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Available at: http://www.pmf.ni.ac.rs/filomat

Note on the Uniqueness Holomorphic Function on the Unit Disk
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Abstract. Let f be an holomorphic function the unit disk to itself. We provide conditions on the local
behavior of f along boundary near a finite set of the boundary points that requires f to be a finite Blaschke
product.

1. Introduction

In 1994, Daniel M. Burns and Steven G. Krantz ([1]) proved that if the holomorphic function f : D→ D
satisfies the condition

f (z) = z +O
(
(z − 1)4

)
z→ 1, z ∈ D, (1.1)

then f (z) ≡ z on the unit disk.
The example

f (z) = z +
1

10
(z − 1)3

shows that the exponent 4 in (1.1) can not be replaced by 3. In fact, the proof shows that O
(
(z − 1)4

)
can be

replaced by o
(
(z − 1)3

)
.

In 2001, Dov Chelst ([2]), in turn, established the following generalization of this result.

Theorem 1.1. Let f : D→ D be a holomorphic function from the disk to itself. In addition, let φ : D→ D be a finite
Blaschke product which equals τ ∈ ∂D on a finite set A f ⊂ ∂D. If

(i) for a given γ0 ∈ A f ,

f (z) = φ(z) + o
(
(z − γ0)3

)
, as z→ γ0,

(ii) for all γ ∈ A f −
{
γ0

}
,

f (z) = φ(z) +O
(
(z − γ)kγ

)
, for some kγ ≥ 2 as z→ γ,

then f (z) ≡ φ(z) on the disk.
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Received: 22 May 2017; Accepted: 31 October 2017
Communicated by Miodrag Mateljević
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It was shown that the above condition kγ ≥ 2 can not be replaced by kγ ≥ 1.
In ([3]) and ([4]), this problem was generalized in the following aspects:
a) more general majorant was taken instead of the usual power majorant in (i) and (ii);
b) in (i) and (ii), the conditions z→ γ, which usually stated approaching from inside of the disk before,

were taken as the behavior of the function f along the boundary.
In 2015, M.Mateljević proved Theorem 1 in ([5]), where instead of Blaschke product was taken inner

function and in (i) and (ii), the behavior of the function f along the boundary was considered.
Recently similar problems were investigated in ([6]) and ([7]). For more detail literature and the other

types of the results, we refer to ([8]), ([9]), ([5]), ([10]) and references therein.
In the present study, we refined the results in ([4]). In particular, from our proofs it is followed that

O(z − γ)kγ in Theorem 1.1 can be replaced by o(z − γ).
We propose the following assertion for the proofs of our results.
(A) Let u = u(z) be a positive harmonic function on the open disk U(z, r0), r0 > 0. Suppose that for

θ0 ∈ [0, 2π), lim
r→r0

u(reiθ0 ) = 0 is satisfied. Then

lim inf
r→r0

u(reiθ0 )
r0 − r

> 0.

This assertion follows from Harnack inequality. For more general results and related estimates, see also
([11, Theorem 1.1]), ([12]), ([13]).

(B) Let the function u be a subharmonic function in the unit disk, E is the finite subset of the unit circle
∂D such that

lim sup
z→ς, z∈D

u(z) ≤ 0, ∀ς ∈ ∂D\E,

and

u(z) = o(|ς − z|−1) as z→ ς for each ς ∈ E,

then u(z) ≤ 0 for all z ∈ D.
The basic exposition for this version of Phragmen-Lindelöf Princible can be found in ([14, pp. 79-90]),

([15, pp. 176-186]) and ([16, Chapter 4, section 8 and Chapter 5, section 9]).
LetM be a class of functions µ : (0,+∞)→ (0,+∞) for each of which logµ(x) is concave with respect to

log x. For each function µ ∈M the limit

µ0 = lim
x→0

logµ(x)
log x

exists, and −∞ < µ0 ≤ +∞. Here, the function µ ∈M is called bilogaritmic concave majorant ([17]).
N be the class of sets with zero inner capacity ([18, p.210]).

2. Main Results

Let d(z,A) be the distance from the point z to the set A.

