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Abstract. In the present paper we consider hypersingular integrals of the following type

j(’ . f(t))ﬂ” wa(X)dx, )

where the integral is understood in the Hadamard finite part sense, p is a positive integer, w,(x) = e™*x* is
a Laguerre weight of parameter a > 0 and ¢ > 0. In [6] we proposed an efficient numerical algorithm for
approximating (1), focusing our attention on the computational aspects and on the efficient implementation
of the method. Here, we introduce the method discussing the theoretical aspects, by proving the stability
and the convergence of the procedure for density functions f s.t. %) satisfies a Dini- type condition. For
the sake of completeness, we present some numerical tests which support the theoretical estimates.

1. Introduction

Hypersingular integrals

Hy(G, 1) _F( G() pe{l,2,...}, a<t<b,

t)p+1

were introduced in a more general context by Hadamard [13] and are defined as the finite part of divergent
integrals (shortly FP integrals), i.e.

f - = lim ft_e dx dx + b ax dx—l_(_l)p _1 t 1
) A W AR oy pre (x =t per ) p\a—ty (b-ty

Many properties fulfilled by finite part integrals over bounded intervals can be found in [22] (see also [10],
[24], [16]).
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In the present paper we consider hypersingular integrals over the positive semiaxis

P

Hy(fwa, t) f = flx )+1 W, (x)dx, t>0,

where p is a positive integer and w,(x) = x*¢™ is a Laguerre weight with @ > 0. For functions f s.t f®
satisfies hypotheses of Dini-type, starting from the decomposition

oo fOm ok (k)
Hun = [ o £ 000 sy 20 £ @

(X _ t)p+1 — 0 _ t)p+1 -k

we prove the existence of H,(fw,, t). In [6] we approximated the first right-hand integral by a subsequence
of “truncated” Gauss-Laguerre rules, conveniently chosen to avoid the numerical cancellation arising when
a quadrature knotis “close” to f. Nevertheless, we didn’t give the proofs of the stability and the convergence
of the method, focusing our attention only on the implementation aspects of the procedure. Instead here we
discuss mainly the theoretical aspects, by proving the stability and the convergence of the rule introduced
there and also a result of more general interest (see Lemma 2.1).

The procedure is completed since the remaining Hadamard transforms of w, in (2) are known in terms
of special functions, and they can be computed with high accuracy by standard routines.

FP integrals are employed, for instance, in the numerical solution of hypersingular integral equations,
which are model for many physics and engineering problems (see [22] and the references therein [10, 11, 15,
22, 27]). However the literature devoted to their approximation is richer in the case of bounded intervals
(see, for instance, [1, 2, 10, 14, 21-23, 29]). Recently some new different methods have been proposed also
in the case of unbounded intervals (see [5-8, 25]).

The paper is organized as follows. Section 2 is devoted to some notations and preliminary results.
Section 3 contains the estimate of H,(fw,, t) under suitable assumptions on f and the numerical method
accompanied by results about the stability and the rate of convergence of the error. In the successive Section
4 we propose some numerical experiments, in order to show the efficiency of the rule. Finally, Section 5
contains the proofs of the stated results.

2. Basic definitions and properties

Along all the paper the constant C will be used several times, having different meaning in different
formulas. Moreover from now on we will write C # C(a, b,...) in order to say that C is a positive constant
independent of the parameters 4,b,..., and C = C(a,b,...) to say that C depends on a,b,.... Moreover,
if A,B > 0 are quantities depending on some parameters, we will write A ~ B, if there exists a constant
0 < C # (A, B) such that

B
— <A <CB.
cSAs C
Finally, P, will denote the space of the algebraic polynomials of degree at most m.

2.1. Function spaces

With w,(x) = x*¢™, a > 0, we denote by C,, the following set of functions

{fEGWQ+m»:g£Uw@u)=o}, a>0,

Cu, =

a

{£ecoo+eo): Jim (=0}, a=o,
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equipped with the norm

Ifllc,, = lfwallo =

x>0

where C°(E) is the space of the continuous functions on the set E. In the next we will use ||f]|g := sup, ¢ If(x)l.
For smoother functions, we introduce the Sobolev-type spaces of order r € N

Wi(wa) = {f € Cu, : ' € AC((0, +00)) and ||V walleo < +oo},

where AC((0, +00)) denotes the set of all functions which are absolutely continuous on every closed subset
of (0, +o0) and ¢(x) = vx. We equip these spaces with the norm

1,0 2= I fWalloo + 11 f 70" Walleo-

For any f € C,, we consider the following main part of the k—th p—modulus of smoothness

