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Abstract. A vertex triple (1, v, w) with v adjacent to both u and w is called a 2-geodesic if u # w and u, w
are not adjacent. A graph I'is said to be 2-geodesic-transitive if its automorphism group is transitive on both
arcs and 2-geodesics. In this paper, a complete classification of 2-geodesic-transitive graphs is given which
are neighbor cubic or neighbor tetravalent.

1. Introduction

In this paper, all graphs are finite, simple, connected and undirected. For a graph I', we use V(I') and
Aut(I') to denote its vertex set and automorphism group, respectively. For the group theoretic terminology
not defined here we refer the reader to [2, 8, 22]. In a non-complete graph T, a vertex triple (u, v, w) with v
adjacent to both u and w is called a 2-geodesic if u # w and in addition u, w are not adjacent. An arc is an
ordered pair of adjacent vertices. The graph I is said to be 2-geodesic-transitive if its automorphism group
Aut(I') is transitive on both arcs and 2-geodesics. The family of 2-geodesic-transitive graphs is closely
related to the well-known family of 2-arc-transitive graphs. A vertex triple (1, v, w) with v adjacent to both
u and w is called a 2-arc if u # w. The graph I is said to be 2-arc-transitive if its automorphism group
Aut(T) is transitive on both arcs and 2-arcs. Clearly, each 2-geodesic is a 2-arc, but some 2-arcs may not be
2-geodesics. If I has girth 3 (length of the shortest cycle is 3), then the 2-arcs contained in 3-cycles are not
2-geodesics. For instance, the complete multipartite graph Kj(3] is 2-geodesic-transitive neighbor cubic but
not 2-arc-transitive. Thus the family of non-complete 2-arc-transitive graphs is properly contained in the
family of 2-geodesic-transitive graphs.

The local structure of the family of 2-geodesic-transitive graphs was determined in [4]. In [5], Devillers,
Li, Praeger and the author classified 2-geodesic-transitive graphs of valency 4. Later, in [6], a reduction
theorem for the family of normal 2-geodesic-transitive Cayley graphs was produced and those which
are complete multipartite graphs were also classified. The family of 2-geodesic-transitive but not 2-arc-
transitive graphs with prime valency was precisely determined in [7].
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For a subset U of the vertex set of I', we denote by [U] the subgraph of I induced by U, and [I'(u)] is the
subgraph induced by the neighborhood of the vertex u. Devillers, Li, Praeger and the author in [4, Theorem
1] proved that if I' is a 2-geodesic-transitive graph of valency at least 2, then for each vertex u, either

(1) [T(n)] is connected of diameter 2; or

(2) [T(u)] = mK, for some integers m > 2,r > 1.

Further, Theorem 1.4 of [4] shows that there is a bijection between the family of graphs in case (2) and a
certain family of partial linear spaces. In particular, if » = 1, then I' is 2-arc-transitive. The first remarkable
result about 2-arc-transitive graphs comes from Tutte [19, 20], and this family of graphs has been studied
extensively, see [1, 9, 10, 12, 15-18, 21]. The graphs in case (1) were investigated in [14]; and in [13], the
author completely determined such graphs with valency twice a prime. In this paper, we continue the
investigation of the graphs in case (1).

A connected graph is said to be neighbor cubic or neighbor tetravalent if its local subgraph is connected
of valency 3 or 4, respectively. For a graph T, its complement T is the graph with vertex set V(I'), and two
vertices are adjacent if and only if they are not adjacent in T".

Let I be a 2-geodesic-transitive graph. Let u € V(I'). Suppose that [I'(1)] is connected of valency 2. Then
I is either the octahedron or the icosahedron, see [5, Corollary 1.4]. Thus the next natural problem is to
classify the family of 2-geodesic-transitive graphs whose neighbor subgraph is connected of valency 3. Our
first theorem precisely determines such graphs.

Theorem 1.1. Let I be a 2-geodesic-transitive neighbor cubic graph. Then I is one of the following graphs: Kz,
J(5,2), complement of the triangular graph T(7), the Conway-Smith graph, or the Hall graph.

