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Abstract. Let f be an holomorphic function the unit disk to itself. We provide conditions on the local
behavior of f along boundary near a finite set of the boundary points that requires f to be a finite Blaschke
product.

1. Introduction

In 1994, Daniel M. Burns and Steven G. Krantz ([1]) proved that if the holomorphic function f : D — D
satisfies the condition

f@=z+0(z-1") z-1,z€D, (1.1)

then f(z) = z on the unit disk.
The example

fe) =2+ 117

shows that the exponent 4 in (1.1) can not be replaced by 3. In fact, the proof shows that O ((z - 1)4) can be
replaced by o ((z - 1)3) .
In 2001, Dov Chelst ([2]), in turn, established the following generalization of this result.

Theorem 1.1. Let f : D — D be a holomorphic function from the disk to itself. In addition, let ¢ : D — D be a finite
Blaschke product which equals T € dD on a finite set Ay C ID. If
(i) for a given yq € Ay,

f(2) =¢2)+ o((z - 7/0)3), as z = Yo,
(ii) for all y € As — {yo},
f@=¢@)+0 ((z - )/)ki/), for somek, >2asz— vy,
then f(z) = ¢(z) on the disk.
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It was shown that the above condition k) > 2 can not be replaced by k, > 1.

In ([3]) and ([4]), this problem was generalized in the following aspects:

a) more general majorant was taken instead of the usual power majorant in (i) and (i7);

b) in (i) and (i), the conditions z — 7y, which usually stated approaching from inside of the disk before,
were taken as the behavior of the function f along the boundary.

In 2015, M.Mateljevi¢ proved Theorem 1 in ([5]), where instead of Blaschke product was taken inner
function and in (7) and (ii), the behavior of the function f along the boundary was considered.

Recently similar problems were investigated in ([6]) and ([7]). For more detail literature and the other
types of the results, we refer to ([8]), ([9]), ([5]), ([10]) and references therein.

In the present study, we refined the results in ([4]). In particular, from our proofs it is followed that
O(z — )/ in Theorem 1.1 can be replaced by o(z — 7).

We propose the following assertion for the proofs of our results.

(A) Let u = u(z) be a positive harmonic function on the open disk U(z,rg), ¥y > 0. Suppose that for
0y € [0,2m), lim u(re’®) = 0 is satisfied. Then

r—7tg

i0

. u(re'™
liminf ( )
rorg rg— 7T

> 0.

This assertion follows from Harnack inequality. For more general results and related estimates, see also
([11, Theorem 1.1]), ([12]), ([13]).

(B) Let the function u be a subharmonic function in the unit disk, E is the finite subset of the unit circle
dD such that

limsupu(z) <0, V¢ e€dD\E,

z—¢, zeD

and
u(z) = o(lc —z™") asz — ¢ for each ¢ € E,

then u(z) <0 forallz € D.

The basic exposition for this version of Phragmen-Lindel6f Princible can be found in ([14, pp. 79-90]),
([15, pp. 176-186]) and ([16, Chapter 4, section 8 and Chapter 5, section 9]).

Let 9t be a class of functions y : (0, +00) — (0, +00) for each of which log u(x) is concave with respect to
log x. For each function p € M the limit

1
to = lim 08 1)
x—0 IOgX

exists, and —co < g < +00. Here, the function u € M is called bilogaritmic concave majorant ([17]).
9 be the class of sets with zero inner capacity ([18, p.210]).

2. Main Results

Let d(z, A) be the distance from the point z to the set A.

Theorem 2.1. Let ¢ : D — D be a finite Blaschke product which equals © € dD on a finite set Af C dD and f
: D — D be a holomorphic function that is continuous on D N {z 1d(z, Af) < 60} for some &, ', yu* € M, uj > 3,
us > 1. Suppose that the following conditions are satisfied

(i) for a given yo € Ay

f2) = ¢ + O |z - 7o

), z€dD, z = v,
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(ii) for all y € A¢ \ {yo},

f(2) = P(2) + Oz —
Then f(z) = ¢(z) on D.

), z€9dD, z— ).

Following result is generalization of Theorem 2.1.

Theorem 2.2. Let ¢ : D — D be a finite Blaschke product which equals T € dD on a finite set Ay C dD and
f : D — D be a holomorphic function, Q € %, u', u* € M, ug > 3, uj > 1. Let the following conditions are satisfied
(i) for a given yq € Ay,

lim sup |f(2) - (@) = O ([T~ o)), C€aD\Q, C— 10, 2.1)
z—(,zeD
(ii) for all y € A¢ \ {yo},

lim sup [f@) - ¢2)| = O~ 7]), CedD\Q, L~y 2.2)

Then f(z) = ¢(z) on D.