Q (f u)uhy - sup ”wﬂAh(pf”Ikh’

0<h<u

where Iy, = [4k2h2, hZ] C is a fixed positive constant, and

k
A f) = Y (1) ( )f (x + hp(x)(k — 1))

i=0

The complete k—th modulus of smoothness is given by ([4] and also [20])

Splfi i, = Qpfwa, + inf I = Pwallosea + inf I(f =~ Quwal, 1)

Pelly 4 elP k-1

By means of Q’;, (f, u)w, we define the Zygmund-type spaces

u>0

QL (f, ),
Zi(wy) = {f € Cy, : sup (p(i—/\) < +oo}

of parameter 0 < A < k, equipped with the norm

QE(f, )
PN a
“f”Z,).(w(.) = ”fwa”oo + sup u—/\

u>0

We recall that with r = [A] it is Wy (wa) € Z)(w,) € Wi(w,) and, by arguments similar to those used in [8,
Lemma 2.1], for0 <A <land p € N, f¥) € Z;(w,¢F) implies f € Z,,,(w,) and viceversa.
Now we state the following result which can be useful in the next and also in other contexts.

Lemma 2.1. Let f € Cy,, and P,, € P,,. Then

% _Pm/ w, mey /Mwa
f“ MW < c(||(f—Pm)waIIoo ; f“ @(f_)du),
0

0 u

where r € N withr <mand 0 < C # C(m, f).
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2.2. Orthogonal polynomials and Truncated Gauss-Laguerre rule

Let w,(x) = e7*x* be the Laguerre weight of parameter o > 0 and let {p,,(wq)} be the sequence of the
corresponding orthonormal polynomials with positive leading coefficients

Pin(Wa, X) = Yu(wa)x™ + terms of lower degree,  y,,(w,) > 0.

Denoting by x,, 1, k =1, ...,m, the zeros of p,(w,) in increasing order, we recall that (see [28])
C 1
- <A1 <Xy < .o < Xy <4m+2a—Cms.

From now on, for any fixed 0 < 8 < 1, the integer j := j(mn) will denote the index of the zero of p,,(w,) s.t.

Xmj= Min Xy @ Xpx > 4m0}. 3)
k=1,2,...,m

Inside the segment (0, x,, j) the distance between two consecutive zeros of p,,(w,) can be estimated as follows

X,k .
Axm,k ~ A-xm,k—l ~ 7/ Axm,k = Xmk+1 — Xmks k= 12,..., J-

Now we recall the so called “truncated” Gauss-Laguerre rule introduced in [17] and based on the first j
zeros of py,(w,), j defined in (3),

+00 j
[ st = Y fsns+ Ral), @
k=1

where {A,, ¢} . are the Christoffel numbers w.r.t. w, and R,,(f) is the remainder term.

k=1

3. The main results

Consider

+00 f( x) Y
Hy(fw,, t) = . mwa(x)dx, wa(x) =x%", a 20,
where the integral is defined in the Hadamard sense. Assuming f sufficiently smooth, we use the following
decomposition

+oo P f( (f) _ ok ®) (¢
Hogy = [ LR D, g, +Zf 2

0 (x - f)”+l

Wa(X)
0 (x—tprik

(k
= T fwa,t)+Zf Hy-i(Wa, 1). ©®)

We prove the existence of the right hand side in (5) for f) satisfying a Dini- type condition.
Theorem 3.1. Let p > 1, @ > 0. For any function f s.t.

1 QL (FP, 1)y
f (P(f ) a(Pp d]/[ < o0, (6)
0

u

and for any fixed t > 0,

' Qp(fP, W,
1 H, (f1oa, 1)] < C( f ww Wflwwy |, 0<C#C 1. )
0
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Remark 3.1. In particular, if fP) € Z(w, "), by (7) we deduce
#IHy(fwa, 1) < C(||f||z,,+/\(wﬂ) + ||f||w,,(wd)), 0<C#C(f,b)

For the convenience of the reader, we briefly expose the numerical procedure proposed in [6]
Let t € (0,4m0) be fixed, 0 < 0 < 1. Recalling that the zeros {x,,}"

K of pm(w,) interlace the zeros
{X41 k},’:’J’1 of pu+1(w,), there exists anindex d € {1,2,...,m — 1} s.t.