Theorem 2.1. Let φ : D → D be a finite Blaschke product which equals τ ∈ ∂D on a finite set A f ⊂ ∂D and f
: D → D be a holomorphic function that is continuous on D ∩

{
z : d(z,A f ) < δ0

}
for some δ0, µ1, µ2

∈ M, µ1
0 > 3,

µ2
0 > 1. Suppose that the following conditions are satisfied

(i) for a given γ0 ∈ A f

f (z) = φ(z) +O(µ1(
∣∣∣z − γ0

∣∣∣)), z ∈ ∂D, z→ γ0,
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(ii) for all γ ∈ A f \
{
γ0

}
,

f (z) = φ(z) +O(µ2(
∣∣∣z − γ∣∣∣)), z ∈ ∂D, z→ γ.

Then f (z) ≡ φ(z) on D.

Following result is generalization of Theorem 2.1.

Theorem 2.2. Let φ : D → D be a finite Blaschke product which equals τ ∈ ∂D on a finite set A f ⊂ ∂D and
f : D→ D be a holomorphic function, Q ∈ N, µ1, µ2

∈M, µ1
0 > 3, µ2

0 > 1. Let the following conditions are satisfied
(i) for a given γ0 ∈ A f ,

lim sup
z→ζ,z∈D

∣∣∣ f (z) − φ(z)
∣∣∣ = O(µ1(

∣∣∣ζ − γ0

∣∣∣)), ζ ∈ ∂D \Q, ζ→ γ0, (2.1)

(ii) for all γ ∈ A f \
{
γ0

}
,

lim sup
z→ζ,z∈D

∣∣∣ f (z) − φ(z)
∣∣∣ = O(µ2(

∣∣∣ζ − γ∣∣∣)), ζ ∈ ∂D \Q, ζ→ γ (2.2)

Then f (z) ≡ φ(z) on D.

Proof. Let the assumptions of Theorem 2.1 are satisfied. By the condition (2.1), there exist a number C1 > 0
and δ0 ∈ (0, 1) such that

lim sup
z→ζ,z∈D

∣∣∣ f (z) − φ(z)
∣∣∣ = C1µ

1(
∣∣∣ζ − γ0

∣∣∣)), ζ ∈ ∂D \Q,
∣∣∣ζ − γ0

∣∣∣ ≤ δ0.

Let us denote k and C2 as follows

k := sup
|z−γ0|=δ0, z∈D

∣∣∣ f (z) − φ(z)
∣∣∣ ,

C2 := max
{

k
µ1 (δ0)

,C1

}
.

It can be easily seen that for all points of the set ∂
(
D ∩U(γ0, δ0)

)
\Q, the inequality

lim sup
z→ζ,z∈D

∣∣∣ f (z) − φ(z)
∣∣∣ = C2µ

1(
∣∣∣ζ − γ0

∣∣∣))
is satisfied.
Applying Theorem 3 in ([17]) (see also ([19]), ([20])) to the set D∩U(γ0, δ0) and to the function f (z)−φ(z),

we get∣∣∣ f (z) − φ(z))
∣∣∣ ≤ C2µ

1(
∣∣∣z − γ0

∣∣∣)), ∀z ∈ D ∩U(γ0, δ0). (2.3)

From µ1
0 > 3 there are some positive constants ε and σ < min(δ0, 1) such that

logµ1(x)
log x

≥ 3 + ε ∀x ∈ (0, σ)

and

logµ1(x) ≤ (3 + ε) log x, ∀x ∈ (0, σ)

In other words,
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µ1(x) ≤ x3+ε, ∀x ∈ (0, σ). (2.4)

From the inequalities (2.3) and (2.4) we take the inequality

∣∣∣ f (z) − φ(z))
∣∣∣ ≤ C2

∣∣∣z − γ0

∣∣∣3+ε , ∀z ∈ D ∩U(γ0, σ). (2.5)

Similarly, for any point γ ∈ A f \
{
γ0

}
, from the condition µ2

0 > 1 and (2.2) we have

∣∣∣ f (z) − φ(z))
∣∣∣ ≤ C3

∣∣∣z − γ∣∣∣1+ε , ∀z ∈ D ∩U(γ, σ1) (2.6)

with some constants C3 and σ1.
Consider the following harmonic function in the unit disk

ψ(z) =<
(

1 + f (z)
1 − f (z)

)
−<

(
1 + φ(z)
1 − φ(z)

)
.

Since a finite Blaschke Product φ is holomorphic on D and and
∣∣∣φ(z)

∣∣∣ = 1 on ∂D, we have the second
term of ψ is zero on ∂D \A f and also the first term of ψ is nonnegative. Consequently, after taking limitinfs
to any boundary point in (∂D \Q) \A f , one always reaches the nonnegative value (infinity is also possible).