We denote by K, the complete multipartite graph with m parts, and each part has b vertices where
m > 3,b>2 Let(Q =[1,n] wheren > 3, and let 1 < k < []] where [5] is the integer part of 5. Then the
Johnson graph J(n, k) is the graph whose vertex set is the set of all k-subsets of Q, and two k-subsets u and v
are adjacent if and only if [u N o] =k - 1.

The second theorem determines the family of 2-geodesic-transitive graphs whose neighbor subgraph is
connected of valency 4.

Theorem 1.2. Let I be a 2-geodesic-transitive neighbor tetravalent graph. Then T is one of the following three graphs:
J(6,2), J(6,3) or Kyz)-

2. Proof of Theorem 1.1

The first lemma determines the family of 2-geodesic-transitive neighbor cubic graphs whose local
subgraph is symmetric.

Lemma 2.1. Let I' be a 2-geodesic-transitive neighbor cubic graph. Suppose that [I'(u)] is arc-transitive for some
u € V(I'). Then T is one of the following graphs: Kas), complement of the triangular graph T(7), the Conway-Smith
graph, or the Hall graph.

Proof. Let (u,v) be an arc and A = Aut(I'). Since X := [['(1)] is not an empty graph, I" has girth 3. Further,
the graph I is 2-geodesic-transitive, so it follows from Theorem 1.1 (1) of [4] that X has diameter 2 and the
arc stabilizer A, is transitive on X,(v). Since X is arc-transitive, L is distance-transitive, and it is listed in [3,
p-221-223]. Thus by inspecting the candidates, X is either the complete bipartite graph K33 or the Petersen
graph Os. If X is K3 3, then I is K3j3). If X is O3, then by [11, Theorem 1.1], T is the Conway-Smith graph, the
Hall graph, or the complement of the triangular graph T(7). O

Let u,v € V(I'). Then the distance between u,v in I' is denoted by dr(u,v). A graph I is said to be 2-
distance-transitive if, for i = 1,2 and for any two vertex pairs (11, v1) and (up, v2) withdr(u1, v1) = dr(uz, v2) =1,
there exists g € Aut(I') such that (11,v1)7 = (up, v2). By the definition, every 2-geodesic-transitive graph is
2-distance-transitive.
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Lemma 2.2. Let T be a 2-distance-transitive graph. If [[(u)] = C, for some u € V(T) and n > 5, then T is either
J(5,2) or the icosahedron.

Proof. Let ¥ := [[(u)]. Suppose & = C, where n > 5. If T is arc-transitive, then n = 5 and T = Cs. By [5,
Corollary 1.4], I is the icosahedron. In the remaining of this proof, we assume that X is not arc-transitive.
Hence n > 6 and I' has diameter 2.

Let v € V(Z). Then for any v' € X,(v), |Z(v) N Z(v')| = n —4. Since u € I'(v) N I'(v'), it follows that
n—3 < [I'(w)NIT(@)|. Since |Xx(v) N E(v')| = 1, it follows that [T(v) NT'(v")| < n—1,s0 T @)NT (@) =n-3,n—-2
orn—1.

As Y. = C,, the valency of X is n — 3, so [I'(u) N I'(v)| = n — 3. Thus [I'2(1) NT'(v)| = 2, so [I'2(v) NT'(u)| = 2,
as I' is arc-transitive. Hence there are 2n edges between I'(v) and I';(v). By the assumption I' is 2-distance-
transitive, the value |I'(v) N I'(v’)| divides 2n. Since |I'(v) N T'(v')| < n, it follows that 2|T'(v) N T'(v')] < 2n,
so 3l (w) NT(@)| < 2n. U T@)NT@) =n—-3,thenn =6o0r9. If T@)NT() =n-2,thenn =6. If
I'(w) NI'(v')| = n -1, then n < 3. This is impossible because n > 5. By [3, p.224], n # 9. Thus n = 6.

