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Abstract. This paper deals with a characterization of the first-exit time of the inverse Gaussian subordinator
in terms of natural exponential family. This leads us to characterize, by means its variance function, the
class of Lévy processes time-changed by the first-exit time of the inverse Gaussian subordinator.

1. Introduction

The inverse Gaussian process plays an important role in the data analysis and statistical modeling since
it represents the first-exit time of the Brownian motion. In the last decades, several authors have focused
on this process and have used it in many areas of applications (see for instance [17], [18], [20] and [21]).
Moreover, the first-exit time of this process has drawn considerable attention of researchers since it has been
widely used as a time-change process. The essence of the time-changed Lévy processes is closely linked
to the concept of stochastic volatility modeling for asset prices (see [4], [7], [12] and [13]). It has arisen
naturally in diverse fields such as finance, insurance, process control and survival analysis (see for example
[8] and [15]).

In the present work, we focus on the study of these mixed models in terms of natural exponential
family (NEF). Several works combine the notion of the NEFs and the variance-mean mixture processes.
Within this framework, [6] have characterized the exponential families of the Markov processes using an
additive functional model. Besides, [11, 12] have investigated on the characterization of the class of normal
tempered stable distributions, which can be interpreted as a Brownian motion time-changed by a stable
subordinator. They have also established a characterization of a multivariate Lévy process based on the
notion of cut in natural exponential family. Moreover, [2] have introduced the normal stable Tweedie
distribution and they have determined its variance function. The importance of the variance function
comes from, on the one hand, it is expressed in terms of the mean vector, on the other hand, it characterizes
the NEF. From statistical point of view, many papers have used the variance functions in order to estimate
the parameters of exponential dispersion models, which are related to NEFs additively and reproductively.
We may refer to [22], where variance function is used in order to give some asymptotic properties of the
estimator for a finite mixture of exponential dispersion models and have applied the estimation results in
the image segmentation. Furthermore, [5] have investigated the variance function of the Tweedie model
for the modeling of the signal path loss prediction. In fact, they have studied asymptotic normality and the
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confidence interval of the predicted signal path loss and they have illustrated their approach by considering
an experimental study.

In this paper, we explicit the variance function of the NEF generated by the first-exit time of the inverse
Gaussian subordinator. Furthermore, we investigate this variance function in order to characterize the NEF
generated by the distribution of a Lévy process time-changed by the first-exit time of the inverse Gaussian
subordinator. From this, we compute the variance functions of the NEFs of the inverse Gaussian and
Poisson processes time-changed by the first-exit time of the inverse Gaussian subordinator. Note that the
Poisson process time-changed by the first-exit time of the inverse Gaussian subordiantor was introduced
and studied by [7] and [13]. However, the inverse Gaussian process time-changed by the first-exit time of
the inverse Gaussian subordinator is lacking in the literature.

The paper is organized as follows: After recalling some essential definitions and generalities indispens-
able to the present work, we characterize, in Section 3, the NEF generated by the first-exit time of the inverse
Gaussian subordinator by means of its variance function. In Section 4, we compute the variance function
of the NEF generated by the distribution of a Lévy process time-changed by first-exit time of the inverse
Gaussian subordinator.

2. Preliminaries

In this section, we recall some basic definitions and results. Our notations are the ones used by [9].

2.1. Natural exponential families on Rd

Let µ be a positive random measure on Rd. The set of probability distributions

F = F(µ) = {P(θ, µ)(dx) = e〈θ,x〉−ln(Lµ(θ))µ(dx); θ ∈ Θ(µ)}

is called the NEF generated by µ, where 〈θ, x〉 is the ordinary scalar product on Rd, Lµ(θ) =

