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Abstract. In this paper, we obtain the Gronwall type inequality for generalized fractional operators uni-
fying Riemann-Liouville and Hadamard fractional operators. We apply this inequality to the dependence
of the solution of differential equations, involving generalized fractional derivatives, on both the order
and the initial conditions. More properties for the generalized fractional operators are formulated and the
solutions of initial value problems in certain new weighted spaces of functions are established as well.

1. Introduction and Preliminaries

Fractional Calculus generalizes ordinary differentiation and integration to arbitrary order. This calculus
has been attracting the interest of a big number of scientists because it was shown that it gives good results
when this calclus is applied to model real world phenomena [1-5]. Furthermore, there have been attempts to
find new fractional operators with different kernels in order to better model these phenomena [6-9]. Many
authors discussed theoretical and application aspects of differential equations within fractional integrals
and derivatives [10-14].

Integral inequalities play a significant role in the development of the theory of differential and integral
equations [15]. One of the most popular inequalities is the Gronwall inequality [16] which has always been
attracting many scientists because of its applications in many areas of mathematics. In [17], a generalized
Gronwall inequality with application on a fractional differential equation involving Riemann-Liouville
derivatives was considered. While in [18], the Gronwall inequality was proved for Hadamarad fractional
derivative and in [19] it was obtained for g—fractional operators. Other types of inequalities were considered
in [20, 21]

In this paper, we generalize the Gronwall inequality to differential equations involving a two-parameter
generalized fractional derivative [22, 23] which provides the Riemann-Liouville and Hadamard fractional
derivatives when one of the parameters is fixed at different values. We use this inequality to investigate the
dependence of the solution on both the initial conditions and the order of the differential equation.

Before we pass to our main results, we review and introduce some notations, definitions, theorems and
lemmas that will be necessary to proceed.
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The left-sided Riemann-Liouville fractional derivative of order n — 1 < a < n, [1-3] of a function
g : [to, 00) — Ris given by

1 d\
Dg g(t) = Thi-a (_t)

The corresponding left-sided Riemann-Liouville integral operator of order @ > 0 [1-3] of a continuous
function g : [ty, ) — R s given by

t
ft (t-7)"* g (1) dr. 1)

0

a — 1 t a-1
0= ft (t- 0" g (0)dr. ®
J. Hadamard [24, 25], introduced a new type of fractional derivatives and integrals of the form:

. 1 ; t F\n-a-1 dr

(DtOJ) t) = mé L (ln ;) g — aclh-1n), ©)

and

" 1 Lot dr

( t0+9) (t) = mfto (ln ;) !7(’97/ (0<ty), a>0, 4)

where 6 = (t%) is the so-called -derivative. The Caputo modification of Hadamard fractional derivatives
were discussed in [26-28]

In this paper, we use the generalized fractional integral operator of ordera € [n —1,n),p > 0,fy > 0 and
t € (tp, ) given by

(Tirg) ) =

pl_a ! a—1 dT
F(a)fto(t‘)—ﬂ’) g(T)T—_/ (5)

and the generalized fractional derivative operator

a,p y" e —gp )T dt
(Dtoig)<t>=r(n_a)fm( . ) 90 55, aeln-1m, ©)

where y = (tl‘P %).
The relation between the above latter two fractional operators is as follows:

(D9) () =" (T1579) (), a € n—1,m). -

Note that the generalized operators (5)-(6) are reduced to Riemann-Liouville fractional operators as
p — 1 and Hadamard fractional operators as p — 0*.
The generalized Caputo fractional derivatives were discussed in [29].

Definition 1.1. Let G = [fo,b], (0 <ty < b < o) be a finite interval on the half-axis R* and the parameters p > 0
and 0 < p <1
(i) We denote by C [to, b] the space of continuous functions g on G with the norm

9]l = max {lg (®)] : t € [to, b1}
(ii) The weighted space C,,, [to, b] of functions g on (to, b] is defined by

t— th
Cuup [to, b1 = {g : [to,b] > R, ( - ) 9(t) € Clto, bl ¢,
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Co,p [to, b] = C[to, b], with the norm

th— 0 u
lolle,, = maxs|(—=) g @) : t e tro b1, llale,, = llgle-
(iii) The weighted space Cy_  [to, b] of functions g on (to, b] is defined by