Xmd << X1,

L 2 . X
Xm+1,d+1 X, d+1

Xm+1,d X, d

and the integral ¥,(fw,, t) is approximated by the “truncated” rule (4) of order m", where m" is selected as
follows

= m+1, if |xu41441 — t[ > min {It - X,dl, |t = xm,d+l|} ’
m, otherwise.
Thus
*)(
I fxm 1)_ P f t)( X z_t)k
1)y = . i+ . t
Fo(f10a, t) ; e t)7’+1 A + €y (fin, 1)

B ﬂ,m*(fwa/ t) + ep,m* fwm t)/
where e, - (fWa, t) is the remainder term.

The subsequence {F,(fWa, t)}n of the Gaussian sequence {Fp,u(fwa, t)}nen satisfies [3]

X ,d
mm Ixm,-—tl—lxmd—t|>C1/—m p (8)
i=1,.. m

i.e., the minimal distance of any Gaussian knot from ¢ is large enough inside the range (0, 41*0).
Therefore possible numerical instability arising when a Gaussian knots is “close” to t is avoided. More-
over (8) is crucial in order to prove the stability and the convergence of the procedure, since for f € W,(w,)

0] k
f( m* d) k k‘ ( X d — )
. - o Aurea| < CllfPwa7 |l < C
d =

(see the proof of Lemma 5.6).
In conclusion one has

Hy(fwa, t) = Hy e (fwa, t) + €pum (fwa, t),

where

") (¢
pm (fwg, t) = pm (fwa, t) + Z ! ( ) p—k(wm £). (10)

About the stability and the convergence of (10) we prove the following theorems.
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Theorem 3.2. For any t € (0,4m0,) fixed, with 0 < 61 < 0 < 1, and for any function f satisfying (6)

ﬁ Q (f(P), u)wa P
1 Hy e (froa, O] < c( f — = du + | fllw . |
0
where 0 < C # C(m, f,t).
Theorem 3.3. Let 0 < A < 1. Forany f € Z),(w,) and t € (0,4m01) fixed, with0 < 01 <0 <1,

logm

Vi
where 0 < C # C(m, f,t)and 0 < A # A(m, f, 1).

FIH (Fa, t) = Hypp (Foa, B < c( ||f||z,,+,\<wa>+e—A"’||f||w,,<wa>),

Corollary 3.1. If f € Z)1pig(w,), g 2 0, then we get

||f||ZA+,,+,,(wﬂ)

PIH,(fwa, t) — Hp e (fwa, t) < C Nwes logm (11)
and if f € Wyyy(wa), q 2 1, then we obtain

) AW, g (o)

tPIH, (fwa, t) — Hy e (fwa, t)] < CW log m. (12)

We conclude the section by highlighting that in (9) “choice of the subsequence” and “truncation” both
play a key role from a computational point of view: “truncation” allows to avoid overflow phenomena
arising when f exponentially growths, “choice of the subsequence” prevents numerical cancellation. More-
over, from the theoretical point of view, they are both necessary ingredients in the analysis of the stability
and the convergence of the method.

4. Numerical experiments

In this section we give some numerical tests obtained by approximating H,(fwa, t) by {Hp, . (fWa, t)}hn-
Since the exact values of the integrals are unknown, we will retain as exact the values computed with
m = 1000 and we will set

ép,m* (fwa/ t) = |7_{p,m* (fwm t) - 7’{;7,1024(]%001/ t)| (13)

All the computations have been performed in double-machine precision (eps ~ 2.22044¢ — 16) and in the
tables the symbol “-” means that the machine accuracy has been achieved.
Moreover, we will use the following definition of the truncation index (see [9])

j= min {k : Ay i <eps} (14)
k=1,...,m*

taking into account that A, ~ Axyr xWa(Xye k). The above definition is equivalent to (3) in the sense that
there existsa 0 € (0,1) s.t. x- j-1 < 4m*0 < xp j, Where jis defined in (14). To have an idea of the percentage
of the knots involved in the truncation process, depending on the choice of 0, see [26].

In Tables 1-3 we have displayed the absolute error as defined in (13), the order m* of the Gauss-Laguerre
rule and the corresponding j as defined in (14).

Finally, details on the computation of H,_;(w,) in (10) can be found in [6].
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Example 4.1. Consider the following integral

_ [ loglx+6) _ log(x +6) 1 _
ﬂl(fW%,t) = fo mx e *dx, f(X) = —(x2 " 36)2/ a= 1’ p= 1.