∫
Rd

e〈θ,x〉µ(dx)

is the Laplace transform of µ and Θ(µ) is the interior of the convex set D(µ) = {θ ∈ Rd; Lµ(θ) < ∞}. We
denote byM(Rd) the set of positive measures µ such that Θ(µ) is non-empty and µ is not concentrated on
an affine hyperplane of Rd. For each µ ∈ M(Rd) and θ ∈ Θ(µ), we define the cumulant function of µ by

kµ(θ) = ln
(
Lµ(θ)

)
. The map Θ(µ) −→MF(µ); θ 7−→ m = k′µ(θ) =

∫
Rd

xP(θ, µ)(dx) defines a diffeomorphisme

between Θ(µ) and its image MF(µ), called the domain of the means of F(µ). We denote its inverse by ψµ. The
second derivative k′′µ represents the covariance operator of P(θ, µ). It is given by k′′µ (θ) =

∫
Rd x⊗xP(θ, µ)(dx)−

k′µ(θ) ⊗ k′µ(θ), where x ⊗ x(u, v) = 〈x,u〉〈x, v〉. The variance function of F(µ) is defined on MF(µ) by

m 7−→ VF(µ)(m) = k′′µ (ψµ(m)) =
(
ψ′µ(m)

)−1
. (1)

The importance of the variance function comes from the fact that it is a function of the means and it
characterizes the family F within the class of all NEFs. In fact, if F1 and F2 are two natural exponential
families such that the variance functions VF1 (m) and VF2 (m) coincide on a nonempty open set of the
intersection of the means domains MF1 ∩MF2 , then F1 = F2. In other words, the knowledge of the NEF is
given by the knowledge of its variance function (for more details about NEFs, the reader can see [9]).

2.2. Lévy process time-changed by the first-exit time of the inverse Gaussian subordinator

Let X(t) be an inverse Gaussian subordinator with distribution νt. It is well known that this sub-
ordinator has an 1

2−stable distribution. According to [16], p. 94, its Laplace transform is equal to
Lνt (θ) = e−t

√
−θ, for all θ < 0. The process Y(t) = inf{s > 0; X(s) > t} represents the first-exit time of

the inverse Gaussian subordiantor X(t) and is widely used as a time-change subordinator (see [4], [7] and



F. Mselmi / Filomat 32:7 (2018), 2545–2552 2547

[13]). We denote by ρt its distribution . Recently, [14] have shown that the Laplace transform of Y(t) is equal
to

Lρt (θ) =
1
θ

kν1 (θ)etkν1 (θ) =
1
√
−θ

e−t
√
−θ for all θ < 0. (2)

Consider now a Lévy process G(t) independent of the subordinator Y(t). The process Z(t) = G(Y(t))
represents a Lévy process time-changed by the first-exit time of the inverse Gaussian subordinator. Recently,
many works have studied this kind of processes. In fact, [19] have estimated the parameters of the fractional
Brownian motion time-changed by the first-exit time of the inverse Gaussian subordinator. Besides, [7] have
studied the diffusion equation of the Poisson processes time-changed by the stable and the inverse stable
subordinators. Furthermore, [3] have determined some properties of the geometric Brownian motion time-
changed by the inverse tempered stable subordinator. Note that the first-exit time of the inverse Gaussian
subordinator is an element of the class of inverse stable subordinators. In what follows, we denote by
Qt the distribution of the Lévy process G(t), µt the bivariate distribution µt(dy, dz) = ρt(dy)Qy(dz) and

ηt(dz) =

∫ +∞

0
µt(dy, dz) the distribution of Z(t).