Cl, [t b1 = {g: [to, Bl > R, g (t) € Cioyip [to,b], D g (t) € Cryyp [to, b}

(iv)The weighted space C},, , [to, b] of functions g on (to, b] is definied by
Ch oo lto b1 = {2 [to, bl > R, y* g (#) € Clto, b], k=0,1,..n = 1), y"g(t) € Cy [t0, b1},

with the norm

n-1
[ Clup kz Hng”c + ||Y"9ch » Cpup [to, b1 = Cpup [to, B].
=0

(v) The weighted space AC} , , [to, b] of functions g on (to, b] is definied by

AC},  [to,b] = {g :[to,b] = R, y* g (1) € AClto,b], k=0,1,...(n = 1), y"g (t) € Cy [to, b]},

where AC [ty, b] be the space of absolutely continuous functions on [to, b].

Remark 1.2. Leta > 0,>0, p > 0and T > 0 then

t _ o _ B 0 _p a+p+1 1
Lf‘(tp Sp) (SP Tp) & - (t : ) [ a2 e
T p P s P p 0
Fl@a+1)T(B+1),tr —'[P)a+ﬁ+l
F(@+p+2) ( p ’

The inner integral is evaluated with the help of the substitution sP = ©f + z(tP — t°) and the definition of the beta
function.

Lemma 1.3. Let 0 <ty <b < +oo,a > 0,u > 0 then
(i) If u > a > 0, then the fractional integration operator (jtaof’) is bounded from C,, , [to, b] into C,i—ap [to, b]

I'(1-
<kl o = et

”jtao;pg”cu_ﬂ,p e “T(+a- 1’

In particular (j o ’p) is bounded in the space C,, [to, b] .

0+

(ii) If u < a, then the fractional operator (jtao’f') is bounded from C,, , [to, b] into C[to, ] :

W—%T“ I(1-p)

“jtao;pg“c <K “g“CW K= [ o FQl+a-p)

to+

(iii) For any g € C[to, b] . The fractional operator (j P ) is a mapping from C [to, b] to C[to, b] and

. 1 b — 0\
el = e [ ol
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Proof. (i) when p > a, by Remark 1.2 we have

a,p
to+

and hence
l73”
to+
where

1=

0 u—a N
Ciap m"‘x{ 0 ] Tl 9@ te(to,b]}
< ) ttp ’Jal( dr
= || e F(a) 900
< te— " ) 1(p—tpy ()d_’[
< ten(lt?;:(] F(a) o TP—t )y T 0) 9
it , —apl atp W o d
< ol Jo (=) S ). oy ) A
uta —a pl—a+y t . o d
< Mol et =) [ 0= =)
—uta u-a pH7Y apu T(@) T (1 - p)
< Mol o (= 8) v (= 0) " Sz
rd-p
< H ||C#P F(O{ ‘Ll+1)
ra-u
e, <lole,, 7=+
ra-u
F(a—p+1)

(ii) When p < a, by Remark 1.2 we have

Ot,p
to+

IA

IA

IA

IN

IA

max {|757g (1)] : t € (to, b])

max

max
te(to,b]

1 L — P
te(to,b] || T () ( p ) gt )Tl_P

d

}

1 —a+

}

1-a+p o —u d
Hg”cw pr (@) (tp - (Tp - tg) P ,[1_:[;)
1 N a-u T(@)T(1 - p)
lelle,, |ee " " =8 T
P (0-B)
bl e ()

5460
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a—1 dT
f(fp ) gy

(iii) For any g € C[to, b], one has

1 ttp—’l'p a-1
XF(a)f( ) ot

7l = mox < i ol
= F(a) ”g”Cl :;+P1 (t)|
N B Pt
T T F(a+1) (-4 '”9“6

IA

1 (-t
() ol

O

Lemma 1.4. [29]
(i) Let a € (0,1],8 > 0, 0 < ty, p > 0. Then we have

e [(T )y TE+D (1 —15)"
(jfmp) [(T) ](t) T T(a+p+1) ( p ) ®)

In particular

to —

a P — P al d 1 a
( f0+p1) ®) = F(a)f : T:P T(oc+1)( p O).