SetI'(u) = {v1 = v,v2,v3,04,05,06}. Let (v1, 02, v3) and (v4, U5, V6) be two triangles and let (v1, vs), (v2, v5) and
(v3,v4) be three arcs. Then |I'>(u) NI'(v1)| = 2, say I'2(u) NI'(v1) = {wy, wo}. Hence I'(v1) = {u, v2, v3,v6, w1, w3}
Since [I'(v1)] = Cs, (1, v2,v3) is a triangle and neither v, nor v is adjacent to v, it follows that (ve, w1, wy)
is a triangle, v, is adjacent to exactly one of wq,w,, say wi, and v3 is adjacent to w,. Set I'x(u) N I'(vy) =
{w1,ws}. Then I'(vp) = {u,v1,vs,vs5, w1, w3}. Since [I'(v7)] = C_6, it follows that (vs, w1, ws3) is a triangle. Thus
T'(w) NT(wy) = {v1,v2,0s5,06} and Tr(u) N T'(wy) = {wy, ws}). Since T is 2-distance-transitive, I' has diameter 2
and is distance-transitive. By inspecting the graphs in [3, p.223], T = J(5,2). O

Lemma 2.3. Let I be a 2-geodesic-transitive neighbor cubic graph. If [I'(u)] is not arc-transitive for some u € V(I'),
then T is J(5,2).

Proof. Suppose that L := [I'(1)] is not arc-transitive. Let (4, v) be an arc and A = Aut(I'). Since X is not an
empty graph, I' has girth 3. Since I' is 2-geodesic-transitive, it follows from Theorem 1.1 (1) of [4] that X has
diameter 2 and A, is transitive on Z(v).

If ¥ has girth at least 5, then for any x, y € L(v), (X2(v) N Z(x)) N (Z2(v) N Z(y)) = 0. Since A, is transitive
on X,(v), it follows that A, is transitive on X(v), contradicting that X is not arc-transitive. Thus Z has girth
3 or4.

Suppose L has girth 4. Then there are 6 edges between L(v) and X,(v), as L has valency 3. Further,
for any x € X»(v), |Z(v) N L(x)| = 2 or 3. Suppose |Z(v) N L(x)| = 3. Since Ay, is transitive on X»(v) and
|Z(v) N Z(x)| = 3, it follows that 6 = 3|X2(v)], so [L2(v)| = 2. Let A = {v} U Z5(v). Then any two vertices of A are
non-adjacent, and every vertex of A is adjacent to all vertices which are not in A, as X has diameter 2. Thus
Ais a block of cardinality 3, and L(v) is another block. Hence £ = K33, so A, is transitive on Z(v), which is a
contradiction. Suppose |Z(v) N L(x)| = 2. Since there are 6 edges between L(v) and X,(v) and A, is transitive
on X(v), it follows that 6 = 2|X,(v)|, so |Z2(v)] = 3. Set L(v) = {w1, wy, w3} and Xo(v) = {x1,x2,x3}. Let
L(v) N E(wr) = {x1, x2} and L(v) N Z(x1) = {wy, wa}. If Ep(0) N E(wr) = E2(v) N E(ws), then L(v) N E(x3) = {ws},
contradicting the fact that |Z(v) N Z(x3)| = 2. Thus X,(v) N Z(w1) # Z2(v) N Z(ws). Hence w; is adjacent to x3.
In particular, X,(v) = Zp(v) N (E(w;) U Z(ws)). Since L has girth 4, it follows that x; is not adjacent to any
vertex of {xy,x3}, so |[Z3(v) N L(x1)| = 1, contradicting that X has diameter 2. Thus |Z(v) N Z(x)| # 2, and so
the girth of X is not 4.

Therefore X has girth 3. Set (v) = {v1,v,, v3}. Let (v, v1, w1) be a 2-geodesic and let (v, v1, v;) be a triangle.
Since X has valency 3 and Z(v1) = {v,vp, w1}, v1 and v; are not adjacent. Assume that v,, v3 are adjacent.
Then v, is adjacent to both v; and v3. Since L is vertex-transitive, some vertex of X(v) is adjacent to the
remaining two vertices in X(v;). Since (v, v1, w,) is a 2-geodesic, v, w; are not adjacent, it follows that v, is
adjacent to both v and w;, so {v, v1, v3, w1} € L(vy), contradicting the fact that X has valency 3. Thus the arc
(v,v3) is not in any triangle. Hence |£,(v) N L(v3)| = 2, and say X»(v) N X(v3) = {w, w’}. In particular, every
vertex is in a unique triangle. Hence w and w’ are adjacent.

