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Conservative Matrices in Summability of Series

Dansheng Yu?

?Department of Mathematics, Hangzhou Normal University, Hangzhou Zhejiang 310036 China.

Abstract. Das [3] introduced the class of absolute kth-power conservative matrices for k > 1, denoted by
B (Ax). In the present paper, we generalize the class B (A) to a general one named B (&, B; Vn, Ou; @) and
give some sufficient conditions for a matrix belongs to the new class B (., Bu; ¥, Ou; @) when ¢ is convex. As
applications of the general result, we investigate the conservatives of Cesaro matrices and Riesz matrices.

1. Introduction

Let {s,} be the partial sums of the infinite series )., 2, The Cesdro means of order a of the series ), 4,
are defined by

n

1

a . _ a-1,, _

Oy = —— E An_js], n=0,1,---,
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Let (C, &) be the Cesédro matrix of order a, that is, (C, @) be the lower triangular matrix (Af,‘j /Aﬁ) )
Flett [4] introduced the concept of absolute summability of order k. A series )., ,a, is summable
ICal, k=1, a>-1,if

(e8]

k
k-1 .« a
E n |Gn71 _Gn| < 00.

n=0

In 1970, Das [3] defined the so-called absolutely kth-power conservative matrix as follows: A matrix
T := (tn ]-) to be absolutely kth-power conservative for k > 1, denoted by T € B (Ay), that is, if {s,} satisfies

)

k-1 k
Z sy = syl < oo,

n=1
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then

(o)

_ k
an ! |ty — taoal” < oo,

n=1

where

n
b= bys).
=0

Flett [4] established the following inclusion theorem for |C, al;. If the series Y., 4, is summable |C, al;,
it is also summable for |C, a|, foreachr >k >1, a > -1, f > a + % - % Especially, a series )., 4, which is
|IC, aly summability is also |C, B|, summability fork > 1, > a > -1.

If one sets a = 0, from the above inclusion result, we have

Theorem A. Let k > 1, then (C, @) € B (Ay) for a > —1.

Many authors have devoted themselves to generalize the results of Flett ([1], [2], [5], [6]). For example,
the most recent works on this topic can be found in [5] and [6].

We first generalize the concept of the absolutely kth-power conservative to the following

Definition 1.1. Let ¢ (x) be a nonnegative function defined on [0,00), {a,}, {Bu}, {yn} and {6,} be nonnegative
sequences. We say that a matrix

T 2= (tuj) € B (ctu, s Y, O3 P),

(e8]

Z an(P (ﬁn |5n - Sn—1|) < o,

n=1

implies that

N 70 Gt~ tyal) < 0.

n=1

Ifay=y,=n"t, Bu=0,=n, p(x)= x*, k> 1, then B (an, Bu; Vn, On; @) reduces to B (Ay) .

We will give a general result (Theorem 2.1) on the sufficient conditions for a matrix belongs to
B(au, Bu; Vn, 0n; ) when @ is convex. As applications of the general result, we investigate the conser-
vatives of Cesdro matrices and Riesz matrices (see Theorem 3.3-Theorem 3.5). Among them, Theorem 3.3
is an essential generalization of Theorem A in the case when o > 0 (see remark after Theorem 3.3).

2. Main Result

LetT := (tn j) be a lower triangular matrix, A = {A,} be a positive sequence. Set

? —— { Z7zi tl’l] - Z;'l:_il tn—l,j/ 0 < l <n- 1/
ni .

nnr 1= n/

an (A) = Z /\i IT’”| .
i=0
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Theorem 2.1. Let ¢ (x) be a nonnegative convex function defined on [0, o), T := (tnj) be a lower triangular matrix
satisfying Z?:o tnj = 1, and let {a,} be a nonnegative sequence. If A = {A,} is a positive sequence such that V

AL i ;[ (fj (?\‘1))_1 =0(A,), n>1, "
then
T B(An A, (T, (1) o). @

Proof. Since (set s_; := 0)

ty = Ztn/sj itn] {i( _Si—l)]

1=

0
= Z(SI_SI 1)[ tn]]

=

then

n-1 n-1
bp = tp1 = Z (51 = Si-1 [Z tn]] Z (Si - Si—l) [Z tn—l,j]
i=0 j=i

= Z?m (si—si-1) = Z?m (si —si-1),
i=0 Py

where in the last inequality, we used the fact Eo = 0, which follows from Z?:o tsj = 1 and the definition of
‘t.0. Therefore,

(’1?” ()\71)) [ty =t < ZA 1|~m‘(/\ Is;i = si-1l) -

Since

) ZO A il =1,

by the well-known Jensen’s inequality and (1), we get
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DDenote by A1 = {A;1}.
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which implies (2). O

3. Applications of The Main Result

Lemma 3.1 ([7]). (1)AY is positive for « > —1, increasing (as a function of n) for « > 0 and decreasing for =1 < a < 0;
and AY =1 for all n.