(i) If f=0and 0 < a <1, then

wo((P—t0Y) . T@E+1) (#-t)"
Dtm {[ o (t) - F(ﬁ—a+1) 0 . (9)

In particular

and fork =0,1, .., [a] + 1, we have

4P a—k
(D“*’(Tppto] )(£) = 0. (10)

fo+

Lemma 1.5. Let u,a € (0,1), p > 0and g € C,, [to, b].
Ifu< athenjg;pge C[to, b] and

T g (o) = lim 7 Pg(t) = (11)

0+

Proof. Let g € C,p [to, ] then( ) 7(H) € Clto, b] and

te— )"
[ P ]g(t)

<M, telty,b], M>D0.
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Therefore, by Remark 1.2 we have

1 (- \* dt
F(a)f( ) gh)ﬁ

a-1
- rw () e )

l—atu e d
” to+-’7|| pr(a) f(tp Tp)al(p_tg)yffl_:[p

p_ 4P\ H
< Mj{;f[(—T 5 t"] ](t).

By using Lemma 1.4-i we have

I(1-p) (f" - fﬁ]w

g(®)

t0+

O T [
Since

hm(tp—tp) =0, u<a,

t—ty

we obtain the resultin (11). O

Lemma 1.6. [29]
(i) The fractional integral operators (j ) satisfy the semigroup property

(Tt g) @ = (T3 P9)®), p>0,a> 0,4 >0. (12)

0+

(ii) The fractional derivative operators (Z)i)’f ) satisfy the semigroup property

(D4 T8 9) (0 = (T3, 9) ), (DT 9) &)= g ). (13)

fo+

(iii) Let a € (0,1), if g (t) € Cpp [to, b ]andj1 apgeC o Lto, b]. Then, we have

(T2 (DiPg)) () = 9. t) -

to+

(2. ""9) (ko) [tP —

a-1
o - ] , forall t € (t, b]. (14)

I' (o)

(iv) If g (t) € C|to, b] and j'tlo:a’pg € Cl[to, b], then the relation (14) holds for any t € [to,b] .

Lemma 1.7. [29] Let n € IN. The space C}, , , [to, b] consists of those and only those functions g which are represented
in the form

1 4 Tp—tpnl n-1 ™ —t k
— 0
gm‘m—m!{ p] 90 5 +;q[ ]

where ¢ € Cto, bl and ¢y (k=0,1,...,n — 1) are arbitrary constants, such that

!7(0)

¢m=03wn»r~it——

o (k=0,1,,u-1).
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Let us recall the definition of the Mittag—Leffler function.
Definition 1.8. [1-3] Let @ > 0,8 € R and z € C. The Mittag-Leffler function is defined by the series

Eup (@) = Z F(ﬁ Ty @ =Eu @, B =exp ). (15)

When a, B > 0 the series is convergent.
Next, we give the relations connecting the function definied by (15) and the generalized integrals.

Lemma1.9. (i) Let A€ R, a,f > 0and u > 0.

oo l(T - t0Y 0 — 1\ T -0\
N |\ Eupi|A P _ (= ; Eupras1|A P . (16)

(ii) For 21, u>0,A € R, we have

o l(7 - t0Y 0 — 12\ T -0\
.z)t0+ _ p E‘u,ﬁ+1 A p _ (t) = p E‘Ll,ﬁ—(¥+1 A p . (].7)

In particular, when p = 0, we have

ap| -t =t e — "
e 5] Joo 5 oo (5]

Proof. (i) For a, B, 1,v > 0, A € R by the virtue of (5) and (15), we have

a [ Tf’—tg'g ’cf’—tp H Tf’—tg kuf
j‘“p( b ]E”’”(A( b ])l(t) [ZT(V”W)( P ] Y

Now, interchanging the order of integration and summation and then evaluating the inner integral by
means of Beta- function, one gets

P — P ﬁ P — p\H
Tl [(Tto) Eyv (/\( Pto) )]

Z /\k F(ﬁ + k[,l + 1) (tﬂ tp )ky+ﬁ+a
SOT(w+ku)T(B+ku+a+1) '

