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Abstract. Let T,S : A∪ B→ A∪ B be mappings such that T(A) ⊆ B,T(B) ⊆ A and S(A) ⊆ A,S(B) ⊆ B. Then
the pair (T; S) of mappings defined on A∪B is called cyclic-noncyclic pair, where A and B are two nonempty
subsets of a metric space (X, d). A coincidence best proximity point p ∈ A ∪ B for such a pair of mappings
(T; S) is a point such that d(Sp,Tp) = dist(A,B). In this paper, we study the existence and convergence of
coincidence best proximity points in the setting of convex metric spaces. We also present an application of
one of our results to an integral equation.

1. Introduction

Let (X, d) be a metric space, and let A, B be subsets of X. A mapping T : A∪B→ A∪B is said to be cyclic
provided that T(A) ⊆ B and T(B) ⊆ A. The following theorem is an extension of the Banach contraction
principle for such mappings.

Theorem 1.1. ([23]) Let A and B be nonempty closed subsets of a complete metric space (X, d). Suppose that T is a
cyclic mapping such that

d(Tx,Ty) ≤ α d(x, y),

for some α ∈ (0, 1) and for all x ∈ A, y ∈ B. Then T has a unique fixed point in A ∩ B.

Eldred and Veeramani ([11]) introduced the class of cyclic contractions as below.

Definition 1.2. ([11]) Let A and B be nonempty subsets of a metric space X. A mapping T : A ∪ B→ A ∪ B is said
to be a cyclic contraction if T is cyclic and

d(Tx,Ty) ≤ αd(x, y) + (1 − α)dist(A,B)

for some α ∈ (0, 1) and for all x ∈ A, y ∈ B, where dist(A,B) := inf{d(x, y) : (x, y) ∈ A × B}.

We recall that for a cyclic mapping T : A∪B→ A∪B, a point x ∈ A∪B is said to be a best proximity point
provided that d(x,Tx) = dist(A,B).

The following existence, uniqueness and convergence result of a best proximity point for cyclic contrac-
tions is the main result of [11].
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Theorem 1.3. ([11]) Let A and B be nonempty, closed and convex subsets of a uniformly convex Banach space X and
let T : A∪ B→ A∪ B be a cyclic contraction map. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. Then there exists a
unique x ∈ A such that x2n → x and ‖x − Tx‖ = dist(A,B).

This result was studied from a different and more general approach (see [1, 4–8] for more information).
Now, consider a mapping S : A ∪ B → A ∪ B, where (A,B) is a nonempty pair of subsets of a metric

space (X, d). We say that S is noncyclic provided that S(A) ⊆ A and S(B) ⊆ B. A point (x, y) ∈ A × B is called
a best proximity pair, whenever

x = Tx, y = Ty, and d(x, y) = dist(A,B).

Existence of best proximity pairs was first studied in [10] by using a geometric property on a nonempty
pair of subsets of a Banach space, called proximal normal structure, for noncyclic relatively nonexpansive
mappings (Theorem 2.2 of [10]). Some of existence results of best proximity pairs can be found in [9, 12, 13,
15, 17–19, 21, 22, 26, 27].

In this paper, we introduce a new notion of a point, called coincidence best proximity point and study
sufficient conditions which ensure the existence of these points for a pair of cyclic and noncyclic mappings
in the setting of convex metric spaces. In this way, we obtain some of generalizations of best proximity point
and coincidence point theorems in convex metric spaces. Finally, as an application of one of our main
results, we prove the existence of a solution of an integral equation.

2. Preliminaries

In [28], Takahashi introduced the notion of convexity in metric spaces as follows.

Definition 2.1. Let (X, d) be a metric space and I := [0, 1]. A mappingW : X × X × I → X is said to be a convex
structure on X provided that for each (x, y;λ) ∈ X × X × I and u ∈ X,

d(u,W(x, y;λ)) ≤ λd(u, x) + (1 − λ)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex metric space, which is
denoted by (X, d,W). A Banach space and each of its convex subsets are convex metric spaces. But a
Frechet space is not necessary a convex metric space. The other examples of convex metric spaces which
are not imbedded in any Banach space can be founded in [28].

Definition 2.2. ([28]) A subset K of a convex metric space (X, d,W) is said to be a convex set provided that
W(x, y;λ) ∈ K for all x, y ∈ K and λ ∈ I.

Definition 2.3. ([29]) A convex metric space (X, d,W) is said to be uniformly convex if for any ε > 0, there exists
α = α(ε) such that for all r > 0 and x, y, z ∈ X with d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε,

d(z,W(x, y,
1
2

)) ≤ r(1 − α) < r.

Clearly every uniformly convex Banach spaces are uniformly convex metric spaces.

