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Abstract. In this paper we consider the eigenvalue problem for fourth order ordinary differential equation
that describes the bending vibrations of a homogeneous rod, in cross-sections of which the longitudinal
force acts, the left end of which is fixed rigidly and on the right end an inertial mass is concentrated. We
characterize the location of the eigenvalues on the real axis, we investigate the structure of root spaces and
oscillation properties of eigenfunctions and their derivatives, we study the basis properties in the space
Lp, 1 < p < ∞, of the system of eigenfunctions of considered problem.

1. Introduction

We consider the following boundary value problem problem

`(y)(x) ≡ y(4)(x) − (q(x)y′(x))′ = λy(x), 0 < x < 1, (1)

y(0) = y′(0) = 0, (2)

y′′(1) − a1λy′(1) = 0 (3)

Ty(1) − a2λy(1) = 0, (4)

where λ ∈ C is spectral parameter, Ty ≡ y′′′ − qy′, q(x) is positive and absolutely continuous function on
[0, 1], a1 and a2, are real constants.

The problem (1)-(4) arises when variables are separated in the dynamical boundary value problem
describing bending vibrations of a homogeneous rod, in cross-sections of which the longitudinal force acts,
the left end of which is fixed rigidly and on the right end an inertial mass is concentrated (see [19, Ch. 8,
§ 5]).

Boundary value problems for ordinary differential operators with spectral parameter in the boundary
conditions have been considered in various formulations by many authors (see, e.g., [2-9, 12, 17, 18, 20-23,
25-30, 32-36]). In [2, 5, 7, 20-23, 28, 30, 32, 33, 36] studied the basis property in various function spaces
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of the system of root functions of the Sturm-Liouville problem with spectral parameter in the boundary
conditions. Problem (1)-(4) was considered in [3, 9, 25-27, 29] for a1 = 0, in [2] for a2 = 0, and in [6]
for a1 > 0, a2 < 0. In these papers the oscillation properties of eigenfunctions (and their derivatives)
were investigated. Moreover, in [3, 4, 6, 26, 27] the basis properties of the system of root functions in
Lp(0, 1), 1 < p < ∞, also studied, necessary and sufficient conditions for the basicity of subsystems of root
functions is obtained.

Note that the signs of the parameters a1 and a2 play an important role. If a1 > 0 and a2 < 0, then problem
(1)-(4), can be treated as a spectral problem for a self-adjoint operator in the Hilbert space H = L2(0, 1)⊕C2.
If a1 < 0 and a2 < 0, then this problem is equivalent to a spectral problem for the self-adjoint operator in the
Pontryagin space Π1 = L2(0, 1) ⊕C2 with the corresponding inner product (e.g., see [4, 7, 13, 17, 32]). In the
case a1 > 0 and a2 < 0 all eigenvalues of problem (1)-(4) are positive and simple. But in the case a1 < 0 and
a2 < 0 we show that problem (1)-(4) have one negative and simple eigenvalue and a sequence of positive
and simple eigenvalues tending to infinity.

Throughout what follows we shall assume that the following conditions are fulfilled:

a1 < 0, a2 < 0. (5)

In the present paper we study the location of the eigenvalues on the real axis, the structure of the root
subspaces, the oscillation properties of the eigenfunctions and their derivatives, and the basis property in
the space Lp(0, 1), 1 < p < ∞, of the system of root functions of the boundary value problem (1)-(4) under
condition (5).

2. Preliminaries

Consider the boundary condition

y′(1) cosγ − y′′(1) sinγ = 0, (6)

where γ ∈ [0, π2 ].
Alongside the boundary value problem (1)-(4) we shall consider the spectral problem (1), (2), (6), (4). A

more general form of the problem (1), (2), (6), (4) has been considered in [26, 27], where the authors study
the oscillation properties of the eigenfunctions and the basis properties of subsystems of root functions in
the space Lp, 1 < p < ∞.

The next theorem is a special case of the central result of [26].