In particular, when v = § + 1, we have

T [(Tpptg )ﬁ Eupr1 (A (W : ) )] () = Xilo TG+ k2k+ T (tP ¢ )k#+ﬁ+a

tf’ftg p+a - Ak tpftg ku
-(5) 2 ()
P FB+ku+a+1)\ °

p_4P ﬁ'HX p_tP 15
:(t pto) E’u,a+ﬁ+1 (A(T pto) )
(ii) For a, B, u,v > 0, A € R, using Lemma 1.4-ii, we have the following
a,p ’L’P*t’) ,B Tpf,d a,p Tp,f/’ k.u"'ﬁ
Z)f0+ [( P 0) E#’V (/\ (T Z‘k 0 r(v+kp) z)1104- P ;

Ak F(ﬁ+ky+1) -t k+p-a
Zkol’(v+ky)l’(ﬁ+k,u oz+1)( ) '
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In particular, when v = § + 1, we have

ap |-t B -t H Ak -t ¢ ky+p-a
D, [( P ) Euper (A(T) = Lico T(B+ku—a+1)

(tp:g)ﬁ azk 0 F(ﬁ+k2k a+1)(

-t \P=4 o2\
() B (1(52))

1016 )kP

O

Lemma 1.10. The solution to the Cauchy problem
DYPx(t) = -Ax(t), D) Px(t) =1, to >0, n€R, (19)

with0 < a < 1and A € R has the form

-0\ AN
oo ] e 2] -

Proof. The proof is similar to the proof of Theorem 4.1in [1]. O

The asymptotical expansion of the Mittag-Leffler function with two parameters was given below.

Lemma 1.11. [2]Let0 < a < 2, B, v be arbitrary real numbers such that '+ < v < min (1, na), then for an arbitrary
integer m > 1 the following expansion holds

1 6.1 v zF
P a —(m+1)
Enp@ =27 ¢ ;F(ﬁ—k ) O(Iz1""V), Izl — oo, <v,
and
E +0 —(m+1) , v< <.
ap(2) = Z F(ﬁ k) (|Z| ) 2l — o0, v <argz| <7
Example 1.12. The asymptotic expansion of the Mittag-Leffler function
P\ Mi_l P 1-a Iy -t
Epo|M o1 |= 01 e ( ’ ) t—> +oo (21)
p a p

where M is a positive constant.

Definition 1.13. Let G C R, [to,b] C R, g : [to,b] X G — R be a function, g is said to satisfy Lipschitzian
condition with respect to the second variable, if for all t € (to, b] and for any x, ¥ € G one has

|lgt,x)—g(t, )| <Llx—x, L>0. (22)
with some constant L > 0 independent of x, X,t and g be bounded on G.

To conclude this section, we give the classical form of the standard Gronwall inequality described as
follows [16, 1919].
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Theorem 1.14. Let x(f),a(t) be nonnegative functions and b (t) be nonnegative and nondecreasing function for

te [tOI T) 7
(i) For any t € [ty, T]

t
x(t) < a(t)+f b(t)x(71)dr, (23)

to

where b (t) = 0, then

x(t) Sa(t)+f b(t)a(t)exp (f b(s)a(s)ds)dr. (24)
ty T

In particular, if a (t) is not decreasing, then

t
x(f) <a(t)exp (f b(1) d"[), telty,T). (25)
to

(ii) The result remains valid if < is replaced by > in both (23) and (24).
(iii) Both (i) and (ii) remain valid szt; is replaced by ftT and th by ftT throughout.

The generalized Gronwall inequality with Hadamard derivative and the Riemann-Liouville fractional
derivative were presented in [17, 18] respectively. Many authors have established several other very useful
Gronwall-like integral inequalities.

2. A generalized Gronwall inequality

In this section, we establish a new version of Gronwall type integral inequality, which generalizes
some previous ones.