Example 2.1.([29]) Let H be a Hilbert space and let X be a nonempty closed subset of {x ∈ H : ‖x‖ = 1}
such that if x, y ∈ X and α, β ∈ [0, 1] with α + β = 1, then αx+βy

‖αx+βy‖ ∈ X and diam(X) ≤
√

2
2 , where

diam(X) := sup{d(x, y) : x, y ∈ X}. Let d(x, y) := cos−1(< x, y >) for all x, y ∈ X, where <,> is the inner
product ofH . If we define the convex structureW : X×X× I→ X withW(x, y, λ) := λx+(1−λ)y

‖λx+(1−λ)y‖ , then (X, d)
is a complete and uniformly convex metric space.
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Given (A,B) a pair of nonempty subsets of a metric space (X, d), then its proximal pair is the pair (A0,B0)
given by

A0 = {x ∈ A : d(x, y′) = dist(A,B), for some y′ ∈ B},

B0 = {y ∈ B : d(x′, y) = dist(A,B), for some x′ ∈ A}.

Proximal pairs may be empty but, in particular, if A and B are nonempty weakly compact and convex in a
Banach space X, then (A0,B0) is a nonempty weakly compact convex pair in X.

Definition 2.4. A pair of sets (A,B) is said to be proximal if A = A0 and B = B0.

3. Main Results

3.1. Existence and convergence results in convex metric spaces
We begin with the following notion.

Definition 3.1. Let (A,B) be a nonempty pair of subsets of a metric space (X, d) and (T; S) be a cyclic-noncyclic pair
on A ∪ B, that is, T : A ∪ B→ A ∪ B is cyclic and S : A ∪ B→ A ∪ B is noncyclic. A point p ∈ A ∪ B is said to be a
coincidence best proximity point for (T; S) provided that

d(Sp,Tp) = dist(A,B).

Note that if in above definition S = I, where I denotes the identity map on A ∪ B, then p ∈ A ∪ B is a
best proximity point for T. Also, if dist(A,B) = 0, then p is called a coincidence point for (T; S) (see [14, 16] for
some information).

Definition 3.2. Let (A,B) be a nonempty pair of subsets of a metric space (X, d) and T,S : A ∪ B → A ∪ B be two
mappings. The pair (T; S) is called cyclic-noncyclic contraction pair if it satisfies the following conditions:

(i) (T,S) is a cyclic-noncyclic pair on A ∪ B.
(ii) For some r ∈ (0, 1) we have

d(Tx,Ty) ≤ rd(Sx,Sy) + (1 − r)dist(A,B), ∀(x, y) ∈ A × B.

Remark 3.3. Notice that (ii) implies that d(Tx,Ty) ≤ d(Sx,Sy) for all (x, y) ∈ A × B. Moreover, if S is noncyclic
relatively nonexpansive mapping, that is, d(Sx,Sy) ≤ d(x, y) for all (x, y) ∈ A × B, then T is cyclic contraction.

The following lemma will be used in the sequel.

Lemma 3.4. Let (A,B) be a nonempty pair of subsets of a metric space (X, d) and let (T; S) be a cyclic-noncyclic
contraction pair defined on A ∪ B. Suppose that T(A) ⊆ S(B) and T(B) ⊆ S(A). Then there exists a sequence {xn} in
X such that Txn = Sxn+1 and {x2n}, {x2n−1} are sequences in A and B respectively, and d(Sx2n+1,Sx2n)→ dist(A,B).

Proof. Let x0 ∈ A. Since Tx0 ∈ S(B), there exists x1 ∈ B such that Tx0 = Sx1. Again, since Tx1 ∈ S(A), there
exists x2 ∈ A such that Tx1 = Sx2. Continuing this process, we obtain a sequence {xn} such that {x2n}, {x2n+1}

are in A and B respectively, and Txn = Sxn+1 for all n ∈N ∪ {0}. We now have

d(Sx2n+1,Sx2n+2) = d(Tx2n,Tx2n+1) ≤ rd(Sx2n,Sx2n+1) + (1 − r)dist(A,B)

= rd(Tx2n−1,Tx2n) + (1 − r)dist(A,B)

≤ r[rd(Sx2n−1,Sx2n) + (1 − r)dist(A,B)] + (1 − r)dist(A,B)

= r2d(Sx2n−1,Sx2n) + (1 − r2)dist(A,B)

= r2d(Tx2n−2,Tx2n−1) + (1 − r2)dist(A,B)

≤ ... ≤ r2nd(Tx0,Tx1) + (1 − r2n)dist(A,B).

Now, if n→∞ in above relation, we conclude that d(Sx2n+1,Sx2n)→ dist(A,B).
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Theorem 3.5. Let (A,B) be a nonempty pair of subsets of a metric space (X, d) and let (T; S) be a cyclic-noncyclic
contraction pair defined on A∪B. Suppose that T(A) ⊆ S(B) and T(B) ⊆ S(A) and S is continuous on A. For x0 ∈ A,
define Sxn+1 = Txn for each n ≥ 0. If {x2n} has a convergent subsequence in A, then the pair (T,S) has a coincidence
best proximity point in A.

Proof. Let {x2nk } be a subsequence of {x2n} such that x2nk → p ∈ A. We have

dist(A,B) ≤ d(Tp,Tx2nk−1) ≤ d(Sp,Sx2nk−1)

≤ d(Sp,Sx2nk ) + d(Sx2nk ,Sx2nk−1).

