Now, we present new oscillation criteria for (1) under the case (3).

Theorem 2.7. Assume that (3) holds and τ(t) ≥ t .If

∫
∞

t1

[hn−2(δ(s), t1)ζα(s)Q(s)
2α−1 −

(
α

α + 1

)α+1 (1 +
pα0
τ0

)(τ∆(s))α+1

r
1
α (s)ζ(τ(s))

]
∆s = ∞, (48)

then every solution of (1) is oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0 and
x(δ(t)) > 0 for t ∈ [t1,∞)T. Proceeding as in the proof of Theorem 2.2, it is clear that [r(t)(z∆n−1(t))α] is a
decreasing function. Thus z∆n−1(t) is either eventually positive or eventually negative for t ≥ t2 ≥ t1.

Case(I): z∆n−1(t) > 0, t ≥ t2. The proof of this case is similar to that of Theorem 2.6;
Case(II):z∆n−1(t) < 0, t ≥ t2. Applying Lemma 1.3, we obtain z∆n−2(t) > 0 and z∆(t) > 0. Then

limt→∞ z(t) , 0. Define the function

ν(t) :=
r(τ(t))(z∆n−1(τ(t)))α

(z∆n−2(t))α
, t ∈ [t2,∞)T. (49)

Since [r(t)(z∆n−1(t))α] is decreasing and τ∆ > 0, we have

r
1
α (τ(s))z∆n−1(τ(s)) ≤ r

1
α (τ(t))z∆n−1(τ(t)), t ≥ s > t2.

i.e.,

z∆n−1(τ(s)) ≤ r
1
α (τ(t))z∆n−1(τ(t))

1

r
1
α (τ(s))

.

Integrating from t to l, we obtain

z∆n−2(τ(l)) ≤ z∆n−2(τ(t)) + r
1
α (τ(t))z∆n−1(τ(t))

∫ τ(l)

τ(t)

1

r
1
α (s)

∆s. (50)

Letting l→∞, we get

0 ≤ z∆n−2(τ(t)) + r
1
α (τ(t))z∆n−1(τ(t))ζ(τ(t)). (51)

Using the facts that z∆n−1 < 0 and τ(t) ≥ t, we have

z∆n−2(τ(t)) ≤ z∆n−2(t), t ≥ t2.

Hence,

−1 ≤
r

1
α (τ(t))z∆n−1(τ(t))

z∆n−2(t)
ζ(τ(t)),
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i.e.,

−1 ≤ ν(t)ζα(τ(t)) ≤ 0, t ≥ t2. (52)

Next, define the function

ω(t) :=
r(t)(z∆n−1(t))α

(z∆n−2(t))α
, t ∈ [t2,∞)T. (53)

Thus clearly ω < 0 and by the facts [r(t)(z∆n−1(t))α] is decreasing and τ∆ > 0, we get

ω(t) ≥ ν(t).

i.e.,

−1 ≤ ω(t)ζα(τ(t)) ≤ 0, t ≥ t2, (54)

From (49), we have

ν∆(t) =
[r(τ(t))(z∆n−1(τ(t)))α]∆

(z∆n−2(t))α
−

α

r
1
α (τ(t))

ν
α+1
α (σ(t)). (55)

Similarly we can obtain the following from (53)

ω∆(t) =
[r(t)(z∆n−1(t))α]∆

(z∆n−2(t))α
−

α

r
1
α (t)

ω
α+1
α (σ(t)). (56)

Combining (54) and (56), we get

ω∆(t) +
pα0
τ0
ν∆(t) ≤ −Q(t)

zα(δ(t))
2α−1(z∆n−2(t))α

−
α

r
1
α (t)

ω
α+1
α (σ(t)) −

pα0
τ0

α

r
1
α (τ(t))

ν
α+1
α (σ(t)). (57)

Using Lemma 1.4, for m = n − 2, we have

z(t) ≥ hn−2(t, t1)z∆n−2(t). (58)

Since z∆n−1(t) < 0 and δ(t) ≤ t, then z∆n−2(t) ≤ z∆n−2(δ(t)), consequently by (58). the inequality (57) takes the
form

ω∆(t) +
pα0
τ0
ν∆(t) +

hn−2(δ(t), t1)
2α−1 Q(t) + αr

−1
α (t)ω

α+1
α (σ(t)) +

αpα0
τ0

r
−1
α (τ(t))ν

α+1
α (σ(t)) ≤ 0. (59)

Multiplying the above inequality by ζα(τ(t)) and integrating it from t1 to t, we obtain

ω(t)ζα(τ(t)) − ω(t1)ζα(τ(t1)) +
pα0
τ0
ν(t)ζα(τ(t)) −

pα0
τ0
ν(t1)ζα(τ(t1))

+ α

∫ t

t1

[
r
−1
α (s)ζα−1(τ(s))τ∆(s)ω(σ(s)) + r

−1
α (s)ζα(τ(s))ω

α+1
α (σ(s))

]
∆s

+
αpα0
τ0

∫ t

t1

[
r
−1
α (s)ζα−1(τ(s))τ∆(s)ν(σ(s)) + r

−1
α (τ(s))ζα(τ(s))ν

α+1
α (σ(s))

]
∆s

+
1

2α−1

∫ t

t1

hn−2(δ(s), t1)ζα(τ(s))Q(s)∆s+ ≤ 0.