(i) A = -

Lemma 3.2. Forany ¢ > 0, we have

Aol

Y =06, az0, ©)
and

= A e

Y, R =06, a<o. 4)

Proof. When ¢ > 0, a >0, by Lemma 3.1, we get

o) Aa—1 1 2i ) o) Aa—1
n—i __ a— n—i
Z war = OW | ZA'H‘ * Z e AL
n=i 1 n=i n=2i+1
1 v e, v (=)
= O(l) WZA; + Z ngT
r n=0 n=2i+1
=om|i+ Y n—l—f]
n=2i+1
=0((™),

which gives (3). When ¢ > 0, @ <0, by Lemma 3.1, we get

2i i
a=1| _ a-1 _ pa-1
E AN E A Aj
n=0

n=i+1

2i

Y Jast| =

n=i+1

=lar -4 =0

and

nEAY - ne+a - n - ! ’
n=2i+1 n n=2i+1 n=2i+1
Therefore, we also have (4). O
A non-negative sequence {a,} is said to be almost decreasing, if there is a positive constant K such that

a, > Kay,

holds for all n < m, and it is said to be quasi-f—power increasing with some real number f, if {nﬁan} is almost
decreasing.
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Theorem 3.3. Let ¢ (x) be a nonnegative convex function defined on [0, c0) .
(A) If (o} is a nonnegative sequence such that {a,} is quasi-e—power decreasing for some € > 0. Then

(Ca) e B(ay,m;a,m;0), a>0.

(B)If k>1,6<3,y€R,then

(Ca)eB (nék‘l log” n,n;n* " log” n,n; (P), a>0. (5)
Proof. Let
Al
n—j .
thi = ,1=0,1,---,n, a>-1.
nj Az J

Then, for0<i<n-1,

7 1y -1 1y -1
b= g DAV - e LA
n n-1 i

j= j=i
1 n—i 1 n—1-i
—_ a—1 _ a—1
T AY ZAf A Z Ai
" j=0 n=1 =0
Al Al .Aa—l
— n—i _ " n-1-i — i n—i (6)
A AT T n Ay
and
_ Aol 1
tyn = Xa = 7)
n n

Taking A, =n, n > 1, by (6) and (7), we have

. n n a-1
T, (/\—1) = Z AT ] = nil”; ZA‘;:} - Ij;\f; ~ % nx1 (8)
i=1 n i !
By (8) and (3), we have
oo 00 q_—r}
A Z"‘J [£ (ff (A_l))_l = Z] j ]Aﬁ
J=n j=n j
oo Aol
=0 ]:Zn jfajﬁ]
x A%1
=0O|nfay, ; #]
= O (an)

Therefore, applying Theorem 2.1, we obtain (A).

Leta, = n®*'log"n, k>1, 6 < 1,y € R. Since 6k — 1 < 0, there is an ¢ > 0 such that ¢ + 6k — 1 < 0, hence
{n*a,} is almost decreasing. Therefore, (B) follows from (A). O
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Remark. Theorem A is (5) in the special case when 6 =y = 0 and ¢ (x) = xk, k > 1.

Theorem 3.4. Let @ (x) be a nonnegative convex function defined on [0, 00) .
(A) If {a,} is a nonnegative sequence such that {n“ay} is quasi-e—power decreasing for some € > 0. Then

(C a)eB(ay,man,ne), —1<a<0.

(B)If k>1, 6 <12, y €R, then
(C,a) €eB (nbk‘l log” n,n; nok1 log’ n, n““;(p), -1<a<0. 9)

Proof. When -1 < @ <0, we have

1 n 1 n—1 a—1
T, (A7) = Arl| = A+ =
(A7) nA? ; =il T Aa ; i | T A

1 |y 1

— A“’,l _Aafl _Aafl +
nAg ; nei 0 |7 nAg

1 0 w1

:nAﬁ |A3_Ag _Ag |+1’lAf,‘
1

> > 7(1+0z).
>C- 75 2 Cn (10)

By (6), (4), (10) and noting that {n“«a,} is quasi-e—power decreasing with ¢ > 0, we have

o _ _ o A2l
Yl (T () =0 Y ey | e
j=n j=n J j
) Of_—nl
-OWY e
x A2
= O0|n**q, ; ]L];;
=0(an),

which together with Theorem A yields to (A).
(B) can be deduced from (A) directly. [

Theorem 3.5. Let ¢ (x) be a nonnegative convex function defined on [0, ), {a,} be a nonnegative sequence and
A = {A,} be a positive sequence. Let T = (tn ]-) be a lower triangular matrix with the entries having the form I’j—fl, where
pj>0for0<j<nand P, =Y\ op; If

nA;'Pya = 0| Y A;lpil], (11)
i=1
and
= aj/\j (an/\n)
- =0 , 12
Z jPj-1 Py (12
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then
AP
Te B(an,/\n;an, #;(p).

Proof. First, we have

=Pn_PPn1(P"1 Pi_1)
_ pn i-1 . B
=pp s lsisn-l, (13)
and
Fio =0, Fun = 2. (14)
By (11), we have
~ AP
-1 _ -1 ntn
(T. (2 ) [P b ZA Piy (—npn ) (15)
By (12)-(14), we have
-1 - s T (1-1 -1 _ _ = Ck]'A]'
A ;a] £l (T; (A7) =0|4; P,H; ij_l]
=0O(an). (16)

We obtain Theorem 3.5 by combining Theorem 2.1 with (15) and (16). O

Now, we give a special application of Theorem 3.5.
Let

p=1p,=n",n=la>-1,

An=n,n>1,
and

1+
a, =01 n>1, k>0, 6<—2

Then

MRS Y

IZ

+1 o -1
- nAn Pn—ll
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and (note that 6k —2 —a < —-1)
o i _ . Sk—2—a
]Z T 0(1);1
(n—ék—l—a)
Ay
(5:5)

Therefore, Theorem 3.5 yields to

O
O

TeB (nék‘l,n; nék‘l,n; go).

In particular, taking 6 =0,e =1,k >1, wehave T € B(Ax).
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