Now, let us examine the behaviour of the function ψ at points of set A f . Let us represent ψ(z) in the form

ψ(z) =<

 2
(

f (z) − φ(z)
)

(
1 − f (z)

) (
1 − φ(z)

)  .
Now, let us take any point γ ∈ A f \

{
γ0

}
. It can be easily seen that for any z, |z| = 1,

∣∣∣φ′ (z)
∣∣∣ > 0. If∣∣∣φ′ (γ)

∣∣∣ = cγ, then there exists a constant σγ ∈ (0, σ1) such that∣∣∣1 − φ(z)
∣∣∣ ≥ cγ

2

∣∣∣γ − z
∣∣∣ , ∀z ∈ D ∩U

(
γ, σγ

)
. (2.7)

From (2.6)

lim
z→γ

1 − f (z)
γ − z

= cγ

and there exists σ
′

γ ∈ (0, σγ) such that∣∣∣1 − f (z)
∣∣∣ ≥ cγ

2

∣∣∣γ − z
∣∣∣ , ∀z ∈ D ∩U

(
γ, σ

′

γ

)
. (2.8)

Then, from (2.6) , (2.7) and (2.8)∣∣∣∣∣∣∣ 2
(

f (z) − φ(z)
)

(
1 − f (z)

) (
1 − φ(z)

) ∣∣∣∣∣∣∣ ≤ 8C3

c2
γ

1∣∣∣γ − z
∣∣∣1−ε ∀z ∈ D ∩U

(
γ, σ

′

γ

)
.

Thus, the function ψ(z) satisfies the following relation

lim
z→γ

∣∣∣z − γ∣∣∣ψ(z) = 0 (2.9)
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on every point γ ∈ A f \
{
γ0

}
.

Similarly, for the point γ0, using (2.5), we have∣∣∣ψ(z)
∣∣∣ ≤ C4

∣∣∣z − γ0

∣∣∣1+ε ∀z ∈ D ∩U
(
γ0, σ

′

γ

)
(2.10)

for some positive constants C4 and σ
′

. In particular,

lim
z→γ0

ψ(z) = 0. (2.11)

From also here

lim
z→γ0

∣∣∣z − γ0

∣∣∣ψ(z) = 0.

So, the function ψ(z) satisfies the relation (2.9) on every point of finite set A f . From the assertion (B) we
have either ψ(z) > 0, z ∈ D or ψ(z) ≡ 0. If ψ(z) ≡ 0, then the proof is finished. Assume that the relation
ψ(z) ≡ 0 is not satisfied. If we take z = rγ0 in (2.10), we obtain

lim
r→1

ψ(rγ0)
1 − r

= 0. (2.12)

If ψ is not constant, (2.11) and (2.12) contradict with assertion (A) statement. Hence, ψ ≡ 0. This implies
that f (z) = φ(z) on the disk.

Theorem 2.2 and Theorem 2.3 generalize the results in ([4]), where instead of the condition µ2
0 > 1 were

takenµ2
0 > 2. Moreover, the part of the proof of Theorem 2.3 which is after (2.4) shows that O(z−γ)kγ , kγ ≥ 2 in

Theorem 1.1 can be replaced by o(z − γ).
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[13] M. Mateljević, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
[14] I.I. Privalov, Subharmonic Functions, 1st Ed., Moscow-Leningrad, 1937.
[15] E.C. Titchmarsh, The theory of Functions, 2 nd Ed., Oxford University Press, Fair Lawn, New Jersey, 1939.
[16] M. Heins, Selected Topics in the Classical Theory of Functions of a Complex Variable, Holt, Rinehart, and Winston, New York, 1962.
[17] P. M. Tamrazov, Holomorphic functions and mappings in the contour-solid problem, Dokl. Akad. Nauk SSSR 279 (1984), No.1, 38-43 .
[18] W.K. Hayman and P.B. Kennedy, Subharmonic Function, Vol.1, Academic Press, London, 1976.
[19] P.M. Tamrazov and T.G. Aliyev, A contour-solid problem for meromorphic functions, taking into account zeros and nonunivalence, Dokl.

Akad. Nauk SSSR 228 (1986), No. 2.
[20] T.G. Aliyev and P.M. Tamrazov, A contour-solid problem for meromorphic functions, taking into account nonunivalence, Ukrainian

Math. Zh. 39 (1987), 683-690.