(60)
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Applying the inequality (43), we get

ω(t)ζα(τ(t)) − ω(t1)ζα(τ(t1)) +
pα0
τ0
ν(t)ζα(τ(t)) −

pα0
τ0
ν(t1)ζα(τ(t1))+∫ t

t1

[hn−2(δ(s), t1)ζα(τ(s))Q(s)
2α−1 −

(
α

α + 1

)α+1 (1 +
pα0
τ0

)(τ∆(s))α+1

r
1
α (s)ζ(τ(s))

]
∆s ≤ 0.

(61)

Therefore from (52) and (53), we have

∫ t

t1

[hn−2(δ(s), t1)ζα(s)Q(s)
2α−1 −

(
α

α + 1

)α+1 (1 +
pα0
τ0

)(τ∆(s))α+1

r
1
α (s)ζ(τ(s))

]
∆s

≤ ω(t1)ζα(t1) +
pα0
τ0
ν(t1)ζα(t1) + 1 +

pα0
τ0
.

(62)

Which contradicts (48). This completes the proof.

Theorem 2.8. Assume that (3) holds and δ(t) ≤ τ(t) ≤ t. If

∫
∞

t0

[hn−2(δ(s), t1)ζα(s)Q(s)
2α−1 −

(
α

α + 1

)α+1 (1 +
pα0
τ0

)

r
1
α (s)ζ(s)

]
∆s = ∞, (63)

then every solution of (1) is oscillatory.

Proof. Suppose that x is a nonoscillatory solution of (1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0 and
x(δ(t)) > 0 for t ∈ [t1,∞)T. Proceeding as in the proof of Theorem 2.2, [r(t)(z∆n−1(t))α] is clearly a decreasing
function. This means z∆n−1(t) is either eventually positive or eventually negative for t ≥ t2 ≥ t1.

Case(I): z∆n−1(t) > 0, t ≥ t2. The proof of this case is similar to that of Theorem 2.6;
Case(II):z∆n−1(t) < 0, t ≥ t2. Applying Lemma 1.3, we get z∆n−2(t) > 0 and z∆(t) > 0. Then limt→∞ z(t) , 0.

Define the function ω(t) as defined in (53). Since [r(t)(z∆n−1(t))α] is a decreasing function, then we have for
s ≥ t ≥ t1

r(s)(z∆n−1(s))α ≤ r(t)(z∆n−1(t))α. (64)

Dividing (64) by r(s) and integrating from t to l, we have

z∆n−2(l) ≤ z∆n−2(t) + r
1
α (t)z∆n−1(t)

∫ l

t
r−

1
α (s)∆s. (65)

Letting l→∞, we get

0 ≤ z∆n−2(t) + r
1
α (t)z∆n−1(t)

∫
∞

t
r−

1
α (s)∆s. (66)

That is,

−1 ≤
r

1
α (t)z∆n−1(t)
z∆n−2(t)

ζ(t).

Therefore,

−1 ≤ ω(t)ζα(t) ≤ 0, t ≥ t1. (67)
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Define another Riccati transformation as defined in (49). Clearly, ν(t) < 0 , [r(t)(z∆n−1(t))α] is decreasing and
τ(t) ≤ t, we have

r(τ(t))(z∆n−1(τ(t)))α ≥ r(t)(z∆n−1(t))α,

then

ν(t) ≥ ω(t)

i.e.,

−1 ≤ ν(t)ζα(t) ≤ 0, t ≥ t1. (68)

Proceeding as in the proof of Theorem 2.7 we arrive to (59). Multiplying (59) by ζ(t) and integrating from
t1 to t, we get

ω(t)ζα(t) − ω(t1)ζα(t1) +
pα0
τ0
ν(t)ζα(t) −

pα0
τ0
ν(t1)ζα(t1)

+ α

∫ t

t1

[
r
−1
α (s)ζα−1(s)ω(σ(s)) + r

−1
α (s)ζα(s)ω

α+1
α (σ(s))

]
∆s

+
αpα0
τ0

∫ t

t1

[
r
−1
α (s)ζα−1(s)ν(σ(s)) + r

−1
α (τ(s))ζα(s)ν

α+1
α (σ(s))

]
∆s

+
1

2α−1

∫ t

t1

hn−2(δ(s), t1)ζα(s)Q(s)∆s+ ≤ 0.