Since the function f is very smooth, according to estimate (12), the convergence is very fast and, as shown
in Table 1, for different choices of t at least 14 exact decimal digits are attained with only 18 function
computations. The worst results is obtained for t = 3.2¢ — 6 due to the the unboundedness of #( fwi,t)as
t— 0.

j e1,m (fwi, 3.2¢e — 6) e1,m (fw%, g) él,m»(fw%, 4)

6 (m* =6) 2.0853¢ — 9 8.7646¢ — 10 | 3.6672¢ — 10

12 (m* =12) | 1.8307e — 12 1.4764e — 12 | 5.0814e — 13
18 (m* =22) | 1.1111le - 15 - -

Table 1: Example 4.1

Example 4.2. Consider the integral

G 3.4 1
Wz(fw%,t) = ﬁ ar(cxta_—nﬂ;c Vxe *dx, flx) = arctan®*x, a= 5 p=2
Since f € Z7.8(w%), by (11) the error behaves like log 11/ m%?. Thus, for instance, for m* = 801 one can expect

7 exact decimal digits, at most. Anyway, as Table 2 shows, better numerical results can be achieved when
t is far from 0, where H,(f wi, t) is unbounded and, in addition, f @ is discontinuous. In all the cases, we

used only 119 samples of f for computing H o1 (fwy, £).

In order to show that theoretical and numerical errors agree, in Figure 1 we show the behavior of the
ratio

maxi=1,.. 40 &2,m(f’ wy, vi)

logm
Mo

erty, = , Ayili=1,..40 € [0,10],

as m increases. The graph shows that err,, is almost constant (it varies in (2.2, 6)), confirming in such a way
the theoretical error estimate.

j m(fwi,0.25¢ = 5) | ey (fwy, D) Ez,m*(fw%,g)
42 (m* =101) | 1.5695e — 5 1.0164e — 9 1.0120e — 11
60 (m* =201) | 4.0570e — 6 3.8774¢ — 11 | 2.9851e — 13
85 (m* =401) | 9.3800e — 7 4.1807e — 11 | 1.7408¢ — 13
103 (m* = 600) | 3.2620e — 7 1.3292¢ — 12 | 4.9876¢ — 14
119 (m* = 801) | 1.0485e¢ — 7 4.6074¢ — 15 | 3.7248e — 14

Table 2: Example 4.2
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Figure 1: Example 4.2: Graph of err,

Example 4.3. Consider the integral

1194

_ S R _
7‘(3(]%00, t) = £ (X — t)4 e dx, f(x) =

In this case the function f belongs to Zg4(wp) and, according to the estimate (11), the error behaves like
log m/m*2. As Table 3 shows, the worst results are achieved when t approaches the point ; where f1% is
singular. In Table 4, we report the estimated order of convergence

9.4
, a=0, p=3.

¥~

EOCm — log(éﬁ’m/éﬁ?m)
log2

where
i=1

erry = ,:maﬁoéam*(fwo, vi),  Ayili=1,..40 € [0,10],

for increasing values of m, and in Figure 2 we display its graphical behavior. As one can see the numerical
convergence order agrees with the theoretical one.

i 23, (f0,0.025) | 23,0 (fwo, 0.2499999999) | &3, (fiwo, 1)
53 (m* = 100) | 7.0854¢ — 10 2.5554¢ — 8 8.4070e — 11
75 (m* = 201) | 2.9609% — 10 2.5907¢ — 9 9.1565¢ — 13
106 (m* = 400) | 1.0921¢ — 11 1.1180e — 10 8.7260¢ — 14
130 (m* = 600) | 1.3145¢ — 12 9.5558¢ — 11 -
150 (m* = 801) | 1.6816e — 13 34475¢ — 12 -

Table 3: Example 4.3
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m | EOC,,

8 | 3.5843
16 | 3.8797
32 | 2.8256
64 | 3.2699
128 | 3.3143
256 | 3.2159
512 | 3.2914

Table 4: Example 4.3

L L L L L L
0 50 100 150 200 250 300 350 400 450 500
m

Figure 2: Example 4.3: Graph of EOC,

5. The proofs

Denoting by

En(fw, = Pier]}_f I(f = P)walleo

2533

the error of best polynomial approximation in C,,, the following Stechkin and Jackson inequalities hold

true (see [4] and also [20])

15
W5 (f D, <CEFY 1+ ) Ei(f)w,,  0<C#Clm, f),
0

=

En(f)uw, < Cal ( T)%, 0<C#C(m,f).