Theorem 2.1. [26, Theorem 5.1] The eigenvalues of the boundary value problem (1), (2), (6), (4) are real, simple
and form an infinitely increasing sequence {λk(γ)}∞k=1 such that λk(γ) > 0 for all k ∈N. Moreover, the eigenfunction
u(γ)

k (x) corresponding to the eigenvalue λk(γ) has k − 1 simple zeros in the interval (0, 1).

In view of [6, Theorem 3.1] for each fixed λ ∈ C there exists a unique (up to a constant factor) nontrivial
solution y(x, λ) of problem (1), (2), (4). The solution y(x, λ) for each fixed x ∈ [0, 1] is an entire function of λ .

LetAk = (λk−1(0), λk(0)) , k ∈N, where λ0(0) = −∞.
It is obvious that the eigenvalues λk(0) and λk(π/2), k ∈ N, of the boundary value problem (1), (2), (6),

(4) for γ = 0 and γ = π/2 are zeros of the entire functions y′(1, λ) and y′′(1, λ), respectively. We observe that
the function

F(λ) = y′′(1, λ)
/
y′(1, λ)

is will defined for

λ ∈ A ≡

 ∞⋃
k=1

Ak

⋃ (C\R),
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and is meromorphic function of finite order, λk(π/2) andλk(0), k ∈N, are the zeros and poles of this function,
respectively.

In Eq. (1) we set λ = ρ4. As is known (see [31, Ch. 2, § 4.5, Theorem 1]), in each subdomain T of the
complex ρ-plane Eq. (1) has four linearly independent solutions zk(x, ρ), k = 1, 2, 3, 4, which are regular
with respect to ρ (for sufficiently large ρ) and satisfy the relations

z(s)
k (x, ρ) =

(
ρωk

)s eρωkx [
1 + O

(
1
/
ρ
)]
, k = 1, 2, 3, 4, s = 0, 1, 2, 3, (7)

where ωk, k = 1, 2, 3, 4, are the distinct fourth roots of unity.
We shall seek the solution y(x, λ) in the following form:

y(x, λ) =

4∑
k=1

Ckzk(x, ρ),

where Ck, k = 1, 2, 3, 4, are constants depending only on λ . Taking into account (7) and boundary
conditions (2) and (4), we obtain for large |λ | the asymptotic estimate

y (x, λ) =
(
sinρx − cosρx + e−ρx

−

−
√

2 sin
(
ρ − π/4

)
eρ(x−1)

) (
1 + O

(
1
ρ

))
.

(8)

It follows by (8) that

F(λ) = ρ
cosρ − sinρ

cosρ

(
1 + O

(
1
ρ

))
. (9)

By virtue of (9) we obtain the following asymptotic formulae

F(λ) =
√

2 4
√
|λ|

(
1 + O

(
1

4√
|λ|

))
as λ→ −∞. (10)

Hence, in view of (10) we have

lim
λ→−∞

F(λ) = +∞ . (11)

Remark 2.2. It follows by (8) that the number of zeros in (0, 1) of solution y(x, λ) of problem (1), (2), (4)
tends to +∞ as λ→ ±∞.

Lemma 2.3. [6, Lemma 3.3, formula (3.5)] The following formula holds:

dF(λ)
dλ

= −
1

y′2(1, λ)


1∫

0

y2(x, λ)dx − a2y2(1, λ)

 , λ ∈ A. (12)

Remark 2.4. It follows by (11) and (12) that y′(1, λ)y′′(1, λ) > 0 for λ ∈ (−∞, λ1(π/2)).

Lemma 2.5. The following representation holds:

F(λ) = F(0) +

∞∑
k=1

λck

λk(0) (λ − λk(0))
, (13)

where ck = res
λ=λk(0)

F(λ) > 0, k ∈N.
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Proof. The proof of this lemma is similar to that of [8, Propostion 4].

Corollary 2.6. The function F(λ) is concave in the intervalA1.