Theorem 2.1. Let o > 0, x (), a (t) be nonnegative functions and b (t) be nonnegative and nondecreasing function
forte[ty, T), T >0, b(t) <M, where M is a constant. If

t a-1
x(t)Sa(t)+b(t)f(tp;Tp) x(T)T"f—fp, 26)
to
then
' (b(OT (@) [t =\ dt
x(i’)ﬁﬁl(i’)‘i“ft;J ; F(na) ( 0 ) El(’[) Tl—_p, tE[to,T). (27)
Proof. Define
t a-1
B () = b(t)f (tp ;Tp) (1) %, (28)

and the sequence B (k € N) as
B' =B, B =BB"! (ke N - (1}).
It follows that

x(t) <a(t)+Bx(b),
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which implies that
-1
x(f) < Z ka () + B"x (f) .
k=1
Now we claim that
t n na—1
GO ()" [t =P dt
n -
B'x(t) < R o) ( P ) x (1) ol (29)

and B"x (t) — 0asn —> oo for t € [£y, T).
It is easy to see that (29) is valid for n = 1. Assume that it is true for n = k, that is,

t k ka-1
k (b ()" (P -7 dt
If n = k + 1, then the induction implies
B*lx () = BBfx(t) (31)
@)™ ot | T@ a- dt | ds
S f (T [ ft ) (s" — Y T x (1) prd bewrt (32)

Now interchanging the order of integration and utilizing the following particular case of the Fubini’s
theorem

Itdsfsf(S,T)dT=jt‘thﬁtf(S,T)dS

and assuming that one of these integrals is absolutely convergent, by Remark 1.2, we have

k+1 k
B < G f f s (7= o = et () 45 33)
( (t)F(a))k+1 0 — P (k+1)a—1 d’l’
fta T((k+1a) ( o ) (0 55 (34)

Therefore, equation (29) is obtained. Furthermore , since the denominator goes to infinity faster than
the numerator (29), one can conclude that

" CMT ()" (0 =2\ d
Bx(t)sjt; o) ( pT) x(T)Tl—:CF),—>0asn—>mforte[to,T). (35)

To complete the proof, we let 1 — oo in

[y

n— n-1
x() <Y Ba@@)+B'x@t)=a(t)+ Z Ba(t) + B"x (t),
0

o~
Il

to obtain
x() < a(t)+ZBka
ka-1
< a<t>+Z (Mr,fffi) (tp;fp) a(r) 4%
' & (MT () (tP — P\ dt
< a(t) +jt; L F(ka) ( 0 ) ll(T) ﬁ
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O

Remark 2.2.
If we take p — 0" in Theorem 2.1, then the Gronwall’s inequality for Hadamard integrals in [18] is recovered.
Ifwe take p = 1 in Theorem 2.1, then the Gronwall’s inequality for Riemann-Liouville integrals in [17] is obtained.

Corollary 2.3. Let a > 0, x (t) , a (t) be non-negative functions and b (t) = b > 0. If

t a-1
x(t)Sa(t)+bjt;(tp;Tp) x(r)j—fp,

then

' (BT (@) [t — e\ d
9c(if)§a(t)+jt;”:1 ( pT) a(T)Tl—:),fG[fo,T)-

Corollary 2.4. Under the hypotheses of Theorem 2.1, assume further that a(t) is a nondecreasing function for
te[ty, T). Then

0 — 2\
x(t)Sa(t)Ea(b(t)l"(a)( ; 0] ) tety,T).

Proof. From (26) and the assumption that a (t) is a nondecreasing function for t € [ty, T), we may write

[ ) ¢ n ) na-1
x() <a(t) 1+Zf (GO () (t’ Tp) dr } telt, T),
| n=1 Yt

I' (na) P Tl-p

or

, te [tOIT)

x(t)<a®|1+ Y Tr (GOT@)")®)
| n=1

Then, with the help of Lemma 1.4 it follows that

x(®) < a() 1+Z((b(f)l"(a))”)j[f)“’p(1)(t)},f€[to,T)
| n=1

na
tP—t
p

a®[1+) (OT@)) 7——
n=1

I (na+1)
i (%)na
= a@) Z ((b®T (a)") ﬁ
n=0

_ t— )"
a(t)Ea(b(t)I’(a)( 5 0] ]

The proof is complete. [J

Example 2.5. Ifa(t) =C, g(t) = % , then the inequality

M (e -\ dr
x(t)sC+r(a)jt;( 5 ) X(T)ﬁ
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implies
e — "
x(t)sCEa(M( 0] ]
P
,_p\a—1
Example 2.6. Ifa(t) = % (%) ,b() = % , then the inequality
P a-1
C (ﬁ’;to t a-1
p M tP — 1P dt
< e
0 —ro— i [ (5] 0 0
implies
-0\ -0\
x(t)SC( 0] EM(M( 0)] (37)
p p