Proof of Lemma 2.1 Let P,, € IP,,,. We have

u

w
ﬁ a)q)(f_Pm/ ), - 7 C‘)(p(f Pm/ u)wa - (p(
[Py L 5[5

:m j=m

(15)

(16)
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and, using (15), we get
W Wy(f = Pp, ),

o(f ) I

j

P
= C) = +

Z E [i:o V1+i i=m
m—1 1 ]

=1y B _ § Elfe (o
;]; ) Z‘ Vi ,Z‘J =
< Ci :W—w:” /;’t)“’“duchol'" i J;’u)w“d.
m}

Thus the proof is complete
In order to prove Theorems 3.1, 3.2 and 3.3, we premise some lemmas

Lemma5.1. Leta>0,p>1andt > 0. If f € Cy, we get
< Clifwall,

f() Wa(x)dx

Ltzl (x —tyr+t

where 0 < C # C(t, f)
Proof. Setting x — t = ut, for any t > 0, we have
du
p+1 hS C”fwa”oo

f‘” fx) o (x waa”oof
1 (x =+ 1
< 1. In the case t > 1 we have to estimate also the term

and, therefore, the lemma follows for 0 < ¢
Il fwalloo
Wl Cllfalloo-

f) Wa(x)dx| <

t-1
‘fo (x —

Lemma 5.2. [8, Lemma 6.1] For a > 0, we have for 0 <t <1
>1
0<C#C(t)

Wa(x) tr p=
——dx| < t
x| < Cwel(t) {log F1 p=0’

‘ \x f<1 (x = t)PFL
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any function f € Wy(w,),

Z f(k) (t) Wa(X)

C
_ t)p_k+1 x‘ S t_p”f”Wp(w,Y)/

|x— t|<1

where 0 < C # C(f).

Proof. By Lemma 5.2 and taking into account

r

Zﬂij(j)(P

=0

it follows that

Deglles < C (Il fwalleo + 11f M4l )

Denoting by

Ry(f, x,1)

p
O w,(x)
Z k! fx—t|<1 (x — typHrl ax

k

IA

p

C

© Y O vl < il
k=0

(k)
= w-Y By,
k=0

the Taylor’s remainder term, we recall its Peano form

Rp(fr X, t) = ( o f [f(p)(’[) _ f(p)(t)](x _ T)p—ld,_[.
-1,
Lemma54. Leta>0,p>1andt>0. If
fl mdu < oo,
0 u

then

Ry(f, x, 1)
L—tq mwa(x)dx

where 0 < C # C(t, f).

Proof. We first assume 0 < f < 1 and use the following decomposition

Ry(f, x, 1) ~ 2 Ry(f, x, t) 41 f(y)
L_m s = [ s [

a (x =ttt

B Zp:f(k)(t) T wa(x)

=k (=t

= Il(i’) + Iz(t) + Ig(t).

Using (18) we get

Li(t)

w0 ()
= — f [ f AP0 = FP (D = X~ %h]( s

(69)
®) ) p-1
) L o= s oy 2

P e kg ®pPw
C A% alloo+10gt_1||f P'walle
=0 tP—2 Iz

< (V‘f Md +—||f||W(wa)

2535

(17)

(18)

(19)
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and, by the changes of variables x = t — u Vt, T = t — z Vt in the first integral and x = t + u Vt,7 = t + zVt in
the second integral, we get

- 1 s ® )t — -1 ]wa(f u‘/_)
L) = (p_l)!fo Uo[f () — fO(t — 2V (u — 2)Pdz du

1 Vir _ wa(t + u vt
M L |:f0 [f(P)(t +z \/E) - f(p)(t)](u - Z)p 1d2] Tdu

Thus, we obtain

VEQ,(f®) _
Lol < Cf o(f u)zu“(p%’ [wa(t TRYD) N wa(t+u\/f)]du 20)
wa(PP(t) — wa(t)pP(t)
f (P f(P)/ l/l)wa(pp J
0 o
Moreover, since x — t > 5 we get
t+1 dx
IL(H)] < C”fwa”oo < ”fwaHoo (21)
xp+1 tp
and using Lemma 5.3 we obtain
C
ILOL < S lfllw, .- (22)

Combining (20), (21), (22) with (19), the thesis follows for 0 < t < 1. In the case t > 1, by similar arguments
used in the previous case, we get

Rp(fr X, t) i+l R (f X, t) C 1 Q(P(f(p)/ u)wﬂ(pp
Ld (c—tprt w“(x)dxl lf G-ty “(x)dx‘ 0 fo TR

and the lemma is completely proved.