By Lemma 3.4, if k→∞, we obtain d(Tp,Tx2nk−1)→ dist(A,B). Besides,

dist(A,B) ≤ d(Sp,Tp) ≤ d(Sp,Tx2nk−1) + d(Tx2nk−1,Tp)

= d(Sp,Sx2nk ) + d(Tp,Tx2nk−1)→ dist(A,B),

that is, d(Sp,Tp) = dist(A,B).

Lemma 3.6. Let (A,B) be a nonempty pair of subsets of a metric space (X, d) and let (T; S) be a cyclic-noncyclic
contraction pair defined on A ∪ B. Suppose that T(A) ⊆ S(B) and T(B) ⊆ S(A) and suppose T and S commute on
A. For x0 ∈ A, define Sxn+1 = Txn for each n ≥ 0. Then {Sx2n} and {Sx2n+1} are bounded sequences in A and B
respectively.

Proof. Since d(Sx2n,Sx2n+1) → dist(A,B), it is sufficient to prove that {Sx2n} is bounded in A. Suppose the
contrary. Then there exists N0 ∈N such that

d(T(Sx1),Sx2N0+1) > M, d(T(Sx1),Sx2N0−1) ≤M,

where, M > max{ r2

1−r2 d(S(Sx0),T(Sx1)) + dist(A,B), d(T(Sx1),Tx0)}. We have

M − dist(A,B)
r2 + dist(A,B) <

d(T(Sx1),Sx2N0+1) − dist(A,B)
r2 + dist(A,B)

≤
d(T(Sx1),Sx2N0+1) + (r2

− 1)d(T(Sx1),Sx2N0+1)
r2

= d(T(Sx1),Sx2N0+1) = d(T(Sx1),Tx2N0 ) ≤ rd(S(Sx1),Sx2N0 ) + (1 − r)dist(A,B)

≤ d(S(Sx1),Sx2N0 ) = d(S(Tx0),Tx2N0−1) = d(T(Sx0),Tx2N0−1)

≤ d(S(Sx0),Sx2N0−1) ≤ d(S(Sx0),T(Sx1)) + d(T(Sx1),Sx2N0−1)

≤ d(S(Sx0),T(Sx1)) + M.

Thus
M − dist(A,B)

r2 + dist(A,B) < d(S(Sx0),T(Sx1)) + M

and so,
M − (1 − r2)dist(A,B) < r2[d(S(Sx0),T(Sx1)) + M],

which implies that

M <
r2

1 − r2 d(S(Sx0),T(Sx1)) + dist(A,B),

which is a contradiction.

To establish our results, we need the following notion.
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Definition 3.7. Let (A,B) be a nonempty pair of subsets of a metric space (X, d). A mapping S : A∪B→ A∪B is said
to be a relatively anti-Lipschitzian mapping if there exists c > 0 such that d(x, y) ≤ cd(Sx,Sy) for all (x, y) ∈ A × B.

Next result is a straightforward consequence of Theorem 3.5 and Lemma 3.6.

Corollary 3.8. Let (A,B) be a nonempty pair of subsets of a metric space (X, d) such that A is boundedly compact
and let (T; S) be a cyclic-noncyclic contraction pair defined on A ∪ B. Suppose that T(A) ⊆ S(B) and T(B) ⊆ S(A)
and suppose T and S commute on A. If S is relatively anti-Lipschitzian and continuous on A, then the pair (T; S) has
a coincidence best proximity point in A.

Let us illustrate Corollary 3.8 with the following example.

Example 3.1. Let X := Rwith the usual metric. For A = (−∞,−1] and B = [1,+∞) define T,S : A∪B→ A∪B
by

Tx := −x, ∀x ∈ A ∪ B & Sx :=

2x + 1 if x ∈ A,
2x − 1 if x ∈ B.

Then (T; S) is a cyclic-noncyclic contraction pair with r = 1
2 . Indeed, for all (x, y) ∈ A × B we have

|Tx − Ty| = (y − x) ≤
1
2

(2y − 2x − 1) +
1
2

(2)

= r|Sx − Sy| + (1 − r)dist(A,B).

Also, T(A) = B ⊆ S(B) and T(B) = A ⊆ S(A). Moreover, S is continuous on A and A is boundedly compact
in X. Besides, S is relatively anti-Lipschitzian on A ∪ B with c = 1. In fact, for all (x, y) ∈ A × B we have

|Sx − Sy| = 2y − 2x − 1 ≥ |x − y| (since y − x ≥ 1).

Finally, for each x ∈ A we have

T(Sx) = T(2x + 1) = −2x − 1 = S(−x) = S(Tx),

that is, T and S commute on A. Thereby, the existence of coincidence best proximity point of the pair (T; S)
follows from Corollary 3.8. That is, there exists p ∈ A such that |Tp− Sp| = dist(A,B) = 2 or −p− (2p + 1) = 2
which implies that p = −1. In this case, p is a fixed point of the mapping S and so, p is a best proximity
point of the cyclic mapping T. It is interesting to note that the mapping T is not cyclic contraction in the
sense of Definition 1.2 and so, existence of best proximity point for T cannot be obtained from Theorem
1.3. Another observation is that whereas T is cyclic relatively nonexpansive mapping on A ∪ B, that is, T is
cyclic and d(Tx,Ty) ≤ d(x, y) for all (x, y) ∈ A × B, but the existence of best proximity point for T cannot be
deduced from Theorem 2.1 of [10] because of unboundedness of A and B.