Suppose that |Z(v) N Z(w)| = 1. Then X(v) N Z(w) = Z(v) N Z(w’) = {v3}. Since ¥ has diameter 2,
|X2(v) N Z(w)| = 2. Since v is in a unique triangle, wy, v, are not adjacent. Set X»(v) N X(v2) = {wy}. As vy is
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not adjacent to any one of {w, w'}, wy ¢ {w, w’}, so La(v) = {w1, wyp, w, w'}. Since A, is transitive on Xy (v) and
|X2(v) N Z(w)| = 2, it follows that [Z,(v)] is a vertex-transitive graph of valency 2, so [Z(v)] = C4. Hence the
vertex w, is not in any triangle, which is a contradiction. Thus |Z(v) N Z(w)| # 1.

Hence |X(v) N Z(w)| = 2. Since A, is transitive on X»(v) and there are 4 edges between L (v) and Z,(v), it
follows that Y,(v) = {w, w’} and [Z(v) N Z(w’)| = 2. Thus X is Ce. It follows from Lemma 2.2 that I is J(5,2)
or the icosahedron. The icosahedron is not neighbor cubic, so I' is J(5,2). O

It follows from Lemmas 2.1 and 2.3 that Theorem 1.1 is true.

3. Proof of Theorem 1.2
In this section, we prove Theorem 1.2 by a series of lemmas.

Lemma 3.1. Let I be a tetravalent vertex-transitive graph. Let A := Aut(I') and u € V(I'). If T has girth 4 and A,
is transitive on I'o(u), then either I is symmetric or |I'(u) N I'(w)| # 3 for any w € I'y(u).

Proof. Suppose that I has girth 4 and A, is transitive on I';(1). Assume I’ is not a symmetric graph. Since
I' has both valency and girth 4, |I'2(«) N I'(v)| = 3 for each v € I'(u), so there are 12 edges between I'(1) and
I'>(u). Let (u,v,w) be a 2-geodesic. Assume that |I'(#) N I'(w)| = 3. By the assumption, A, is transitive on
Ip(u), so 12 = 3|2 (u)|, hence |T'(u)| = 4.

Set I'(u) = {v1 = v,03,0v3,04} and To(u) = {w1 = w,w,, w3, wy}. Let I'a(u) N T'(vy) = {wq, wp, w3} and
I'(u) NT(w1) = {v1,v2,v3}. If To(u) NI (v1) = Ta(u) N I(v7), then I'(u) N I'(wy) C {v3,v4), contradicting the fact
that [I'(u) NI'(ws4)| = 3. Thus I'>(w) NI'(v1) # I'2(u) NI'(v2). Hence v, is adjacent to wy, and also adjacent to one
vertex of {wy, w3}, say wy. In particular, I'> (1) = I'>(u) N (I'(v1) U I'(v7)). Since I' has girth 4, it follows that w,
is not adjacent to any vertex of I'»(u) \ {w1}, so [I'3(u) NI'(w1)| = 1, say I's(u) N T'(w1) = {z}. Then (v1, w1, z) and
(v2, w1, z) are 2-geodesics. Thus [['(v1) N T'(z)] = 3 = [T'(v2) NI'(z)], so I'(z) = T'2(1). Hence I' = K55 — 5K, and
A = 5; x S55. However A, = S, is transitive on I'(4), contradicting the assumption that I is not a symmetric
graph. Thus [['(u) NT(w)| # 3. O

A permutation group G on a set () is said to be 2-homogeneous, if G is transitive on the set of 2-subsets of
Q.

Lemma 3.2. Let I be a tetravalent vertex-transitive but not arc-transitive graph. Let A := Aut(I') and u € V(T)).
Suppose that A, is transitive on I'>(u). Then I has girth 3.