Proof. By differentiating the right-hand side of relation (13) with respect to λ, we obtain

F′(λ) = −

∞∑
k=1

ck

(λ − λk(0))2 , F′′(λ) = 2
∞∑

k=1

ck

(λ − λk(0))3 .

which implies that F′′(λ) < 0 for λ ∈ (−∞, λ1(0)) = A1. The proof of Corollary 2.1 is complete.
By τ(λ) and s(λ) we denote the number of zeros in the interval (0, 1) of functions y(x, λ) and y′(x, λ),

respectively.

Lemma 2.7. [6, Theorem 3.2] (see also [3, Lemma 2.11]) If λ ∈ (0, λ1(0)], then τ(λ) = s(λ) = 0, if λ ∈ (λk−1(0),
λk(π/2)) and k ≥ 2, then τ(λ) = k − 2 or τ(λ) = k − 1, if λ ∈ [λk(π/2), λk(0)] and k ≥ 2, then τ(λ) = k − 1, if
λ ∈ (λk−1(0), (λk(0)] and k ≥ 2, then s(λ) = k − 1.

3. Main properties of eigenvalues of problem (1)-(4)

Lemma 3.1. All eigenvalues of the boundary value problem (1)-(4) are real.

Proof. It is easy to see that the eigenvalues of problem (1)-(4) are the roots of the equation

y′′(1, λ) − a1λ y′(1, λ) = 0. (14)

If λ is a nonreal eigenvalue of problem (1)-(4), then λ̄ is also eigenvalue of this problem, because the
coefficients q(x), a1, a2 are real. In this case y(x, λ̄) = y(x, λ), so that if equality (14) holds for λ, then it also
holds for λ̄ .

By virtue of (1) we have(
Ty(x, µ)

)′ y(x, λ) −
(
Ty(x, λ)

)′ y(x, µ) = (µ − λ)y(x, µ)y(x, λ).

Integrating this relation from 0 to 1 (using the formula for the integration by parts) and taking into account
boundary conditions (2) and (4) we obtain

−y′′(1, µ)y′(1, λ) + y′′(1, λ)y′(1, µ) = (µ − λ)

 1∫
0

y(x, µ) y(x, λ)dx − a2y(1, µ) y(1, λ)

 . (15)

Setting µ = λ̄ in (15), we have

− y′′(1, λ) y′(1, λ) + y′′(1, λ) y′(1, λ) = (λ̄ − λ)

 1∫
0
|y(x, λ)|2dx − a2|y(1, λ)|2

 . (16)

By virtue of (3) from (16) we get

− a1 (λ̄ − λ) |y′(1, λ)|2 = (λ̄ − λ)


1∫

0

|y(x, λ)|2dx − a2|y(1, λ)|2

 .
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Since λ̄ , λ, it follows that

1∫
0

|y(x, λ)|2dx + a1 |y′(1, λ)|2 − a2|y(1, λ)|2 = 0. (17)

In the other hand multiplying both sides of equation (1) to y(x, λ), and integrating resulting equality
from 0 to 1, using the formula of integration by parts and taking into account conditions (2)-(4) we find

1∫
0
|y′′(x, λ)|2dx +

1∫
0

q(x)|y′(x, λ)|2dx = λ

 1∫
0
|y(x, λ)|2dx + a1|y′(1, λ)|2 − a2|y(1, λ)|2

 (18)

By (17) from (18) we obtain

1∫
0

|y′′(x, λ)|2dx +

1∫
0

q(x)|y′(x, λ)|2dx = 0.

which implies (by (2)) that y(x, λ) ≡ 0. The resulting contradiction shows that the eigenvalues of problem
(1)-(4) are real. The proof of this lemma is complete.

Lemma 3.2. The eigenvalues of the boundary value problem (1)-(4) are simple and form an at most countable set
without finite limit point.

Proof. The entire function occurring on the left-hand side in equation (14) does not vanish for non-real
λ. Consequently, it does not vanish identically. Therefore, its zeros form an at most countable set without
finite limit point.