Proof. Let the assumptions of Theorem 2.1 are satisfied. By the condition (2.1), there exist a number C; > 0
and g € (0, 1) such that

lim sup (f(z) - qb(z)| = C1y1(|C -0

z—(,zeD

), C€dD\Q,

C—)/0| < (50.

Let us denote k and C, as follows

k= sup  |f(@)-¢()

|z=y0|=00, zeD

k
C2 = max{m, Cl} .

It can be easily seen that for all points of the set d (D N U(yo, d)) \ Q, the inequality

7

lim sup (f(z) - ¢(Z)| = C2M1(|C - Vo|))

z—(,zeD

is satisfied.
Applying Theorem 3 in ([17]) (see also ([19]), ([20])) to the set DN U(yy, 6p) and to the function f(z) — ¢ (z),
we get

) - @)| < Cop (|2 - 10

From yj > 3 there are some positive constants ¢ and ¢ < min(dp, 1) such that

), ¥z € D N Uyo, do)- 2.3)

1 1
081 S 516 vre (0,0
log x
and

log yl(x) <(B+e)logx, Vxe(0,0)

In other words,
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plx) < x*, Vx e (0,0). (2.4)

From the inequalities (2.3) and (2.4) we take the inequality

f@) - d@)| < Co 2=y, Vz € D0 Uy, 0). 2.5)

Similarly, for any point y € Af \ {yo}, from the condition 3 > 1 and (2.2) we have

f@) - 0@)| < Cs |z =™, Vze DUy, o) 2.6)

with some constants C3 and o7.
Consider the following harmonic function in the unit disk

76 * (o)

Since a finite Blaschke Product ¢ is holomorphic on D and and |(p(z)| =1 on dD, we have the second
term of ¢ is zero on dD \A and also the first term of ¢ is nonnegative. Consequently, after taking limitinfs
to any boundary point in (dD \Q) \ Ay, one always reaches the nonnegative value (infinity is also possible).

Now, let us examine the behaviour of the function ¢ at points of set Ay. Let us represent 1(z) in the form

¢@=%(

2(f(@) - ¢(2)
a2l
(1-f@)(1-9@)

Now, let us take any point y € Af \ {yo}. It can be easily seen that for any z, |z| = 1,

¢'(2)| > 0. If
((1)' (7/)| = ¢y, then there exists a constant gy, € (0,01) such that

|1—qb(z)|2%y|)/—z, VzeDNU(y,0,). @.7)

From (2.6)
1- ) _

lim Cy
=y Y —2z /

and there exists a;, € (0,0,) such that

1-f@)| 2 2Ly -2, vze DU (o)) 2.8)

Then, from (2.6), (2.7) and (2.8)
2(f(2) - (@)
(1- f2) (1 - ¢(2))

Thus, the function y/(z) satisfies the following relation

8
c

@)

3 1
-

< VzeDﬂU()/,o;,).

~<I\)|

lim |z — y|(2) = 0 (2.9)

Z—)'y
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on every point y € A\ {yo}.
Similarly, for the point )y, using (2.5), we have

1+e ’
[p@)|<Cilz=yo| ©  VzeDNU(yo,0)) (2.10)
for some positive constants C4 and ¢'. In particular,
lim (z) = 0. (2.11)
Z=Y0
From also here
li - =0.
lim [z = 0| (@)

So, the function 1(z) satisfies the relation (2.9) on every point of finite set Ay. From the assertion (B) we
have either {(z) > 0, z € D or ¢(z) = 0. If (z) = 0, then the proof is finished. Assume that the relation
Y(z) = 0is not satisfied. If we take z = ry in (2.10), we obtain

lim $ryo) =
—1 1—7r

0. (2.12)

If ¢ is not constant, (2.11) and (2.12) contradict with assertion (A) statement. Hence, ¢ = 0. This implies
that f(z) = ¢(z) on the disk. [

Theorem 2.2 and Theorem 2.3 generalize the results in ([4]), where instead of the condition 3 > 1 were

taken u2 > 2. Moreover, the part of the proof of Theorem 2.3 which is after (2.4) shows that O(z—)", k, > 2in
Theorem 1.1 can be replaced by o(z — 7).
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