Proof. Suppose I' has girth at least 5. Then for any x, v € I'(1), (T'2(1) N T'(x)) N (T2(x) N T(y)) = 0. Since A, is
transitive on I';(u), it follows that A, is transitive on I'(4), contradicting that I' is not arc-transitive. Thus I’
has girth 3 or 4.

Assume thatI has girth 4. Then [I'(u) NI'(w)| = 2,3 or 4, for any w € I';(1). By Lemma 3.1, |I'(1) "\I'(w)| # 3.
Suppose that [I'(x) N I'(w)| = 2. Since I' is vertex-transitive and A, is transitive on I';(u), each 2-arc of I" lies
in a unique 4-cycle. Thus, there is a 1-1 mapping between the unordered vertex pairs in I'() and vertices
in I'>(1). Again since A, is transitive on I';(u), it follows that A, is transitive on the set of unordered vertex
pairs in I'(#). Hence A, is 2-homogeneous on I'(u), so A, is transitive on I'(1), contradicting that I' is not
arc-transitive. Suppose [I'(u) N I'(w)| = 4. Since I has girth 4, there are 12 edges between I'(1) and I'>(u). As
A, is transitive on I'>(u), I' has diameter 2 and |[I'>(u)| = 3. Let A = {u} U T»(u). Then any two vertices of A
are non-adjacent, and every vertex of A is adjacent to all vertices which are not in A. By the structure of T,
A is a block of cardinality 4, and I'(«) is another block. Thus I' = Ky 4. Hence A,, is transitive on I'(1), again
a contradiction. Therefore I" has girth 3. [

Lemma 3.3. Let I be a tetravalent vertex-transitive but not arc-transitive graph of diameter 2. Let A := Aut(I') and
u € V(T'). Suppose that A, is transitive on T»(u). Then |I'(1) N T'(w)| # 4 for any w € To(u).
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Proof. Since A, is transitive on I'; (1) but not on I'(u), it follows from Lemma 3.2 that I' has girth 3. If for any
v,v" € T'(u) we have I';(u) NT'(v) NT'(v') = 0, then as A, is transitive on I';(u), A, is transitive on I'(1), which
is a contradiction. Thus, there exist v,v" € I'(1) such that I';(u) N T'(v) NT(v") # 0. Set I'(u) = {v1, v, V3, V4}.
Suppose that I'» (1) N\I'(v1) NI'(v3) # 0, and say wy € I'2(w) NI'(v1) NI'(v3). Then [I'(u) NI'(w1)| = 2,3 or 4. Since
A, is transitive on I'x(u), for any w € I'x(u), [I'(w) N T'(w)| = 2,3 or 4. In particular, [T'(u) N I'(w)| divides the
number of edges between I'() and I'>(u).

Assume that [I'(«) N T'(w)| = 4. If u lies in a unique triangle (1, v1,v;), then there are 10 edges between
I'(1) and I'>(u), however 4 does not divide 10, which is a contradiction. Assume that u is in two triangles.
Then there are 8 edges between I'(12) and I'»(11). Hence [I'>(4)| = 2 and I has 7 vertices. Let A = {u} U I'>(u).
Then any two vertices of A are non-adjacent, and every vertex of A is adjacent to all vertices which are not
in A. Since T’ is vertex-transitive, A is a block of cardinality 3. However, 3 does not divide 7, so sucha T
does not exist. Assume that u lies in more than two triangles. Then there are x < 6 edges between I'(u)
and I'»(u). Since 4 divides x, x = 4, so [[2(u)| = 1, I has 6 vertices. Let A = {u} UTI'>(u). Then any two
vertices of A are non-adjacent, and every vertex of A is adjacent to all vertices which are not in A. Since I'is
vertex-transitive, A is a block of cardinality 2. In particular, I'(4) contains two such blocks A" and A”, and
[A"UA”] = C4. Thus T’ = K. However A, is transitive on I'(u), contradicting that I' is not arc-transitive.
Hence T'(u) NT(w)| # 4. O

Let I';, T, be two graphs. We use I'1OI; to denote the Cartesian product of I't and I'y, its vertex set is
V(T'1) x V(I'y), two vertices (u1,uz) and (v1,v2) are adjacent if and only if u, = v, and u;, v, are adjacent in
I't, or u; = vy and uy, v, are adjacent in I'5.