Let us show that Eq. (14) has only simple roots. Indeed, if λ = λ̃ is a multiple root of (14), then

y′′(1, λ̃) − a1λ̃ y′(1, λ̃) = 0, (19)

∂y′′(1, λ̃)
∂λ

− a1y′(1, λ̃) − a1λ̃
∂y′(1, λ̃)
∂λ

= 0. (20)

Dividing both sides of relation (15) by µ − λ (µ , λ) and passing to the limit as µ→ λ we obtain

−
∂y′′(1,λ)
∂λ y′(1, λ) + y′′(1, λ) ∂y′(1,λ)

∂λ =
1∫

0
y2(x, λ)dx − a2y2(1, λ). (21)

Setting λ = λ̃ in equality (21), we have

−
∂y′′(1,λ̃)
∂λ̃

y′(1, λ̃) + y′′(1, λ̃) ∂y′(1,λ̃)
∂λ̃

=
1∫

0
y2(x, λ̃)dx − a2y2(1, λ̃). (22)

Taking (19) and (20) into account from (22) we obtain

1∫
0

y2(x, λ̃)dx − a2y2(1, λ̃) + a1y′2(1, λ̃) = 0. (23)

In the other hand, since λ̃ is a real eigenvalue it follows from (18) that

1∫
0

y′′2(x, λ̃)dx +
1∫

0
q(x)y′2(x, λ̃)dx = λ̃

 1∫
0

y2(x, λ̃)dx − a2y2(1, λ̃) + a1y′2(1, λ̃)

 . (24)
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Hence, by virtue of (23) and (24), we have

1∫
0

y′′2(x, λ̃)dx +

1∫
0

q(x)y′2(x, λ̃)dx = 0

which implies (by (2)) that y(x, λ̃) ≡ 0. The resulting contradiction completes the proof of Lemma 3.2.
By (2) from (18) follows directly the following assertion.

Lemma 3.3. λ = 0 is not an eigenvalue of the boundary value problem (1)-(4).

By virtue of Property 1 in [16] and formula (12), we have

λ1

(
π
2

)
< λ1(0) < λ2

(
π
2

)
< λ2(0) < . . . . (25)

Remark 3.4. If λ is an eigenvalue of problem (1)-(4), then by relation (25), we have y′(1, λ) , 0.

By virtue of Remark 3.4, each root (with regard of multiplicities) of equation (14) is a root of the equation

F(λ) = a1λ (26)

as well.

Lemma 3.5. The spectral problem (1)-(4) can has only one eigenvalue in each intervalAk, k = 2, 3, 4, . . . .

Proof. Let λ̃ ∈ Ak0 is an eigenvalue of problem (1)-(4) for some k0 ∈N\{1}. Then it follows from (24) that

1∫
0

y2(x, λ̃) dx − a2y2(1, λ̃) + a1y′2(1, λ̃) > 0.

Using formula (12) from this relation we obtain

d
dλ

(F(λ) − a1λ)
∣∣∣∣∣
λ=λ̃

< 0.

Since F(λ̃)− a1λ̃ = 0 it follows from this inequality that the function F(λ)− a1λ takes zero value only strictly
decreasing in the intervalAk0 . Consequently, equation (26) has a unique solution λ̃ in the intervalAk0 . The
proof of Lemma 3.5 is complete.

4. Oscillatory properties of eigenfunctions of the boundary problem (1)-(4)

Lemma 4.1. Let y(x, λ) is a solution of problem (1), (2), (4) and λ < 0. Then the function y(x, λ) has no multiple
roots in the interval (0, 1).

Proof. We suppose that x0 ∈ (0, 1) and λ0 < 0 such that y(x0, λ0) = y′(x0, λ0) = 0. Then the function
y(x, λ0) solves the Eq. (1) in (0, x0) with the boundary conditions (2) and y(x0) = y′(x0) = 0 which contradicts
the condition λ0 < 0 in view of [16, Theorem 5.4]. The proof of this lemma is complete.