Lemma 3.9. Let (A,B) be a nonempty pair of subsets of a uniformly convex metric space (X, d;W) such that A is
convex. Let (T; S) be a cyclic-noncyclic contraction pair defined on A ∪ B such that T(A) ⊆ S(B) and T(B) ⊆ S(A).
For x0 ∈ A define Sxn+1 := Txn for all n ∈N ∪ {0}. Then

d(Sx2n+2,Sx2n)→ 0 and d(Sx2n+3,Sx2n+1)→ 0.

Proof. To prove that d(Sx2n+2,Sx2n) → 0 suppose the contrary. Then there exists ε0 > 0 such that for each
k ≥ 1, there exists nk ≥ k so that d(Sx2nk+2,Sx2nk ) ≥ ε0. Choose 0 < γ < 1 such that ε0

γ > dist(A,B) and choose
ε > 0 such that

0 < ε < min{
ε0

γ
− dist(A,B),

dist(A,B)α(γ)
1 − α(γ)

}.
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By Lemma 3.4, since d(Sx2nk ,Sx2nk+1)→ dist(A,B), there exists N ∈N such that

d(Sx2nk ,Sx2nk+1) ≤ dist(A,B) + ε & d(Sx2nk+2,Sx2nk+1) ≤ dist(A,B) + ε,

d(Sx2nk ,Sx2nk+2) ≥ ε0 > γ(dist(A,B) + ε).

It now follows from the uniformly convexity of X and the convexity of A

dist(A,B) ≤ d(Sx2nk+1,W(Sx2nk ,Sx2nk+2,
1
2

)) ≤ (dist(A,B) + ε)(1 − α(γ))

< dist(A,B) +
dist(A,B)α(γ)

1 − α(γ)
(1 − α(γ)) = dist(A,B),

which is a contradiction. Similarly, we can see that d(Sx2n+3,Sx2n+1)→ 0 and this completes the proof.

The following theorem guarantees the existence and convergence of coincidence best proximity points
for cyclic-noncyclic contractions in the setting of uniformly convex metric spaces.

Theorem 3.10. Let (A,B) be a nonempty, closed pair of subsets of a complete uniformly convex metric space (X, d;W)
such that A is convex. Let (T; S) be a cyclic-noncyclic contraction pair defined on A ∪ B such that T(A) ⊆ S(B) and
T(B) ⊆ S(A) so that S is continuous on A and relatively anti-Lipschitzian on A ∪ B. Then (T; S) has a coincidence
best proximity point in A. Further, if x0 ∈ A and Sxn+1 := Txn, then {x2n} converges to the coincidence best proximity
point of (T; S).

Proof. For x0 ∈ A define Sxn+1 := Txn for each n ≥ 0. We prove that {Sx2n} and {Sx2n+1} are Cauchy sequences.
At first, we verify that for each ε > 0 there exists N0 ∈N such that

d(Sx2m,Sx2n+1) < dist(A,B) + ε, ∀m > n ≥ N0. (*)

Assume the contrary. Then there exists ε0 > 0 such that for each k ≥ 1 there exists mk > nk ≥ k satisfying

d(Sx2mk ,Sx2nk+1) ≥ dist(A,B) + ε0 & d(Sx2mk−2,Sx2nk+1) < dist(A,B) + ε0.

We have
dist(A,B) + ε0 ≤ d(Sx2mk ,Sx2nk+1)

≤ d(Sx2mk ,Sx2mk−2) + d(Sx2mk−2,Sx2nk+1) ≤ d(Sx2mk ,Sx2mk−2) + dist(A,B) + ε0.

Letting k→∞, we obtain d(Sx2mk ,Sx2nk+1)→ dist(A,B) + ε0. Besides,

d(Sx2mk ,Sx2nk+1) ≤ d(Sx2mk ,Sx2mk+2) + d(Sx2mk+2,Sx2nk+3) + d(Sx2nk+3,Sx2nk+1)

= d(Sx2mk ,Sx2mk+2) + d(Tx2mk+1,Tx2nk+2) + d(Sx2nk+3,Sx2nk+1)

≤ d(Sx2mk ,Sx2mk+2) + d(Sx2mk+1,Sx2nk+2) + d(Sx2nk+3,Sx2nk+1)

= d(Sx2mk ,Sx2mk+2) + d(Tx2mk ,Tx2nk+1) + d(Sx2nk+3,Sx2nk+1)

≤ d(Sx2mk ,Sx2mk+2) + rd(Sx2mk ,Sx2nk+1) + (1 − r)dist(A,B) + d(Sx2nk+3,Sx2nk+1)

≤ d(Sx2mk ,Sx2mk+2) + d(Sx2mk ,Sx2nk+1) + d(Sx2nk+3,Sx2nk+1).