The Laplace transform of µt is, for all (θ1, θ2) ∈ {(θ1, θ2) ∈ R ×Θ(Q1) ; θ1 + kQ1 (θ2) < 0}, given by

Lµt (θ1, θ2) =

∫ +∞

0
eθ1 yLQy (θ2)ρt(dy) =

∫ +∞

0
ey(θ1+kQ1 (θ2))ρt(dy) = Lρt

(
θ1 + kQ1 (θ2)

)
. (3)

In addition, the Laplace transform of ηt is, for all θ2 ∈ {θ2 ∈ Θ(Q1) ; kQ1 (θ2) < 0}, equal to

Lηt (θ2) =

∫ +∞

0
LQy (θ2)ρt(dy) = Lρt (kQ1 (θ2)) =

1√
−kQ1 (θ2)

e−t
√
−kQ1 (θ2) = Lµt (0, θ2). (4)

3. Variance function of the first-exit time of the inverse Gaussian subordinator

In this section, we characterize the NEF generated by the first-exit time of the inverse Gaussian subor-
dinator by means of its variance function. More precisely, we have

Theorem 3.1. For all m > 0,

VF(ρ1)(m) =
4m3
√

1 + 8m

(2m + 1)
√

1 + 8m + 6m + 1
. (5)

Proof. According to (2), we have

k′ρ1
(θ) = −

1
2θ

+
1

2
√
−θ

= m, for all θ < 0. (6)

This implies that MF(ρ1) = (0,∞). Setting z =
√
−θ, the equation (6) becomes z − 2mz2 + 1 = 0. Its unique

positive solution is given by z =
1 +
√

1 + 8m
4m

. It follows that θ = ψρ1 (m) = −
(

1+
√

1+8m
4m

)2
. Using (1), we get

the result. �

4. Variance function of a Lévy process time-changed by the first-exit time of the inverse Gaussian
subordinator

In this section, we characterize F(µ1) and F(η1) by means of their variance functions. For this purpose,
we first give the corresponding second derivative.
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Proposition 4.1.
1. For all θ = (θ1, θ2) ∈

{
(θ1, θ2) ∈ R ×Θ(Q1) ; θ1 + kQ1 (θ2) < 0

}
,

k′′µ1
(θ1, θ2) =

2 +
√
−(θ1 + kQ1 (θ2))

4(θ1 + kQ1 (θ2))2


1 k′Q1

(θ2)

k′Q1
(θ2)

(
k′Q1

(θ2)
)2

 − 1 +
√
−(θ1 + kQ1 (θ2))

2(θ1 + kQ1 (θ2))


0 0

0 k′′Q1
(θ2)

 . (7)

2. For all θ2 ∈ {θ2 ∈ Θ(Q1) ; kQ1 (θ2) < 0}, k′′η1
(θ2) =

(
2 +

√
−kQ1 (θ2)

) (
k′Q1

(θ2)
)2

4
(
kQ1 (θ2)

)2 −

(
1 +

√
−kQ1 (θ2)

)
k′′Q1

(θ2)

2kQ1 (θ2)
.

Proof. 1. Using (3), we obtain

k′µ1
(θ1, θ2) =

(
k′ρ1

(θ1 + kQ1 (θ2)), k′Q1
(θ2)k′ρ1

(θ1 + kQ1 (θ2))
)

= (m1,m2). (8)

It follows that

∂2kµ1 (θ1, θ2)

∂θ2
1

= k′′ρ1
(θ1 + kQ1 (θ2)),

∂2kµ1 (θ1, θ2)
∂θ1∂θ2

= k′Q1
(θ2)k′′ρ1

(θ1 + kQ1 (θ2)) (9)

and

∂2kµ1 (θ1, θ2)

∂θ2
2

= k′′Q1
(θ2)k′ρ1

(θ1 + kQ1 (θ2)) +
(
k′Q1

(θ2)
)2

k′′ρ1
(θ1 + kQ1 (θ2)). (10)

Moreover, differentiating (2) wit respect to θ gives

k′ρ1
(θ) = −

1 +
√
−θ

2θ
and k′′ρ1

(θ) =
2 +
√
−θ

4θ2 . (11)

Inserting this in (9) and (10), we obtain the announced result.
2. According to (4), we have

k′′η1
(θ2) = k′′ρ1

(kQ1 (θ2))
(
k′Q1

(θ2)
)2

+ k′ρ1
(kQ1 (θ2))k′′Q1

(θ2). (12)

Inserting (11) in (12), we get the desired result. �

Next, we give the variance function of the NEF F(µ1).