Proof. Using Theorem 2.1 and Remark 1.2 leads to

ya—1 "
ﬁ+ftiM(fT)lc(T) .

x(t) <

T'(a) oy o= I (na) I'(@) =l-r
A
C(TO) = CM" A A
¢ “ra— Lo | (5 (5
T'() =T (@I (na) Jy, \ p p (s

C ﬂ ol o p\(nt+la-1
) )Ly cmr (0t
- I'(®) = Ir'n+a)yl p

s CM" (tp _ tg ](n+1)a—1
HT(a+a)| p

-0\ (=
= C Ego|[Mp~™ | —2] |.
p p

The proof is complete. [

3. Dependence of the solution on parameters for differential equations with generalized fractional
derivatives

In this section we will use the Gronwall inequality mentioned in the previous section in order to
investigate the dependence of the solution of a certain fractional differential equation with generalized
derivatives, on the order and the initial conditions.

Consider the following initial value problem within generalized fractional derivatives:

DyPx(t) = f(t,x (1), (38)
and

T % () |iety, =1, (39)

fo+
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where0 <2 <1, 0<t<T <ooand f:][0,00) xR — Risa continuous function with respect to all its
arguments. The Volterra integral equations corresponding to the problem (38)-(39) is as follows:

t t“"‘l
-1
x(t) = n( r() r(a)f(tp_ ) fEr@) 45, 0<h <t <o, (40)

We prove the equivalence of the Cauchy problem (38)-(39) and the Volterra equation (40) in the sense
that, if x € C{__ o [to, ] satisfies one of them, then it also satisfies the other.

Theorem 3.1. Let 1 > a > 0, (0 <ty <b < +o0). Let G be an open set in R and let f : Jtg,b] X G — R be a
function such that f (t,x) € Cy, [to, b] for any x € C,,p [to,b] with1 —a < u < 1.ifx € C{__ [to, ] then x satisfies
the relations (38) and (39) if and only if, x satisfies equation (40) .

1-a,p

Proof. Let0 <a <1landx e C§

(i) We prove the necessity.

By hypothesis, x € C{_ wp [to, b] satisfies the relations (38) and (39). Since f (t,x) € Ci—qa, [to,b] and it

follows from (38) that Z)a Px(t) = yj' 1oy (t) € Ci-aplto,b], and hence, usig the definition of the space
CYap [fo, b] and applying Lernrna 1.3 and Lemma 1. 7, we have

[tOI b] .

1-a,p

(T*"x) (1) € Clto, b1,

since
1-a,p
(T “"x) B € Chy_,, Ito, b1
By using Lemma 1.6-(iii), we obtain

tP

a-1
0
W(—p ] , te (t, b]. (41)

(720D

0+ t[)+

Px) () = x(t) -

In view of Lemma 1.3, j P " f (t,x) belongs to the space Cy—q,p [to, ] . Applying the operator (j ) to the

both sides of (38) and using (41) (39), we deduce that there exists an unique solution x € Cy_,, [to,b] C
C,p [to, b] for u > a of the equation (40).

,p

(ii.1) Next, we prove the sufficiency. Let x € C‘l‘_ap [to, b] satisfies the equation (40) then Z)
Cl—a,p [tOr b] .

Applying the operator (Z)Zf ) to both sides of (40), taking into account (6), (39), Lemma 1.6 and 7, we
obtain

x(t) €

p
tP—t,

a-1
—_0 -1
D | () - n% () = ,m[r(a) f (tp_ ) flax@) 5 ](t)

because

D (=) ) = 0and (D) () = (D) (T F) 0 = £ 6, x @),
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(ii.2) Now,to show that x satisfies the initial relations (39), we apply the operators (j ) both sides of (40)
to get

et
Tp,x)) = I, n( r(z r(a)f( ) fax@) 2% o
et
= g n% O+ T, (T f (,x (1) (1)
et
= 9, n% )+ (T, f (1, x () (). 42)

