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A General Matrix Application of Convex Sequences to Fourier Series

Şebnem Yıldıza

aAhi Evran University, Department of Mathematics, Arts and Science Faculty
Kırşehir- Turkey

Abstract. By using a convex sequence Bor [H. Bor, Local properties of factored Fourier series, Appl. Math.
Comp. 212 (2009) 82-85] has obtained a result dealing with local property of factored Fourier series for
weighted mean summability. The purpose of this paper is to extend this result to more general cases by
taking normal matrices in place of weighted mean matrices.

1. Introduction

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A
defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (1)

The series
∑

an is said to be summable |A, θn|k, k ≥ 1, if (see [14])
∞∑

n=1

θk−1
n

∣∣∣∆̄An(s)
∣∣∣k < ∞, (2)

where (θn) is any sequence of positive constants and

∆̄An(s) = An(s) − An−1(s). (3)

(see also [11]). Note that in the special case when A is the matrix of weighted mean, i.e.,

anv =

{ pv

Pn
, 0 ≤ v ≤ n

0, n > v,

then the summability |A, θn|k, reduces to the summability
∣∣∣N̄, pn, θn

∣∣∣
k, k ≥ 1, which also includes the summa-

bilities |N̄, pn|k and |R, pn|k for θn = Pn
pn

and θn = n, respectively, (see [2], [3]). Furthermore, if A is the matrix
of Cesaro mean of order α, with α > −1 and θn = n, then it is the same as the summability |C, α|k (see [6]),
which is one of ancestor summability methods.
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2. The Known Results

Let f be function with period 2π, and Lebesgue integrable over (−π, π). Without loss of generality, we
may assume that the constant term of the Fourier series of f is zero, that is∫ π

−π
f (t)dt = 0.

Write

f (t) ∼
∞∑

n=1

(ancosnt + bnsinnt) =

∞∑
n=1

Cn(t), (4)

where

a0 =
1
π

∫ π

−π
f (t)dt, an =

1
π

∫ π

−π
f (t)cos(nt)dt, bn =

1
π

∫ π

−π
f (t)sin(nt)dt.

It is well known that convergence of a Fourier series at any point t = x is a local property of the
generating function f , that is to say, depends only on the values of the function f in the interval (x− δ, x + δ)
for arbitrarily small δ > 0 and it is not affected by the values it takes outside the interval (see [16]).
The Fourier series play an important role in many areas of applied mathematics and mechanics. Since the
convergence of such a series at any point t = x is a local property of the generating function f , therefore the
summability of this series at the point by any regular linear summability method is also a local property
of f . Some known results have been proved dealing with local property of Fourier series (see [9]-[10],
[12]-[13]). Furthermore, Bhatt [1] has proved the following result.

Theorem 2.1. If (λn) is a convex sequence such that
∑

n−1λn is convergent, then the summability |R, log n, 1| of the
series

∑
Cn(t)λn log n at a point can be ensured by a local property.

Bor has proved the following theorems in a more general form which includes of the above result as special
cases.

Theorem 2.2. [4] Let k ≥ 1. If (λn) is a convex sequence such that
∑

pnλn is convergent, then the summability

|N̄, pn|k of the series
∞∑

n=1
Cn(t)λnPn at a point is a local property of the generating function f (t).

Theorem 2.3. [5] Let k ≥ 1. If (λn) is a convex sequence such that
∑

pnλn is convergent and (θn) is any sequence of
positive constants such that

m∑
v=1

(
θvpv

Pv

)k−1

Pv∆λv = O(1), (5)

m∑
v=1

(
θvpv

Pv

)k−1

pvλv = O(1), (6)

m∑
v=1

(
θvpv

Pv

)k−1

pv+1λv+1 = O(1), (7)

and
m+1∑

n=v+1

(
θnpn

Pn

)k−1 pn

PnPn−1
= O


(
θvpv

Pv

)k−1 1
Pv

 , (8)

then the summability |N̄, pn, θn|k of the series
∞∑

n=1
Cn(t)λnPn at a point is a local property of the generating function

f (t).
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3. The Main Result

In this paper, taking a normal matrix instead of a weighted mean matrix, we extend Theorem 2.3 to
|A, θn|k summability. Before stating the main theorem we must first introduce some further notation. Given
a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1, v a−1,0 = 0 (9)

and

â00 = ā00 = a00, (10)

ânv = ∆̄ānv = ānv − ān−1,v, n = 1, 2, ... (11)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav and ∆̄An(s) =

n∑
v=0

ânvav. (12)

With this notation we have the following theorem.

Theorem 3.1. Suppose that A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (13)

an−1,v ≥ anv, f or n ≥ v + 1, (14)

ann = O
( pn

Pn

)
. (15)

If the conditions (5)-(7) of Theorem 2.3 are satisfied and, if (θn) is any sequence of positive constants holds for the
following conditions,

∞∑
n=v+1

(θnann)k−1ân,v+1 = O
{
(θvavv)k−1

}
, (16)

and

∞∑
n=v+1

(θnann)k−1
|∆̄anv| = O

{
(θvavv)k−1avv

}
, (17)

then the series
∑

Cn(t)λnPn is summable |A, θn|k, k ≥ 1, where (λn) is as in Theorem 2.3.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2. [8] If (λn) is a convex sequence such that
∑

pnλn is convergent, then (λn) is a non-negative monotonic
decreasing sequence tending to zero,

Pnλn = O(1) as n→∞ and
∑

Pn∆λn < ∞.
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4. Proof of Theorem 3.1

Proof. Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value
of x depends on the behaviour of the function in the immediate neighbourhood of this point only. To
complete the proof of Theorem 3.1 it is sufficient to prove that if (sn) is bounded, then under the conditions
of Theorem 3.1

∑
anλnPn is summable |A, θn|k, k ≥ 1.