Theorem 4.2. For all (m1,m2) ∈ (0,∞) ×MF(Q1),

VF(µ1)(m1,m2) =


4m3

1

√
1+8m1

(2m1+1)
√

1+8m1+6m1+1

4m2
1m2
√

1+8m1

(2m1+1)
√

1+8m1+6m1+1

4m2
1m2
√

1+8m1

(2m1+1)
√

1+8m1+6m1+1

4m1m2
2

√
1+8m1

(2m1+1)
√

1+8m1+6m1+1
+ m1VF(Q1)

(
m2
m1

)
 .

Proof. According to (8), we have θ2 = ψQ1

(
m2
m1

)
and θ1 = ψρ1 (m1) − kQ1

(
ψQ1

(
m2
m1

))
. Inserting this in (7), we

deduce that

VF(µ1)(m1,m2) = k
′′

µ1

(
ψρ1 (m1) − kQ1

(
ψQ1

(m2

m1

))
, ψQ1

(m2

m1

))

=


VF(ρ1)(m1)

VF(ρ1)(m1)
m1

m2

VF(ρ1)(m1)
m1

m2
VF(ρ1)(m1)

m2
1

m2
2 + m1VF(Q1)

(
m2
m1

)
 . (13)
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Together with (5), this achieves the proof. �

Next, we characterize the NEF generated by a Lévy process time-changed by the first-exit time of the
inverse Gaussian subordinator by means its variance function. For this purpose, we need first to recall
some results about the notion of cuts in NEF introduced by [1]. Let p : (0,∞) ×R −→ (0,∞); (y, z) 7−→ y be
a canonical projection on (0,∞). We say that a NEF F = F(µ1) has a cut on (0,∞), if p(F) is also a NEF on
(0,∞).

Lemma 4.3. ([1])
Let MF(ρ1) = p(MF) and p(F) = {p(ν); ν ∈ F}. The following statements are equivalent:
(1) The family p(F) is a NEF on (0,∞) (F has a cut on (0,∞)).
(2) For all m1 ∈ MF(ρ1), the marginal variance function p(VF(m1,m2)|(0,∞)×{0}) is constant while m2 runs over
m1(MF) = {m2 ∈ Rd−1; (m1,m2) ∈MF} (the marginal variance function p(VF(m1,m2)|(0,∞)×{0}) depends only on m1).
(3) For all θ2 ∈ Θ(η1), y 7−→ kQy (θ2) is an affine function on (0,∞) (i.e. There exist maps a : Θ(η1) −→ R and
b : Θ(η1) −→ (0,∞) such that for any y ∈ (0,∞), kQy (θ2) = ya(θ2) + b(θ2))
(4) There exist analytic maps κ : Θ(η1) −→ L(R, (0,∞)) and σ : Θ(µ2) −→ R such that m2 = m1κ(θ2) + σ(θ2), for
all (m1,m2) ∈MF with (θ1, θ2) = ψµ1 (m1,m2) (the functions κ and σ are equal to κ = a′ and σ = b′).

Theorem 4.4. For all m2 ∈MF(η1) \ {0},

VF(η1)(m2) =
(
k′Q1

(
ψη1 (m2)

))2
VF(ρ1)

 m2

k′Q1

(
ψη1 (m2)

)  +
m2VF(Q1)

(
k′Q1

(
ψµ1 (m2)

))
k′Q1

(
ψη1 (m2)

) . (14)

Before embarking in the proof of this theorem, we need the following lemma.