In view of Remarks 2.2 and 2.4, as λ < 0 varies, the functions y(x, λ) and y′(x, λ) can lose or gain
zeros only by these zeros leaving or entering the interval [0, 1] only through the endpoint x = 0. If
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these zeros pass through the point x = 0, then x = 0 would be a triple zero of function y(x, λ), i.e.
y(0, λ) = y′(0, λ) = y′′(0, λ) = 0.

Let λ < 0 and µ is a real eigenvalue of the following boundary value problem

`(y)(x) = λy(x), x ∈ (0, 1),
y(0) = y′(0) = y′′(0) = Ty(1) − a2λy(1) = 0. (27)

The oscillation index of this eigenvalue is the difference between the number of zeros of the solution y(x, λ)
of the problem (1), (2), (4) for λ = µ − 0 belonging to the interval (0, 1) and the number of the same zeros
for λ = µ + 0 [9]. From this definition, it directly follows that the number of zeros of the function y(x, λ)
belonging to the interval (0, 1) is equal to the sum of the oscillation indices of all eigenvalues of problem
(27) belonging to the interval (λ, 0).

Lemma 4.2. Then there exists ζ < 0 such that the eigenvalues µk, k = 1, 2, . . . , of problem (27) lying on the ray
(−∞, ζ) and enumerated in the decreasing order are simple, admit the asymptote

µk = −4
(
kπ +

π
2

)4
+ o(k4).

and have oscillation index 1.

Proof. The proof of this lemma is similar to that of [9, Theorem 4.1] by using asymptotic formula (8).
Let λ < 0 and i(µk) be the oscillation index of the eigenvalue µk, k ∈ N of problem (27). Then, by

condition (2), it follows from the above consideration that

s(λ) = τ(λ) =
∑

µk∈ (λ,0)

i (µk). (28)

Theorem 4.3. There exists an unboundedly increasing sequence {λk}
∞

k=1 of eigenvalues of the boundary value problem
(1)-(4); moreover, λ1 < 0 and λk > 0 for k ≥ 2. The corresponding eigenfunctions yk(x), k = 1, 2, . . . and their
derivatives have the following oscillation properties: the functions yk(x) and y′k(x) for k ≥ 3 have exactly k − 2 simple
zeros, for k = 2 have no zeros and for k = 1 have

∑
µk∈ (λ1,0)

i (µk) simple zeros in the interval (0, 1).

Proof. Recall [see (26)] that the eigenvalues of problem (1)-(4) are the roots of the equation F(λ) = a1λ.
Since a2 < 0 it follows from Lemma 2.3 that F(λ) =

y′′(1,λ)
y′(1,λ) is a continuous decreasing function in the interval

Ak = (λk−1(0), λk(0)) , k ∈ N. Taking into account of the relations (11), (12) and the representation (13), we
have

lim
λ→λk−1(0)+ 0

F(λ) = +∞,

lim
λ→λk(0)− 0

F(λ) = −∞ .

Hence the function F(λ) assumes each value in (−∞, +∞) at a unique point in the interval Ak, k ∈ N.
Moreover, F(λ) > 0 if λ ∈ (λk−1(0), λk(π/2)) and F(λ) < 0 if λ ∈ (λk(π/2), λk(0)), k = 1, 2, . . . . Since a1 < 0
(see (5)), it follows that the function G(λ) = a1λ is strictly decreasing in the interval (−∞,+∞). Consequently,
G(λ) > 0 if λ < 0 and G(λ) < 0 if λ > 0.

By the relations λ1(π/2) > 0, F(λ1(π/2)) = 0 and by (12) we have F(0) > 0. In view of Corollary 2.6 the
function F(λ) is concave inA1.