Letting k→∞, we conclude that

dist(A,B) + ε0 ≤ r(dist(A,B) + ε0) + (1 − r)dist(A,B) ≤ dist(A,B) + ε0.
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This implies that r = 1, which is a contradiction. That is, (*) holds. Now, suppose {Sx2n} is not Cauchy.
Then there exists ε0 > 0 such that for each k ≥ 1 there exists mk > nk ≥ k so that d(Sx2mk ,Sx2nk ) ≥ ε0. Choose
0 < γ < 1 such that ε0

γ > dist(A,B) and choose ε > 0 such that

0 < ε < min{
ε0

γ
− dist(A,B),

dist(A,B)α(γ)
1 − α(γ)

}.

Let N ∈N be such that
d(Sx2nk ,Sx2nk+1) ≤ dist(A,B) + ε, ∀nk ≥ N

d(Sx2mk ,Sx2nk+1) ≤ dist(A,B) + ε, ∀mk > nk ≥ N.

Uniformly convexity of X deduces that

dist(A,B) ≤ d(Sx2nk+1,W(Sx2nk ,Sx2mk ,
1
2

))

≤ (dist(A,B) + ε)(1 − α(γ)) < dist(A,B),

which is a contradiction. Therefore, {Sx2n} is a Cauchy sequence in A. By the fact that S is relatively
anti-Lipschitzian on A ∪ B, we have

d(x2m, x2n) ≤ cd(Sx2m,Sx2n)→m,n→∞ 0,

that is, {x2n} is Cauchy. Since A is complete, there exists p ∈ A such that x2n → p. Now, the result follows
from the similar argument of Theorem 3.5.

If A = B in Theorem 3.10, then the existence of coincidence points for two self-mappings can be obtained
under weaker conditions.

Theorem 3.11. Let A be a nonempty and closed subset of a complete metric space (X, d). Suppose (T; S) is a pair of
self-mappings defined on A such that

(i) S is continuous and unit-Lipschitzian,
(ii) T(A) ⊆ S(A),
(iii) d(Tx,Ty) ≤ rd(Sx,Sy), for some r ∈ (0, 1) and for all x, y ∈ A.

Then (T; S) has a coincidence point.

Proof. Let x0 ∈ A and define Sxn+1 := Txn. Then we have d(Sxn+2,Sxn+1) ≤ rnd(Tx1,Tx0), that is, the sequence
{Sxn} is a Cauchy sequence in A. Since S is anti-Lipschitzian, we conclude that the sequence {xn} is Cauchy
in A. Suppose xn → p ∈ A. Then Sxn → Sp and so, Txn → Tp. We now have

d(Sp,Tp) ≤ d(Sp,Txn−1) + d(Txn−1,Tp) = d(Sp,Sxn) + d(Txn−1,Tp)→ 0.

Hence, the point p ∈ A is a coincidence point of the pair (T; S).

3.2. Existence results in reflexive Banach spaces
Theorem 3.12. Let (A,B) be a nonempty weakly closed pair of subsets of a reflexive Banach space X and let (T; S) be
a cyclic-noncyclic contraction pair defined on A ∪ B. Suppose that T(A) ⊆ S(B) and T(B) ⊆ S(A) and suppose T and
S commute on A. Then (A0,B0) is a nonempty pair.

Proof. By Lemma 3.6, the sequences {Sx2n} and {Sx2n+1} are bounded in A and B, respectively. Since X is
reflexive and (A,B) is weakly closed, we may assume that Sx2n ⇀ p ∈ A and Sx2n+1 ⇀ q ∈ B, where ⇀
denotes the weak convergence. Since ‖.‖ is weakly lower semicontinuous, we obtain

dist(A,B) ≤ ‖p − q‖ ≤ lim inf
n→∞

‖Sx2n − Sx2n+1‖ = dist(A,B).

Thus (A0,B0) is a nonempty pair.
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Example 3.2. Let l∞ be the Banach space consisting of all bounded real sequences with supremum norm
and let {en} be the canonical basis of l∞. Given r ∈ (0, 1), let A and B be subsets of l∞ defined with

A = {(1 + r2n)e2n : n ∈N} and B = {(1 + r2m−1)e2m−1 : m ∈N}.

Then dist(A,B) = 1. Define T,S : A ∪ B→ A ∪ B as below:

T((1 + r2n)e2n) = (1 + r8n+1)e8n+1 & T((1 + r2m−1)e2m−1) = ((1 + r8m)e8m),

S((1 + r2n)e2n) = (1 + r4n)e4n & S((1 + r2m−1)e2m−1) = ((1 + r4m−1)e4m−1).

Then the pair (T; S) is a cyclic-noncyclic pair. Also, if m ≤ n, then

‖T((1 + r2n)e2n) − T((1 + r2m−1)e2m−1)‖∞ = 1 + r8m

≤ 1 + r4m = k(1 + r4m−1) + (1 − r)

= r‖S((1 + r2n)e2n) − S((1 + r2m−1)e2m−1)‖∞ + (1 − r)dist(A,B),

that is, (T; S) is cyclic-noncyclic contraction. We note that A0 = B0 = ∅ because X is not reflexive.