Using the continuity of f and Lemma 1.4 we have 7, tlo f f(t,x) € C[ty, b]. Now taking the limit as t — to, of
both sides of (42), we obtain 7 tlo :a’p x (fo) = n since by using Lemma 1.5, we have 7, tlo f f(T,x(1)) (to) = 0.
Thus, the sufficiency is proved and this completes the proof of theorem. [

Now let us consider the following Cauchy problem

D Pyty=fty®), a>0,e>0, (43)

t0+

and

Dy Y () |, = 7. (44)
Theorem 3.2. Leta >0, € > Osuchthat1 > a > a— € > 0. Let the function f be continuous and fulfill a Lipschitz
condition (22). For 0 < t < h < T assume that x and y are the solutions of the initial value problems (38)-(39) and
(43)-(44) respectively. Then, for 0 < t < h the following holds:

o fn(oc—e)—l
! LT (@ —¢) (t ) dt
ool e+ [ Y[ | e

where
_ (tp_tg)uz—a 1 1 (t"—tg)aﬂ H’ tp)
ﬂ(t) = [ po¢(a—¢) F(OZ _ 8) - F(a) + a-el@ “r(a+1) (45)
ﬁpl—(ms) 0 a—e-1 npte P a—1
+‘ e (tP - to) - (tp -#)7,
and

Al = max |f &, x )]

Proof. The solutions of the initial value problem (38)-(39) and (43)-(44) are given by

-\ ~ 10 qp\o! dr
0= >(T] i [55) s 0sse 0
to



Y. Adjabi et al. / Filomat 31:17 (2017), 5457-5473
and

J -t 1 ~ (10— o\ it
vy = Tla-¢)| p ] +T(0¢—e)f( o ) f(Try(T))Tl__P,OStSoo,

to

respectively. It follows that

-0 < | () - )
o @y o - TS ;WﬂszNﬂ
+ F(r“(;)é T P (y (@) () - r(r‘)‘( ) jfgj*"’ f(,x (1)) (t)'
[P x @) 0- T3 x ) )
<a(t)+ er(o(‘a) T P ly@-x@|®).
Therefore,
|y(t)—x(t)|§a(t)+LF(a JEEr

T (@) t0+ ‘y (1) - x(T)|

where 4 (t) in given in (45).
Now using Theorem 2.1 yields

o n(a—e)-1
Iy () —x(t)|<a(t)+fZ(Lr(a_é)) ( ) dt

to =1 r(a) F 71(01—5)) Q(T) Tl—p'

O

Corollary 3.3. Under the hypothesis of Theorem 3.2, if a« > 0, € = 0, then

tp a-1 tp_tga
t_ t EO[U(L 7
ly®-x)| < |i- n|( ; ] ([ ; ]]

for0 <ty <t<h.

Proof. If € = 0, then

(%5 (-

0= ""Tw

5471

(47)

(48)
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By Theorem 3.2 and Remark 1.2, we obtain

Ln I-na (4p _ zpyne—1
y©-x0| < a<t>+f T i

I' (na) Ti=p

(N_ na na— a-1 d
< al)+ Tll(ar)])ZF(na)fl (17 = )" ! (2f - 1) 111_;

(ﬁ - T]) " T (na) T (D() A—na—a na+a+1
< al®)+ I'(a) Z I'(na) T (na + a) 1 (tp a tg)
a-1
pr (v —t)) (- LD DT@W e P
= @ " Tw ZI’(na+a) e (e - 1)

= (e -g) Z“Pﬂ*(ﬂ’—ﬂ))

I'(na + a)

-\ -0\
( P ) (7 T])Ea,a(L( 5 ]}

forO<ty<t<h 0O

4. Conclusion

In this article, we have established the Gronwall inequality in the frame work of the generalized fractional
integrals that unify the Riemann-Liouville and Hadamard fractional integrals. Using this inequality we
presented the dependence on the order and initial conditions of solutions of differential equations involving
the generalized fractional derivatives. It turned out that when p — 1 we obtain the Gronwall inequality
and the consequent results for Riemann-Liouville fractional operators and p — 0, the Gronwall inequality
for Hadamrad fractional integrals is obtained. Initial value problems in the frame of generalized fractional
operators in certain new weighted spaces of functions have been investigated as well.
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