Lemma 4.5. For all m2 ∈MF(η1) \ {0},

m1 =
m2

k′Q1

(
ψη1 (m2)

) . (15)

Proof. According to (13), we deduce that p(VF(m1,m2)|(0,∞)×{0}) = VF(ρ1)(m1) depends only on m1. It follows
that the NEF F = F(µ1) has a cut on (0,∞). Using Lemma 4.3, we deduce that there exist a and b such
that kQy (θ2) = ya(θ2) + b(θ2). Since, for all y > 0, Qy is a convolution semigroup, then a(θ2) = kQ1 (θ2) and
b(θ2) = 0. Therefore

m2 = m1k′Q1
(θ2) = m1k′Q1

(ψη1 (m2)).

Hence, we get the result. �

Now, we are in a better position to prove Theorem 4.4.
Proof of Theorem 4.4. Using (3), we deduce that,

∂kµ1 (θ1, θ2)
∂θ1

∣∣∣∣
θ1=0

= k′ρ1
(kQ1 (θ2)) = m1(0, θ2) and k′η1

(θ2) =
∂kµ1 (θ1, θ2)

∂θ2

∣∣∣∣
θ1=0

= k′Q1
(θ2).k′ρ1

(kQ1 (θ2)) = m2(0, θ2).

Setting m1(0, θ2) = m1 and m2(0, θ2) = m2. According to (7) and (12), we obtain

k′′µ1
(0, θ2) =


k′′ρ1

(
kQ1 (θ2)

)
k′′ρ1

(
kQ1 (θ2)

)
k′Q1

(θ2)

k′′ρ1

(
kQ1 (θ2)

)
k′Q1

(θ2) k′′η1
(θ2)

 .
Together, with (13), this implies that, for all (m1(0, θ2),m2(0, θ2)) = (m1,m2) ∈MF(µ1),

VF(µ1)(m1,m2) =


VF(ρ1)(m1)

VF(ρ1)(m1)
m1

m2

VF(ρ1)(m1)
m1

m2 VF(η1)(m2)

 =


VF(ρ1)(m1)

VF(ρ1)(m1)
m1

m2

VF(ρ1)(m1)
m1

m2
VF(ρ1)(m1)

m2
1

m2
2 + m1VF(Q1)

(
m2
m1

)
 . (16)



F. Mselmi / Filomat 32:7 (2018), 2545–2552 2550

Inserting (15) in (16), we get the announced result. �

In the next corollary, we give the variance functions of the NEFs of the inverse Gaussian and Poisson
processes time-changed by the first-exit time of the inverse Gaussian subordinator.

Corollary 4.6. 1. The variance function of the NEF generated the Poisson process time-changed by the first-exit time
of the inverse Gaussian subordinator is given by

VF(η1)(m2) =
(
1 − ( f (m2))2

)2
VF(ρ1)

(
m2

1 − ( f (m2))2

)
+ m2, for all m2 > 0,

where f (m2) =
a(m2)
b(m2)

−
2m2

3
+ b(m2) −

1
3

, b(m2) =

([(
m2
3 +

(2m2+1)3

27 −
1
3

)2
− (a(m2))3

] 1
2

−
m2
3 −

(2m2+1)3

27 + 1
3

) 1
3

and a(m2) =
(2m2 + 1)2

9
+

1
3

.

2. The variance function of the NEF generated the inverse Gaussian process time-changed by the first-exit time of the
inverse Gaussian subordinator is given by

VF(η1)(m2) =
1

4(1(m2))4 VF(ρ1)

(
2m2(1(m2))2

)
+

m2

2(1(m2))4 , for all m2 > 0,

where1(m2) =

[
√

6
(

27
16m2

2
+ 3
√

3u(m2)
) 3

2

− 36
√

3m2(l(m2))
2
3 w(m2) + 12

√
3w(m2)

] 1
2

12
√

m2(l(m2))
1
6 (9(l(m2))

2
3 −

3
m2

)
1
4

+

√
3w(m2)

6(l(m2))
1
6

,u(m2) =

√
4

m3
2

+
27

256m4
2

,

l(m2) =
1

32m2
2

+

√
3u(m2)
18

and w(m2) =

√
3(l(m2))

2
3 −

1
m2

.