Let (In) denotes the A-transform of the series
∑
∞

n=1 anPnλn. Then, by definition, we have

∆̄In =

n∑
v=1

ânvavPvλv.

Applying Abel’s transformation to this sum, we have that

∆̄In =

n∑
v=1

ânvavPvλv =

n−1∑
v=1

∆v(ânvλvPv)
v∑

r=1

ar + ânnλnPn

n∑
v=1

av

=

n−1∑
v=1

∆v(ânvλvPv)sv + annλnPnsn

=

n−1∑
v=1

∆̄anvλvPvsv +

n−1∑
v=1

ân,v+1∆λvPvsv −

n−1∑
v=1

ân,v+1pv+1λv+1sv + annλnPnsn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 3.1, by Minkowski inequality, it is sufficient to show that

∞∑
n=1

θk−1
n | In,r |

k< ∞, f or r = 1, 2, 3, 4. (18)

It is noted that by using the conditions (13) and (14) we have

n−1∑
v=1

|∆̄anv| =

n−1∑
v=1

|anv − an−1,v| =

n−1∑
v=1

(an−1,v − anv) (19)

=

n−1∑
v=0

an−1,v − an−1,0 −

n∑
v=0

anv + an0 + ann

= 1 − an−1,0 − 1 + an0 + ann ≤ ann.

First, by applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, and from (19), we
have

m+1∑
n=2

θk−1
n | In,1 |

k
≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆̄anv||λv|Pv|sv|


k

≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆̄anv|λ
k
vPk

v|sv|
k

 ×
n−1∑

v=1

|∆̄anv|


k−1
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= O(1)
m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

|∆̄anv|λ
k
vPk

v

= O(1)
m∑

v=1

λk
vPk

v

m+1∑
n=v+1

(θnann)k−1
|∆̄anv|

= O(1)
m∑

v=1

(θvavv)k−1 λk
vPk

vavv = O(1)
m∑

v=1

(θvavv)k−1 λk
vPk

v
pv

Pv

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1

(λvPv)k−1 pvλv = O(1)
m∑

v=1

(
θvpv

Pv

)k−1

pvλv

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
It should be noted that the elements ânv ≥ 0 for each v,n. In fact, it is easily seen from the conditions (13)
and (14), that â00 = 1,

ânv = ān0 − ān−1,0 +

v−1∑
i=0

(an−1,i − ani) (20)

=

v−1∑
i=0

(an−1,i − ani) ≥ 0, for 1 ≤ v ≤ n, and equal to zero otherwise, and also

ân,v+1 =

n∑
i=v+1

(ani − an−1,i) =

v∑
i=0

(an−1,i − ani) (21)

≤

n−1∑
i=0

(an−1,i − ani) = ān−1,0 − ān0 + ann = ann.

Now, again using Hölder’s inequality, and (20)-(21) we have that

m+1∑
n=2

θk−1
n | In,2 |

k
≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

|ân,v+1||∆λv|Pv|sv|


k

≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

âk
n,v+1∆λvPv|sv|

k

 ×
n−1∑

v=1

∆λvPv


k−1

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

ân,v+1âk−1
n,v+1∆λvPv


= O(1)

m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

ân,v+1∆λvPv

= O(1)
m∑

v=1

∆λvPv

m+1∑
n=v+1

(θnann)k−1 ân,v+1

= O(1)
m∑

v=1

(θvavv)k−1 ∆λvPv

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1

∆λvPv

= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Using the fact that Pv < Pv+1 and (20)-(21), we have that

m+1∑
n=2

θk−1
n | In,3 |

k
≤

m+1∑
n=2

θk−1
n

n−1∑
v=1

|ân,v+1|pv+1λv+1 |sv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

âk
n,v+1pv+1λv+1

 ×
n−1∑

v=1

pv+1λv+1


k−1

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

âk−1
n,v+1ân,v+1pv+1λv+1


= O(1)

m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

ân,v+1pv+1λv+1


= O(1)

m∑
v=1

pv+1λv+1

m+1∑
n=v+1

(θnann)k−1 ân,v+1

= O(1)
m∑

v=1

(θvavv)k−1 pv+1λv+1

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1

pv+1λv+1 = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Finally, since Pnλn = O(1) as n→∞, we have that

m∑
n=1

θk−1
n | In,4 |

k =

m∑
n=1

θk−1
n ak

nnλ
k
nPk

n|sn|
k

= O(1)
m∑

n=1

θk−1
n ak−1

nn λ
k−1
n λnPk

n
pn

Pn

= O(1)
m∑

n=1

(θnann)k−1 pnλn

= O(1)
m∑

n=1

(
θnpn

Pn

)k−1

pnλn = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.

This completes the proof of Theorem 3.1.

5. Conclusions

We can apply Theorem 3.1 to weighted mean A = (anv) is defined as anv =
pv

Pn
when 0 ≤ v ≤ n, where

Pn = p0 + p1 + ... + pn. We have that,

ānv =
Pn − Pv−1

Pn
ân,v+1 =

pnPv

PnPn−1
.

It may be noted that if we take A = (N̄, pn), then the conditions (13)-(15) are satisfied automatically and the
conditions (16) and (17) are reduced to (8). The following results can be easily verified.



Ş. Yıldız / Filomat 32:7 (2018), 2443–2449 2449

1. If we take θn = Pn
pn

and anv =
pv

Pn
in Theorem 3.1, then we have Theorem 2.3.

2. If we take θn = n and anv =
pv

Pn
in Theorem 3.1, then we obtain a theorem dealing with |R, pn|k summability.

3. If we put θn = n, anv =
pv

Pn
and pn = 1 for all values of n in Theorem 3.1, then we have a result for |C, 1|k

summability.
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