Now we can prove the second theorem.

Proof of Theorem 1.2. Let I' be a 2-geodesic-transitive neighbor tetravalent graph. Let (1, v) be an arc and
A = Aut(T'). Since X := [['(u)] is not an empty graph, I' has girth 3. Since I' is 2-geodesic-transitive, it follows
from Theorem 1.1 (1) of [4] that & has diameter 2 and A,,, is transitive on X,(v).

Suppose first that X is arc-transitive. Then L is distance-transitive, and it is listed in [3, p.221-223]. By
inspecting the candidates, L is either Kjpp; or H(2,3). If X is K3y, then I' is Kyppy. If £ is H(2, 3), then I' is
J(6,3).

In the remaining, we suppose that L is not arc-transitive. Since A, is transitive on X,(v), it follows
from Lemma 3.2 that * has girth 3. If for any v/, v"” € L(v) we have X,(v) N Z(v) N Z(v”) = 0, then as Ay,
is transitive on X,(v), A, is transitive on X(v), which is a contradiction. Thus, there exist v/, v” € X(v) such
that Xo(v) N Z(v") N Z(v”) # 0. Set L(v) = {v1,v2,v3,04}. Suppose that Xy(v) N Z(v1) N X(v3) # O, and say
w1 € Xp(v) N X(v1) N L(v3). Then [X(v) N Z(w1)| = 2,3 or 4. Since A, is transitive on X, (v), for any 6 € X»(v),
|Z(v) N Z(6)| = 2,3 or 4. It follows from Lemma 3.3 that |Z(v) N ()| # 4. In particular, |X(v) N Z(0)| divides
the number of edges between X(v) and X,(v).

Assume that |Z(v) N Z(0)| = 3. If v lies in one or two triangles, then there are 10 or 8 edges between X (v)
and X, (v), respectively. However 3 does not divide 8 or 10, which is a contradiction. Hence v lies in more
than two triangles. Then there are x < 6 edges between X(v) and Z,(v). Since 3 divides x, x = 3 or 6, so
|X2(v)] = 1 or 2. Assume |X(v)| = 1, say Xo(v) = {w}. Then [X3(v) N E(w)| = 1, contradicting the fact that =
has diameter 2. Hence |Z,(v)| = 2, say XZ2(v) = {w, w’}. Since L has diameter 2, |Z;(v) N Z(w)| = 1. Thus T is
a vertex-transitive graph of valency 2 with 7 vertices, so Y= C;. Thus & = C_7 By Lemma 2.2, I' does not
exist.

Now assume that |[Z(v) N Z(0)| = 2. Since X has diameter 2, it follows that |X,(v) N Z(0)| = 2. Thus [Z,(0)]
is a vertex-transitive graph of valency 2. If v lies in r triangles for some r > 1, then there are 12 — 2r edges
between X(v) and X,(v). Since A,y is transitive on X, (v), |[Z(v) N Z(6)| divides 12 — 2r. It follows that r < 5.
Since |Z,(v) N Z(0)| = 2, it follows that [X,(v)| > 3, and so there are at least 6 edges between X (v) and X»(v).
Hence 12 -2r > 6,sor=1,2 or 3.