Definition 3.13. Let (A,B) be a nonempty pair of subsets of a normed linear space X and (T; S) be a cyclic-noncyclic
pair defined on A ∪ B. We say that T satisfies the proximal property w.r.t. S provided that xn ⇀ x ∈ A ∪ B and
‖Sxn − Txn‖ → dist(A,B), then ‖Sx − Tx‖ = dist(A,B).

Note that if S = I, then T satisfies the proximal property (see Definition 2 of [4]).

Theorem 3.14. Let (A,B) be a nonempty pair of subsets of a reflexive Banach space X such that A is weakly closed
and let (T; S) be a cyclic-noncyclic contraction pair defined on A ∪ B. Suppose that T(A) ⊆ S(B) and T(B) ⊆ S(A)
and suppose T and S commute on A. Let S be a relatively anti-Lipschitzian on A ∪ B. Then (T; S) has a coincidence
best proximity point provided that one of the following conditions holds:

(i) T,S are weakly continuous on A.
(ii) T satisfies the proximal property w.r.t. S.

Proof. Let x0 ∈ A and define Sxn+1 := Txn. It follows from Lemma 3.6 that {Sx2n} and {Sx2n−1} are bounded
sequences in A and B respectively. We prove that {x2n} and {x2n−1} are also bounded. Since {Sx2n} is bounded,
there exists M > 0 such that ‖Sx2n − Sx2‖ ≤M for all n ∈N. Now, for each f ∈ X∗ and n ∈Nwe have:

| f (x2n − x1)| ≤ ‖ f ‖‖x2n − x1‖ ≤ ‖ f ‖c‖Sx2n − Sx1‖

≤ ‖ f ‖c(‖Sx2n − Sx2‖ + ‖Sx2 − Sx1‖) ≤ ‖ f ‖c(M + ‖Sx2 − Sx1‖).

Therefore,
| f (x2n)| ≤ ‖ f ‖c(M + ‖Sx2 − Sx1‖) + | f (x2)|, ∀n ∈N,

which concludes that {x2n} is a weakly bounded sequence in A and so, by uniform boundedness principle,
is bounded. Similarly, we can see that {x2n−1} is also bounded. Since X is reflexive, we may assume that
x2n ⇀ p ∈ A.
(i) If T and S are weakly continuous on A, then Tx2n ⇀ Tp and Sx2n ⇀ Sp. Weak lower semicontinuity of
norm implies that

dist(A,B) ≤ ‖Sp − Tp‖ ≤ lim inf
n→∞

‖Sx2n − Tx2n‖

= lim inf
n→∞

‖Sx2n − Sx2n+1‖ = dist(A,B).

(ii) If T satisfies the proximal property w.r.t. S, then by this reality that ‖Sx2n − Tx2n‖ → dist(A,B) and
x2n ⇀ p, we obtain ‖Sp − Tp‖ = dist(A,B) and the proof completes.

Remark 3.15. Notice that if in aforesaid results dist(A,B) = 0, then we conclude the existence of coincidence point
for the cyclic-noncyclic pair (T; S).
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4. A coincidence point theorem in partially ordered metric spaces

Fixed point theory of partially ordered metric spaces was initiated by Nieto and Rodrı́guez-López; see
the paper [25], where the authors provided some applications to ordinary differential equations as well.

Let (X,�) be a partially ordered set. A self mapping T : X → X is said to be monotone nondecreasing iff
T(x) � T(y) whenever x, y ∈ X, x � y. In [25], the authors established the following results.

Theorem 4.1. ([25]) Let (X,�) be a partially ordered set and let there exist a metric d in X which makes (X, d) into a
complete metric space. Assume that X satisfies the condition

if a nondecreasing sequence xn → x ∈ X, then xn � x ∀n. (1)

Let T : X → X be a monotone and nondecreasing mapping for which there exists L ∈ [0, 1) such that d(Tx,Ty) ≤
Ld(x, y) for every y � x. If there exists x0 ∈ X with x0 � T(x0), then T has a fixed point.

Recently, in [1], the authors extended Theorem 1.2 and established some theorems on the existence and
convergence of fixed points, as well as, best proximity points for cyclic mappings in partially ordered sets.

In this section, we establish a new coincidence point theorem for a class of cyclic-noncyclic mappings
in the setting of partially ordered metric spaces.

Definition 4.2. ([20]) A function ϕ : [0,+∞) → [0,+∞) is called an altering distance function if the following
properties are satisfied:
(i) ϕ is continuous and strictly increasing.
(ii) ϕ(t) = 0⇔ t = 0.

Definition 4.3. (Compare to Definition 2.2 of [24]) Let (X,�) be a partially ordered set and let (A,B) be a nonempty
pair of subsets of X. Suppose that T,S : A ∪ B→ A ∪ B are two mappings such that (T,S) is a cyclic-noncyclic pair
and T(A) ⊆ S(B) and T(B) ⊆ S(A). We say that T is weakly increasing with respect to S provided that

Tx � Ty, ∀y ∈ S−1(Tx),

for all x ∈ A ∪ B.

The next theorem is the main result of this section.