]
Proof of Theorem 3.1 By
+0o
fx) f f) J( Ry(f, x, 1) ‘
—————w,(x)dx| < —————w,(x)dx| + ————w,(x)dx
J(o (x —typ+t ) wtiz1 (X = £PH ) —tj<1 (x — £)PH
- O wa(x)
Z k! —k+1 dx|,
= K be—ti<1 (x — £)P
the theorem easily follows by using Lemmas 5.1, 5.4 and 5.3.
O

In what follows, for the sake of 51mp11c1ty, will write {x;}™
P (Wa) and {Ag}”, instead of {4k}

o instead of {x, k} to denote the zeros of

k=1"

Lemma 5.5. Leta >0,p > 1andt > 0. If f € Cy, we obtain

f(x:)

(X‘ _ t)p+1 /\i(wa) < C“fwaHoo;

Ixz_tlzl

where 0 < C # C(t, f).
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Proof. Assume 0 <t < 1. Recalling that

A i(Wy) ~ DXy i W (X i), i=1,2,...m
we have
f(x) Ax; T dx
————Ai(wy)| < Cllfwalls ———— < Cllfwalleo —_—
e i~ pre e t+1<Zx,‘<vj (x; — P+t it 1 (x—HP

+00 du

C
< Sl [ S5 <Clfwl.

The case t > 1 follows by similar arguments.

Lemma 5.6. Leta > 0,p > 1,t > 0 fixed, and d defined in (8). For any function f satisfying (6), we have

7

®) (¢
dZH. FOon) = T 5o (e — D R

(xm*,i - t)P+1

1 fr Qu(fP, ), gr ;
Pr(t) u !

mi| =

i=d—1
where 0 < C # C(t, f).

Proof. We assume t > x4, d > 1. By (18)

IRy(f, x4, B)] - = = 1)| f [FP(7) = fP0)(xg — 1) Nt
Vi ®) Ot — 2VE N
Y f IfP) = FOt =2 VOI(t = xg —z VP dz
= \/_ _Xd () P p-1
T (- Diwa(her(h) Az fP (Dwa ()" (1)t — x4 — 2 VEP dz.
Then, since by (8) itis t — xz ~ \/_\/g ~ \/_\C’ we obtain

(t=x4)

Vi v _
[Ry(f o, ) CW(P”G) fo P (A fP) 000 llo (t = x4 — z VP Tz
Z<W

< (f(”) —) (t = xa).
Wa P

IN

wa (P (1) e Vm
Therefore by (23) we have

|Rp(f,xd, t)|/\,;1 <C wy(xy) (f(p _) Axy

(t=xgp*t T wa(t)er(t) o Vi) (= %a)”
Moreover, using [4, Lemma 4.1] wq(x4) ~ wa(t), (tA_—’Z) ~ 1 and taking into account
0 f(p) ¢
m q) 4
Q, ( 1o, L) <cl|” ( )W dt,
% wﬂ(pﬂ 0 t

2537

(23)
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we obtain

[Ry(f, x4, t)w f il wa@*’ dt
sop(t) '

(t—xd p+l

Since by similar arguments

|Rp(f/ Xd+1, t)| /\dﬁ-l < C ﬁ Q(p (f(p)’ t)wa(pr’

< — dt

(xge1 — £PFL Pr(t) Jo t

)
|Rp(f, Xi-1, f)| Ai . ¢ + Qo (f(p ‘ t)wa(pn i
(xXgq — tp*t TP Jo t ’

the thesis follows. We omit the case t < xy, since it follows by similar arguments.

O
Lemma5.7. Leta>0,p>1andt> 0. If
fl Q({)(f(P), u)waqu du < 00
0 u ’
then
Rp(f/ Xi, t) 1 % Q(p(f(p)r u)w @r 1
—————Ai(w)| < C| — f ——————du+ —||fllw,w.) |-
|x;i—t|<1 (xi - t);?+1 \/t_]ﬂ 0 u & ’
where 0 < C # C(t, f).
Proof. Assume 0 <t < 1. We have
X 7 t X 7 t R ’ X‘, t
& fft%+3A(u7) = ( 'ft;+f Aifaws) + -Jff;ﬁggAxau>
0<x;<t+1 - 0<x;<t Xi —t) t<x ot (xi = 1)
i#d—1,d,d+1 i#d—1,d,d+1
_ &“””Mwnfi&““?uw)
T 1 Vi\Wa T 1 i\Wqa
2t<x;<t+1 (i =) i=d—1 (i = 1)
=: A(t) + B(t) + C(t) + D(¢). (24)

We first estimate A(t). By (18) we have

fO@ - fOO)i - v

|Rp(f/ Xiy t)|

(r -1t
\ % ) ) —1
< (P—l)!f |fp(t)—fp(t—z\/Z)Kt_xi_Z\/Z)P dz

B G O ) )
wa(t)(pp(t) @(f \/E wa(ﬂp(t Xz).