Proof. 1. According to [10], k′Q1
(θ2) = eθ2 and VF(Q1)(m2) = m2. This together with (14) imply that the

variance function of the NEF generated the Poisson process time-changed by the first-exit time of the
inverse Gaussian subordinator is given by

VF(η1)(m2) = exp
(
2ψη1 (m2)

)
VF(ρ1)

 m2

exp
(
ψη1 (m2)

)  + m2, for all m2 > 0. (17)

Furthermore, using (4), we get, for all θ2 < 0,

kη1 (θ2) = −
1
2

ln(1 − eθ2 ) −
√

1 − eθ2 and k′η1
(θ2) =

eθ2
(
1 +
√

1 − eθ2

)
2 (1 − eθ2 )

= m2 > 0.

Setting z =
√

1 − eθ2 ∈ (0, 1), we obtain the following equation

z3 + (2m2 + 1)z2
− z − 1 = 0.

Its unique solution in the set (0, 1) is given by

z = f (m2) =
a(m2)
b(m2)

−
2m2

3
+ b(m2) −

1
3
,

where a(m2) =
(2m2 + 1)2

9
+

1
3

and b(m2) =


(m2

3
+

(2m2 + 1)3

27
−

1
3

)2

− (a(m2))3


1
2

−
m2

3
−

(2m2 + 1)3

27
+

1
3


1
3

.
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Its follows that θ2 = ψη1 (m2) = ln(1 − ( f (m2))2). Inserting this in (17), we get the result.

2. For all θ2 < 0 k′Q1
(θ2) =

1

2
√
−θ2

and for all m2 > 0, VF(Q1)(m2) = 2m3
2 (see [10]). This with (14) imply that

the variance function of the NEF generated the inverse Gaussian process time-changed by the first-exit time
of the inverse Gaussian subordinator is equal to

VF(η1)(m2) = −
1

4ψη1 (m2)
VF(ρ1)

(
2m2

√
−ψη1 (m2)

)
−

m2

2ψη1 (m2)
, for all m2 > 0. (18)

According to (4), we obtain, for all θ2 < 0,

kη1 (θ2) = −
1
4

ln(−θ2) − (−θ2)
1
4 and k′η1

(θ2) = −
1

4θ2

(
1 + (−θ2)

1
4
)

= m2 > 0.

Setting z = (−θ2)
1
4 , we get the following equation

4m2z4
− z − 1 = 0.

Its unique positive solution is given by

z = 1(m2) =

[
√

6
(

27
16m2

2
+ 3
√

3u(m2)
) 3

2

− 36
√

3m2(l(m2))
2
3 w(m2) + 12

√
3w(m2)

] 1
2

12
√

m2(l(m2))
1
6 (9(l(m2))

2
3 −

3
m2

)
1
4

+

√
3w(m2)

6(l(m2))
1
6

,

where u(m2) =

√
4

m3
2

+
27

256m4
2

, l(m2) =
1

32m2
2

+

√
3u(m2)
18

and w(m2) =

√
3(l(m2))

2
3 −

1
m2

.

Its follows that θ2 = ψη1 (m2) = −(1(m2))4. Inserting this in (18), we achieve the result. �

Conclusion

The time-changed Lévy processes are an important and useful tools in the theory of diffusion equations.
Furthermore, this class of mixture added more flexibility to the data analysis. The results of this paper
give some characterizations of the NEFs governed by these processes. These characterizations are obtained
by means of variance functions which have an important role in the estimation of the parameters of
exponential dispersion models. Since these models has been extensively developed in the field of statistics
and classification literature, then we propose, in a future work, to use these variance functions in the
estimation of the parameters of some exponential dispersion models and to apply the results of estimation
in the fields of image segmentation and signal path loss.
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