(69)

Applying the inequality (43), we get

ω(t)ζα(t) − ω(t1)ζα(t1) +
pα0
τ0
ν(t)ζα(t) −

pα0
τ0
ν(t1)ζα(t1)+∫ t

t1

[hn−2(δ(s), t1)ζα(s)Q(s)
2α−1 −

(
α

α + 1

)α+1 (1 +
pα0
τ0

)

r
1
α (s)ζ(s)

]
∆s ≤ 0.

(70)

Therefore from (67) and (68), we have∫ t

t1

[hn−2(δ(s), t1)ζα(s)Q(s)
2α−1 −

(
α

α + 1

)α+1 (1 +
pα0
τ0

)

r
1
α (s)ζ(s)

]
∆s

≤ ω(t1)ζα(t1) +
pα0
τ0
ν(t1)ζα(t1) + 1 +

pα0
τ0
.

(71)

This contradicts (63) and completes the proof.

Example 2.9. Consider for T = R, the fourth-order differential equation(
t5x′′′(t)

)′
+ βtx(t) = 0, t ≥ 1, (72)

where β > 0 is constant. Here α = 1, r(t) = t5, q(t) = βt , τ(t) = δ(t) = t.
Since T = R, then hk(t, s) =

(t−s)k

k! . Clearly

ζ(t) =

∫
∞

t
r−1/α(s)ds =

∫
∞

t
s−5ds =

t4

4
< ∞.
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Now, since∫
∞

t0

[hn−2(δ(s), t1)ζα(s)Q(s)
2α−1 −

(
α

α + 1

)α+1 (1 +
pα0
τ0

)

r
1
α (s)ζ(s)

]
∆s = ∞

Hence, by Theorem 2.8, every solution of (72) is oscillatory. One can observe that by Theorem 2.1 [25], every solution
of Eq. (72) is oscillatory for β > 12 if β > 4. Therefore, our criteria are more general than the equation in [25].

Example 2.10. Consider the second order neutral delay differential equation

[t1/2[x(t) + p0x(λt)]′]′ +
a

t3/2
x(βt) = 0, (73)

where 0 < p0 < ∞ , 0 < λ < ∞, 0 < β < 1 , and a > 0.
It is clear that α = 1 ,n = 2, r(t) = t1/2, p(t) = p0 < ∞, τ(t) = λt, δ(t) = βt, q(t) = a

t3/2 , and r(t) = t
1
2 ,∫

∞

to
r
−1
α (s)ds = ∞

If λ ≥ 1, 0 < β < 1, then τ(t) ≥ δ(t), and Q(t) = a
(λt)3/2 . From corollary 2.4, and T = R, (25) takes the form

lim sup
t→∞

∫ t

δ(t)
Q(s, t1)∆s = lim sup

t→∞

∫ t

δ(t)
Q(s)

hαn−1(δ(s), t1)

2α−1r(δ(s))

= lim sup
t→∞

∫ t

βt

a
(λs)3/2

1√
βs

ds =
aβ1/2

2λ3/2
ln

(1
β

)
.

(74)

Using corollary 2.4, then Eq.(73) is oscillatory if aβ1/2

2λ3/2 ln
(

1
β

)
> 1 for any λ ≥ 1 and 0 < β < 1.

If 0 < β < λ ≤ 1, then τ(t) ≤ δ(t), and Q(t) = a
t3/2 . From Theorem 2.6 and T = R, we have

lim sup
t→∞

∫ t

t0

( 1
2α−1ρ(s)Q(s) −

(1 +
pα0
τ0

)

(α + 1)α+1

(n − 2)!(ρ′(s))α+1r(δ(s))
(δ′(s))α(δ(s) − t1)α(n−2)ρα(s)

)
ds

= lim sup
t→∞

∫ t

t0

(
s2 a

s3/2
−

1 +
p0

λ

4
(2s)2

√
βs

βs2

)
ds = ∞.

(75)

Provided that a >
λ+p2

0
λβ1/2 , (73) is oscillatory for 0 < β < λ ≤ 1. Note that this example has been studied in [2] and to

the best of our knowledge, we improve the oscillation criteria that mentioned in [2].

Example 2.11. Consider the second-order differential equation(
x(t) +

9
10

x
( t

4

))′′
+
λ

t2 x
( t

5

)
= 0, t ≥ 1 (76)

where λ > 0. Here r(t) = 1, α = 1, n = 2, p(t) = 0.9, τ(t) = t/4, q(t) = λ
t2 , and δ(t) = t/5. Then τ0 = 1/4 , Q(t) = λ

t2 ,
and

lim sup
t→∞

∫ t

t0

( 1
2α−1ρ(s)Q(s) −

(1 +
pα0
τ0

)

(α + 1)α+1

(n − 2)!(ρ′(s))α+1r(δ(s))
(δ′(s))α(δ(s) − t1)α(n−2)ρα(s)

)
ds

=
(
λ −

24
3

)
lim sup

t→∞

∫ t

t0

1
s

ds = ∞.

(77)

Provided that λ > 24
3 . This is consistent with the results of [23].
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