Therefore by (23), we get

wa(xl ) t—x; Ax;
|A(t)| S 7’(1‘) Z wa(t) (f;7 4 \/Z )wa(pp (t_Xi)

0<x;<t
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and, taking into account that [3] w‘*(“ <C, 2 <, t_—\/? < VE<Cyxg ~ \/%Z and that

7 (xi—t)

L Q,(fP) ¢
Q (f(P> i) < o T e 4 )w""’p dt
gu 7 — t 7
W wa(pﬁ 0
we obtain
7 waqﬂ’
)< oo [

Similarly proceeding we get

 Q, ( 1, t)
C Vin ¥ Wa ¥
B(t)| < —— ——dt.
IM_@WLL t

By (23) and (17), we have
”m'S%Q$JU%%MW”+§V%MMMM@¥%%T
SCWWMgltW iW%fML(_ﬁw]
< c %Zgllf“wknw* e }

< S (ifwal + 19 walls).

Moreover, by Lemma 5.6, we get

1
1 Vi Q(p(f(p)r u)waq)l”
ID(t)| sc(pp(t)fo - du

Finally, combining (25), (26), (27), (28) with (24) the thesis follows for 0 <t < 1. Inthe caset > 1,

Rp(f/xilt)/\' _ Rp(f,xi,t)A.

xi - Dyl xi - Dyl

Jxi—f]<1 ( t=1<x;<t+1 (

and the lemma follows by arguments similar to those used in the previous case.

Lemma 5.8. Witha >0,p > 1,k <p, for any t > 0 we have

wa(x) /\i
fl;_tpl —(x ~ t)}”_k+1 dx — Z T kel t)p_k"'l < CZ/Ua(t)/

Jei—t|>1 (x’

B k()] :=

where 0 < C # C(t, f).
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(26)

(27)

(28)

(29)
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Proof. Since |x —t|,|x; — {| > 1, we have for any t > 0

® wa(x) Ai * )
Ll (x—t)l’*k“dx_ Z (x; — t)pke1 = ft+1 e+ Z b

t+H1<x;<x; t+H1<x;<x;

Cf Wy (x)dx < Cwy(h).
t+1

IA

For 0 <t <1 the proof is complete. In order to complete the proof for ¢t > 1, we have to estimate

T w(x) Ai(wa) _ _ wa(x) _ Ai(wa)
f(; (x _ t)p—k+1 dx — Z ( i — t)p—k+1 - f (X _ t)p k+1 Z (x _ t)p (v _ f\pk+l

1<x;<t-1 1<xi<x,

Wa(x)
j; (.X' _ t)p —k+1 dx’

1

+

where x; = max{x; : xx <t —1}.
To this end, we recall the Posse-Markov-Stieltjes inequality [12, p.33]

=

-1

X4 d
() < f gEwa()dx < Y Amig(xe),
0 k=1

=~
I

1

which holds true for any function g s.t. §®(x) >0,k =0,1,...2m—1,m > 1,for x € (0,x;),d = 2,3, ...

Thus, by (31) with g(x) = (t_x)% and d = g, we have
Xy q-1 A
0< f _Wal®) < T < Cuwa(h),
0 (t — x)p k+1 P (t x; )p k+1 ( — xq)p k+1

being w,(x;) < Cw,(t), t —x; 2 1,and = ‘] <C.

Finally, since
U wax) X o
% (x — t)P- k+1 w“(xq) (x — fypk+1 = Wa(t),

combining last inequality and (32) with (30), the lemma follows also for t > 1.

Proof of Theorem 3.2 We can write

P
a0 Wa(X)
|7‘{p,m* (fwa/ t)' 7--P,Wl" (fwa/ t) + ; f (x _ t p—k+1 ‘

P(f Xi, t)
< - i)
\x “h<1 (xi = 1) @t Ith|>1( i t)p '
|f(k)(f)| TAG] f W, (x)
B, — ——dx|,
p | k(t)| kZO‘ k! —tl<1 (x _ t)p—k+1 x

2540

(30)

(31)

(32)

with B, «(t) defined in (29). Using Lemmas 5.7, 5.5, 5.8, 5.3 and estimate (17), the thesis easily follows.
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In order to prove Theorem 3.3 we recall the weaker version of the Jackson inequality [4, Corollary 3.6]