Theorem 4.4. Let (X,�) be a partially ordered set and d be a metric on X. Suppose that (A,B) is nonempty pair
of subsets of X. Let T,S : A ∪ B → A ∪ B be two mappings such that (T,S) is a cyclic-noncyclic pair and for each
(x, y) ∈ A × B such that Sx and Sy are comparable we have

d(Tx,Ty) ≤ d(Sx,Sy) − ϕ(d(Sx,Sy)),

where ϕ is an altering distance function. Assume that the following hypotheses hold.
(i) A satisfies the condition (1).
(ii) S(A) is complete.
(iii) T(A) ⊆ S(B) and T(B) ⊆ S(A).
(iv) T is weakly increasing with respect to S.
Then A ∩ B is nonempty and the pair (T,S) has a coincidence point in A ∩ B.

Proof. Let x0 ∈ A. Since T(A) ⊆ S(B), there exists an element x1 ∈ B such that Tx0 = Sx1. Again, since
T(B) ⊆ S(A), there exists x2 ∈ A such that Tx1 = Sx2. Continuing this process, we can find a sequence {xn}

such that the even subsequence {x2n} and the odd subsequence {x2n−1} are in A and B, respectively and

Txn = Sxn+1, ∀n ∈N ∪ {0}.

By the fact that x1 ∈ S−1(Tx0) and x2 ∈ S−1(Tx1) and that T is weakly increasing with respect to S, we have

Sx1 = Tx0 � Tx1 = Sx2 � Tx2 = Sx3.
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Continuing this process, by induction, we get

Sx1 � Sx2 � Sx3 � ... � Sxn � Sxn+1 � ....

Since Sxn � Sxn+1 for each n ∈N, we have

d(Sxn+1,Sxn+2) = d(Txn,Txn+1) ≤ d(Sxn,Sxn+1) − ϕ(d(Sxn,Sxn+1)).

Now, if we put ρn := d(Sxn,Sxn+1) then {ρn} is a decreasing sequence and

ρn+1 ≤ ρn − ϕ(ρn), ∀n ∈N,

which implies that {ρn} is a decreasing sequence. Assume that ρn → ρ ≥ 0. Thus

ϕ(ρ) = lim
n→∞

ϕ(ρn) = 0.

Hence, ρ = 0. We now prove that {Sxn} is a Cauchy sequence. Suppose not. So there exists δ > 0 such that
for each l ≥ 1 there exist ml > nl ≥ l satisfying

d(Sxml ,Sxnl ) ≥ δ & d(Sxml−1,Sxnl ) < δ.

We now have
δ ≤ d(Sxml ,Sxnl ) ≤ d(Sxml ,Sxml−1) + d(Sxml−1,Sxnl )

< d(Sxml ,Sxml−1) + δ ≤ d(Sxl,Sxl−1) + δ.

This proves that liml→∞ d(Sxml ,Sxnl ) = δ. Besides,

d(Sxml ,Sxnl ) ≤ d(Sxml ,Sxml+1) + d(Sxml+1,Sxnl+1) + d(Sxnl+1,Sxnl )

≤ 2d(Sxl,Sxl−1) + ϕ(d(Sxml ,Sxnl )).

It follows that δ ≤ ϕ(δ) which is a contradiction. Thereby, {Sxn} is a Cauchy sequence in X and so {Sx2n} is
a Cauchy sequence in S(A). Completeness of S(A) deduces that there exists an element p ∈ S(A) such that
Sx2n → p. Let x? ∈ A be such that Sx? = p. So, Sx2n → Sx? which implies that Sxn → Sx?, because {Sxn} is
Cauchy. Since A satisfies the condition (1) we conclude that Sxn � Sx? for each n ∈N. Therefore,

d(Tx?,Sx2n+1) ≤ d(Tx?,Sx2n+2) + d(Sx2n+2,Sx2n+1)

= d(Tx?,Tx2n+1) + d(Sx2n+2,Sx2n+1)

≤ d(Sx?,Sx2n+1) − ϕ(d(Sx?,Sx2n+1)) + d(Sx2n+2,Sx2n+1).

If in above relation n→∞, then we must have d(Tx?,Tx2n)→ 0 and hence, Tx2n → Tx?. Thus

d(Sx?,Tx?) = lim
n→∞

d(Sx2n,Tx2n) = lim
n→∞

d(Sx2n,Sx2n+1) = 0.

Therefore, Sx? = Tx?, that is, x? ∈ A ∩ B is a coincidence point of the cyclic-noncyclic pair (T,S).

Corollary 4.5. Let (X,�) be a partially ordered set and d be a metric on X. Suppose that (A,B) is nonempty pair
of subsets of X. Let T,S : A ∪ B → A ∪ B be two mappings such that (T,S) is a cyclic-noncyclic pair and for each
(x, y) ∈ A × B such that Sx and Sy are comparable we have

d(Tx,Ty) ≤ Ld(Sx,Sy),

for some L ∈ [0, 1). Assume that the following hypotheses hold.
(i) A satisfies the condition (1).
(ii) S(A) is complete.
(iii) T(A) ⊆ S(B) and T(B) ⊆ S(A).
(iv) T is weakly increasing with respect to S.
Then A ∩ B is nonempty and the pair (T,S) has a coincidence point.
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The following new fixed point theorem concludes of Theorem 3.2, immediately.