If r = 1, then there are 10 edges between L(v) and X, (v). Since [X(v) N Z(0)| = 2 for any 6 € L,(v), one has
|Z2(v)] = 5. Assume that (v, v1,v7) is a triangle. Then v3 is not adjacent to v4. So, A, fixes {v1, v} and {v3, v4}
setwise, respectively. Therefore, A, fixes Lo(v) N (Z(v1) U L(v7)) setwise. As [Za2(v) N (Z(v1) U L(v2))| < 4, it
follows that Xo(v) N (X(v1) U L(v2)) C Xa(v), contradicting the fact that A, is transitive on X (v).
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If r = 2, then there are 8 edges between L(v) and X,(v). Further, |Z,(v)| = 4, so [Z2(v)] = Cy4. Set
Y(v) = {v1,v2,0v3,04}. Then |X(v) N X(v;)] = 1 or 2. If |X(v) N X(v;)| = 1 for each v;, then [X(v)] = 2K,. Hence
each arc lies in a unique triangle. Let (v1,v;) and (v3,v4) be two arcs. Let Xy(v) N X(v1) = {wq, w,}. Since
[Z(v1)] = 2Ky, (w1, wy) is an arc and v, is not adjacent to any one of {wy, wy}. Set Xz(v) N L(v2) = {ws, wa).
Since [X(v2)] = 2K;, (w3, wy) is an arc. Since [X2(v)] = Cy, it follows that (w1, w2, w3, ws) is a 4-cycle. Since
|Z(v) N Z(w1)| = 2 and each arc lies in a unique triangle, w; is adjacent to one of v3,v4, say v3. Then
L(w1) = {v1,v3, wa, wy}. Since [L(wq)] = 2Ky, it follows that v3, wy are adjacent. Hence vy is adjacent to both
w, and w3. Thus X is isomorphic to the Hamming graph H(2,3). However H(2, 3) is arc-transitive, which
is a contradiction. Thus there exists v; such that [X(v) N Z(v;)| = 2. Without loss of generality, let v; = v; and
let X(v) N X(v1) = {v2,v3}. Then [X2(v) N X(v1)| = 1, and say X(v) N Z(v1) = {w1}. Since u lies in 2 triangles, v
is the unique vertex of L(v) such that [£(v) N X(v1)| = 2. Thus A, can not map w, to other vertices of X»(v),
contradicting the fact that A, is transitive on X,(v). Hence r # 2.

Finally, assume r = 3. Then there are 6 edges between L(v) and Z,(v). Further, |Z,(v)| = 3, so [Z,(v)] = Cs.
Set L(v) = {v1,vy,v3,04). Then for any v;, |Z(v) N X(v;)| < 3. Since v is in 3 triangles, there exist at most
one vertex v; such that |[Z(v) N Z(v;)] = 3. Assume there exists a vertex, v1, such that [Z(v) N Z(v1)| = 3.
Then Z(v) N L(v1) = {v2,v3,v4}, and vertices of {vy, v3, v4} are pairwise non-adjacent. Hence L(v;) = {v,v1} U
(XZ2(v) N X(v2)). Since there are no edges between sets {v,v1} and Z(v) N X(vy), it follows that for any
@ € L(va), |E(v2) N E(@)| < 3, so [Z(v)] £ [Z(v2)]. Thus A can not map v to v,, contradicting that X is
vertex-transitive. Hence [X(v) N Z(v;)| < 2. If for any v;, |Z(v) N Z(v;)| > 1, then |Z5(v) N X(v;)| = 1 or 2. Since
there are 6 edges between L (v) and X, (v), there exists v; such that [X,(v) N Z(v;)| = 1. Assume that there are
x vertices in X(v) that are adjacent to exactly one vertex of X,(v). Then counting the edges between X(v)
and X»(v), x + 2(4 — x) = 6, so x = 2. Suppose |L2(v) N L(v1)| = [Z2(v) N Z(v2)| = 1, say La(v) N E(v1) = {w1})
and X,(v) N L(vp) = {wz}. Then A, can not map w; to any one of wy, w,, contradicting the fact that A,,
is transitive on X»(v). Thus there exists a vertex v; such that [X(v) N Z(v;)] = 0. Since v is in 3 triangles,
[Z(v) \ {v;}] = C3. Further X»(v) N Z(v;) = L(v), and there are 3 edges between L(v) \ {v;} and X»(v). Hence
for each v; € X(v) \ {03}, [X2(v) N Z(v))| = 1. Therefore X = K4OK;. Then by [3, Theorem 9.1.3], I'is J(6,2). O
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