+ OF (f,
Ev(flw, < C fo v %du, 0<C#C(m,f), (33)

and that, for any f € W,(w,), (see [4] and also [20])

En(fu, < V%Em_xf“’w, 0<C#Cim, f), (34)

and, for any P € P, (see [18, Lemma 3.6])
I(f = PYwa@p'll < C [ V' Il(f = Pwalles + En-r(fDgr ], 0 < C 3 Clm, f). (35)
Moreover, since for functions belonging to Z,(w,),0 < A <1, we have [4, p. 189]
W F g ~ QF D

as a consequence of Lemma 2.1, (33), (34) and (35), under the assumption % € Z,(w,¢"), 0 < A < 1 and
p =1, we deduce

= Qr (f(P) Ww,pr C
¢ < ®)
En(fa, < \/_f e < IVl (36)
- Q ( f(p) {T) I C

— PPy Pl < 2t e (v)

||(f P) wa(P ”00 = C‘fo‘ u du = an ||Z/\(wa(l7p)’ (37)
and
1O ((f—P)(”) U or = (f(p),u)w p logm
® r Wwag ¢ af g

j; ” du < Clogm‘fO ” du<cC \/m_“f “Z\(wa(p!’), (38)

where in all the cases 0 < C # C(m, f).
Proof of Theorem 3.3 Let 0 < 0 < 1 be fixed and let P € IPy; be the polynomial of best approximation of

fin Cy,, with M = Lm I +9J With j defined in (3), we have

o P(x) - X Sl -
7-{p(fwou t) - 7-{]ﬂ,m*(fz’uow t) = 7-{p((f - P)wm t) - ﬂp,m*((f - P)war t) + Z T

S oo
= S1(t) + Sa(t) + S3(8). (39)
By Theorems 3.1 and 3.2 we get
C 1 Q ((f - P)(P), u)wa C
SiBl+ 1200 < = ’ 2+ Z{I(f = Pvalls +11(f = P)Pw0ap’ o)
 Jo u tp
and taking into account (36), (37) and (38), we deduce
Clogm
SOl +15:00 < N (40)
Consider now S3(t). We have
PGl IP(" ®l
1530l < Z (x; t)p+1 Ami Z Z (x; — t)p+1 -k (41)

i=j+1 i=j+1
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and, by (23),

1P,
P < 1Pl Z

(x; — L Ams < t)P+1

i=j+1 i= ;+1
Moreover, recalling the following estimate [19, (4) p.590],

max P(x)wy(x)| < Ce™™™M max |P(x)w x)|,
XZ4(m+1+a)(1+6)| ()wa()l 05xs4m9| () wa(x)l

with C and A positive constants independent of P and m and depending on 6, we deduce

m

IP(x) A " gy B
——— i < Ce™MM|Pw ————— < Ce"|Pwy|oo-
igl G IPwnlioame | o 1P|

To estimate the second summation in (41), assume at first ¢ < x’; *. We have xth > ’Z > x’g :
therefore, by (23),

p -
Z LGl Z Ami Z PO (Bwa () Z Axie” Dy
pry k! P} (x; — typr1-k pan Klpa+s borr] (x; — t)pri-k
p _x
PO Wyl r0) (" x%ei
< _mez [Pk zz”[t,+ ) S
k=0 tats X1 (x - t)P
P ip)
< Ce—mez PO @ 04t +00) f e~ uc
-k (u — 1)p*1- =
k=0
—Am
e
< C— {IIPwalle + 1IPY 9 walls |,

where in the last inequality we used (17). Assume now t > x’—”. Using (23), we get

i PO & Z . i |[P® @k walltm i Ax;
! _ -k = k _
k=0 K i=j+1 (xi t)P+ k=0 i=j+1 £z (x; =t k
(k) . -
P |IP © wa”[%ﬁ_m) L Ax;
< CZ K (x;i — t)p+1—k :
k=0 t2 i=j#1
Since )
m
Ax; C
L <Clogm, ! <= k<p-1,
o0 Z (x; — typrik = -k =F
i=j+1 i=j+1

P k m —Am
IPO®)] Ami e .
Z k! Z 1. <0 {IPwglleo + IPP P4l
Combining last inequality, (44) and (43) with (41) and taking into account (35), we have

C _ C
1301 < e {IPwalls + IPP@Fwalleo} < e {Eniop(F PN + 1 f I -

The theorem follows Combining last inequality and (40) with (39).

2542

(42)

(43)

~ m6 and

(44)
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