Corollary 4.6. Let (X,�) be a partially ordered set and d be a metric on X. Suppose that (A,B) is nonempty pair of
subsets of X. Let T : A∪B→ A∪B be a cyclic mappings and for each (x, y) ∈ A×B such that x and y are comparable
we have

d(Tx,Ty) ≤ ϕ(d(x, y)) − d(x, y),

where ϕ is an altering distance function. Assume that the following hypotheses hold.
(i) A satisfies the condition (1).
(ii) A is complete.
(iii) Tx � TTx, ∀x ∈ A ∪ B.
Then A ∩ B is nonempty and the pair T has a fixed point in A ∩ B.

Proof. It is sufficient to consider S : A ∪ B → A ∪ B with S|A = iA and S|B = iB, where i denotes the identity
mapping, then the result obtains from Theorem 3.2.

Example 3.1. Consider X = R with the usual metric and ordinary partially order relation ≤. Suppose that

A = B = [0, 1].

Define T,S : A ∪ B→ A ∪ B by

T x =

 x+1
3 , if 0 ≤ x ≤ 1

2 ,
1
2 , if 1

2 < x ≤ 1,
& Sx = 1 − x, ∀x ∈ A.

Suppose that ϕ(t) := t
2 for all t ≥ 0. It is easy to check that

d(Tx,Ty) ≤ d(Sx,Sy) − ϕ(d(Sx,Sy)), ∀x, y ∈ A.

Also, T is weakly increasing with respect to S. Indeed, if 0 ≤ x ≤ 1
2 , then

y := S−1(Tx) = S−1(
x + 1

3
) = 1 −

x + 1
3

=
2 − x

3
.

Thus
Tx =

x + 1
3
≤

5 − x
9

= Ty,

by the fact that 0 ≤ x ≤ 1
2 . Also, if 1

2 < x ≤ 1, then for y := S−1(Tx) = 1
2 we have Tx = 1

2 = Ty, that is, Tx ≤ Ty.
It now follows from Theorem 3.3 that the pair (T,S) has a coincidence point. Hence, there exists a point
x? ∈ A such that Tx? = Sx? and this point is x? = 1

2 .

4.1. An application to integral equations
In this section we present an application of our results to an integral equation. One can refer to [2, 3, 16]

for more information about the integral equations and its applications.

Theorem 4.7. Consider the following integral equation:

2 − eu(t) +

∫ t

0
f (s,u(s))ds = 0, (2)

where f : [0, 1] ×R→ [−1,+∞) satisfies the following conditions:

(i) f (., .) is continuous on [0, 1] ×R,

(ii) f is contraction in the second variable, that is, there exists r ∈ [0, 1) such that

| f (t, x) − f (t, y)| ≤ r|x − y|, ∀t ∈ [0, 1] and x, y ∈ R.

Then the equation (2) has a solution in C+
R([0, 1]).
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Proof. Denote by CR([0, 1]), the set of all continuous functions from [0, 1] to R and define the metric
d : CR([0, 1]) × CR([0, 1])→ R by

d(x, y) := sup
t∈[0,1]

|u(t) − v(t)|.

Then (CR([0, 1]), d) is a complete metric space. Suppose that A = C+
R([0, 1]), where

C+
R([0, 1]) := {u : [0, 1]→ R continuous and u(t) ≥ 0 for all t ∈ [0, 1]}.

Then A is a nonempty and closed subset of CR([0, 1]). Define T,S : A→ A as follows:

T(v(t)) =

∫ t

0
f (s, v(s))ds + 1 & S(u(t)) = eu(t)

− 1,

Thus S is continuous on A and we have

‖Su − Sv‖∞ ≥ |S(u(t)) − S(v(t))| = |eu(t)
− ev(t)

|

= eu(t)
|1 − ev(t)−u(t)

| ≥ e|u(t)−v(t)|
− 1, ∀t ∈ [0, 1],

and so, ‖Su−Sv‖∞ ≥ e‖u−v‖∞−1. Besides, since t ≤ et
−1 for each t ≥ 0, we conclude that ‖Su−Sv‖∞ ≥ ‖u−v‖∞,

that is, S is anti-Lipschitzian on A with the constant c = 1. On the other hand, for all t ∈ [0, 1]

|T(u(t)) − T(v(t))| = |
∫ t

0
f (s,u(s))ds −

∫ t

0
f (s, v(s))ds|

≤

∫ t

0
| f (s,u(s)) − f (s, v(s))|ds ≤

∫ t

0
r|u(s) − v(s)|ds

≤ r
∫ t

0
‖u − v‖∞ds ≤ r‖u − v‖∞.

Therefore,
‖Tu − Tv‖∞ ≤ r‖u − v‖∞ ≤ r‖Su − Sv‖∞.

Moreover, T(A) ⊆ S(A). Indeed, if u ∈ A and we define v(t) := ln(u(t) + 1), then v ∈ A and

S(v(t)) = eln(u(t)+1)
− 1 = u(t).

This implies that S(A) = A and so, T(A) ⊆ A = S(A). Thereby, all the assumptions of Theorem 3.11 hold
which implies that the pair (T; S) has a coincidence point which is a solution of the problem (2).
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