It follows from the preceding considerations that in the intervalA1 Eq. (26) has two roots λ1 ∈ (−∞, 0)
and λ2 ∈ (λ1(π/2), λ1(0)). Hence, by Lemma 2.7 and formula (28) we have τ(λ2) = s(λ2) = 0 and τ(λ1) =
s(λ1) =

∑
µk∈ (λ1,0)

i (µk). Moreover, by virtue of Lemma 3.5, in the interval Ak, k = 2, 3, . . . , Eq. (26) has unique
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root λk+1 ∈ (λk(π/2), λk(0)). Hence, it follows from Lemma 2.7 that m(λk+1) = s(λk+1) = k − 1, k = 2, 3, . . . .
The proof of Theorem 4.3 is complete.

From [27; § 3, formulas (3.3) and (3.4)] follows the asymptotic formulas

4
√
λk(0) = (k − 1/2)π + O (1/k) , (29)

4
√
λk(π/2) = (k − 3/4)π + O (1/k) , (30)

y(0)
k (x) = sin(k − 1/2)πx − cos(k − 1/2)πx + e−(k−1/2)πx + (−1)ke−(k−1/2)π(1−x) + O( 1/k), (31)

y(π/2)
k (x) = sin(k − 3/4)πx − cos(k − 3/4)πx + e−(k−3/4)πx + O(1/k), (32)

where relations (31)-(32) hold uniformly for x ∈ [0, 1].

Theorem 4.4. The following asymptotic formulas hold:

4
√
λk = (k − 3/2)π + O (1/k) , (33)

yk(x) = sin(k − 3/2)πx − cos(k − 3/2)πx + e−(k−3/2)πx + (−1)ke−(k−3/2)π(1−x) + O( 1/k), (34)

where relation (34) holds uniformly for x ∈ [0, 1].

Proof. The proof of this theorem is similar to that of [27, Theorem 3.1].

5. Basis property of the system of eigenfunctions of the boundary value problem (1)-(4) in the space
Lp(0, 1), 1 < p < ∞

In the Hilbert space H = L2(0, 1) ⊕ C2 with the inner product

(û, v̂) = ({y,m,n}, {v, s, t}) = (y, v)L2 + | a1|
−1ms̄ + |a2|

−1nt̄, (35)

we define the operator

L=̂L{y,m,n} = {
(
Ty(x)

)′ , y′′(1), Ty(1)},

on the domain

D(L) =
{
{y (x), m, n} : y ∈W4

2(0, 1),
(
Ty(x)

)′
∈ L2(0, 1),

y(0) = y′(0) = 0, m = a1y′(1), n = a2y(1)
}

dense everywhere in H (see [33, 35]), where (u, v)L2 is an inner product in L2(0, 1) and Wp
l (0, 1) is the Sobolev

function space having a generalized (in the sense of distributions) lth derivative in Lp(0, 1). Obviously, the
operator L is well defined in H. Problem (1)-(4) takes the form

Lŷ = λŷ, ŷ ∈ D(L),

i.e., the eigenvalues λk, k ∈ N, of the operator L and problem (1)-(4) coincide, and between the eigenfunc-
tions, there is a one-to-one correspondence

yk(x)↔ {yk(x), mk, nk}, mk = a1y′k(1), nk = a2yk (1).
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Since a1 < 0 and a2 < 0, L is a closed (nonself-adjoint) operator in H with compact resolvent. In this case
we define an operator J : H→ H as the following:

J{y,m; n} = {y,−m,n}.

J is a unitary, symmetric operator on H. Its spectrum consists of two eigenvalues: − 1 with multiplicity
1, and + 1 with infinite multiplicity. This operator generates the Pontryagin space Π1 = L2(0, 1) ⊕ C2 with
inner product [13]

[û, v̂] = (û, v̂)Π1 = ({y,m,n}, {u, s, t})Π1 = (u, v)L2 + a−1
1 ms̄ − a−1

2 nt̄, (36)

Theorem 5.1. L is J−self-adjoint operator in Π1.

Proof. JL is self-adjoint in H by virtue [17, Theorem 2.2]. Then, J-self-adjointness of L on Π1 follows from
[14, Section 3, Proposition 30].

Theorem 5.2. If L∗ be the adjoint operator of L in H, then L∗ = JLJ. The system of eigenvectors {ŷk}
∞

k=1, ŷk =
{yk,mk,nk}, of the operator L (after normalizing) forms a Riesz basis in H.

Proof. The proof of the first part of this theorem follows from [14, Section 3, Propostion 50] and the
second part - from [15].

Each element ŷk = {yk,mk,nk}, k ∈ N, where mk = a1y′k(1) and nk = a2yk(1), of the system of root vectors
{ŷk}

∞

k=1 of the operator L satisfies the relation

Lŷk = λk ŷk. (37)

An element v̂∗k = {v∗k, s
∗

k, t
∗

k} of the system of eigenvectors {v̂∗k}
∞

k=1 of the operator L∗ satisfies the relation

L∗v̂∗k = λkv̂∗k. (38)

By Theorem 5.2 and relations (37) and (38), we have

v̂∗k = Jŷk, k ∈N. (39)

Since operator L is J-self-adjoint in Π1, it follows that the eigenvectors ŷk and ŷl, k , l, of this operator
corresponding to eigenvalues λk and λl are J-orthogonal in Π1; consequently, by (36), we obtain

[ŷk, ŷl] = 0. (40)

Since for each k ∈N the eigenvalue λk of operator L is simple it follows by (26) that

F′(λk) − a1 , 0. (41)

Using Remark 3.4 from (12) we obtain

||yk||
2
L2

+ a1y′2k (1) − a2y2
k(1) , 0.

By (36) it follows from this relation that

[ŷk, ŷk] = ||yk||
2
L2

+ a1y′2k (1) − a2y2
k(1) , 0. (42)

As an immediate consequence of (36), (39), (40) and (42) we obtain the following result.

Lemma 5.3. An element v̂k = {vk, sk, tk} of the system {v̂k}
∞

k=1 adjoint to the system {ŷk}
∞

k=1 is given by the formula

v̂k = δ−1
k ŷk, k ∈N, (43)

where δk = [ŷk, ŷk], k ∈N.
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Let r and l be arbitrary fixed positive integers, and let

∆r, l =

∣∣∣∣∣ sr sl
tr tl

∣∣∣∣∣ . (44)

Theorem 5.4. If ∆r, l , 0, then the system of eigenfunctions {yk(x)}∞k=1, k,r, l of problem (1)-(4) forms a Riesz basis in
the space L2(0, 1); if ∆r, l = 0, then this system is incomplete and nonminimal in the space L2(0, 1).

Proof. The proof of this theorem follows from [1, Theorems 3.1, 3.2 and Corollary 3.1] on the base of
Theorem 5.2.

For brevity, we introduce the notation σr, l = a1a2δ−1
r δ
−1
l y′r(1)y′l (1). Then, by Remark 3.4 and (43) it follows

from (44) that

∆r, l = δ−1
r δ
−1
l

∣∣∣∣∣ mr ml
nr nl

∣∣∣∣∣ = σr, l

{
yr(1)
y′r(1)

−
yl(1)
y′l (1)

}
. (45)

Let

∆̃r, l =

{
yr(1)
y′r(1)

−
yl(1)
y′l (1)

}
.

Then it follows from (45) that

∆r, l = σr, l ∆̃r, l. (46)

Theorem 5.5. If ∆̃r, l , 0, then the system of eigenfunctions {yk(x)}∞k=1, k,r, l of problem (1)-(4) forms a basis in the
space Lp(0, 1), 1 < p < ∞ (a Riesz basis for p = 2); if ∆̃r, l = 0, then this system is incomplete and nonminimal in the
space Lp(0, 1), 1 < p < ∞.

Proof. The proof of this theorem is similar to that of [27, Theorem 4.1] by using (46), Theorem 5.4 and
asymptotic formulas (29)-(34).
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