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Abstract.
The issue of distributivity for different classes of aggregation operators is a topic that is being currently

investigated by a number of researchers. The focus of this paper is on characterization of pairs of aggregation
operators that are satisfying distributivity law where one of them is a commutative, associative aggregation
operator with annihilator and the other one is a Mayor’s aggregation operator. The results presented here
extend and upgrade some known research, e.g., results concerning distributivity between semi-uninorms
and Mayor’s aggregation operators.

1. Introduction

Recently, the problem of distributivity for different classes of aggregation operators have been intensively
studied by a number of researchers. Aggregation operators are highly interesting research topic due to
their applicability in various fields, from mathematics and natural sciences to economics and social sciences
(see [7, 9, 12]). Therefore, the characterization of pairs of aggregation operators that are satisfying the
distributivity law has captivated a high level of attention. This topic has roots in [1] and can go into
two direction. The first one considers distributivity on the whole domain, and results for t-norms and
t-conorms can be found in [7], for quasi-arithmetic means in [2, 27], for uninorms and nullnorms in
[3, 6, 17, 18, 23, 26, 28], for semi-t-operators and uninorms in [4, 5, 21], for Mayor’s aggregation operators in
[2, 10, 22], etc. The second direction consists of the problem of distributivity on the restricted domain i.e.,
it considers the restricted (conditional) distributivity [12–15, 24, 25]. The significance of this topic follows
not only from the theoretical point of view, but also because from its applicability in the integration theory
[25] and in the utility theory [9, 11, 16].

This paper deals with distributivity equations on the whole domain, involving aggregation operators
defined in the sense of G. Mayor [20], and some classes of commutative, associative aggregation operators
with annihilator studied in [19]. T. Calvo in [2] considered distributivity between Mayor’s aggregation
operators and t-norms and t-conorms. Jočić, Štajner-Papuga in [10] focused on semi-nullnorms and semi-
uninorms, while, in [22], Qin and Wang focused on semi-t-operators. Since commutative, associative
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aggregation operators with annihilator present a generalization of uninorms and nullnorms (see [19]) the
research presented here extends the one presented in [10].

This paper is organized as follows. Some preliminary notions concerning aggregation operators,
Mayor’s aggregation operators, uninorms, T-uninorms, S-uninorms, bi-uninorms and distributivity equa-
tions are given in the Section 2. Results on distributivity between T-uninorms and Mayor’s aggregation
operators are given in the third section. Distributivity between S-uninorms, bi-uninorms, and Mayor’s
aggregation operators is investigated in the fourth and the fifth section, respectively. Some concluding
remarks are given in the sixth section.

2. Preliminaries

An overview of some concepts that are necessary for the research that follows is given in this section
(see [3, 8, 9, 12, 19, 20]).

2.1. Aggregation operators
The starting point of this research is the notion of an aggregation operator in [0, 1]n.

Definition 2.1. ([9]) An aggregation operator in [0, 1]n is a function A(n) : [0, 1]n
→ [0, 1] that is nondecreasing in

each variable and that fulfills the following boundary conditions

A(n)(0, . . . , 0) = 0 and A(n)(1, . . . , 1) = 1.

Since the focus of this paper is on binary aggregation operators, further the simple notation A will be
used instead of A(2). The sequel of this section contains an overview of classes of aggregation operators
that are essential for the presented research. The focus is on certain commutative and associative operators
with a neutral element, then with an annihilator and on Mayor’s operators.

2.1.1. Commutative and associative aggregation operators
with neutral element

Definition 2.2. ([29]) A uninorm U : [0, 1]2
→ [0, 1] is a binary aggregation operator that is commutative,

associative, and for which there exists a neutral element e ∈ [0, 1], i.e., U(x, e) = x for all x ∈ [0, 1].

For e = 1 the uninorm U becomes a t-norm denoted by T, and for e = 0,U is a t-conorm denoted by S. For
any uninorm we have U(0, 1) ∈ {0, 1}. If U(0, 1) = 0, the uninorm in question is the conjunctive uninorm, and
if U(0, 1) = 1, it is the disjunctive uninorm. Additionally, if both functions U(x, 0) and U(x, 1) are continuous
(except perhaps at the point e) the following characterized is obtained (see [8]).

Theorem 2.3. ([8]) Let U be a uninorm with a neutral element e ∈ (0, 1) such that both functions U(x, 1) and U(x, 0)
are continuous except at the point x = e.

(i) If U(0, 1) = 0, then

U(x, y) =


eT

(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2,

e + (1 − e)S
(

x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2,

min(x, y) otherwise,
(1)

where T is a t-norm, and S is a t-conorm.

(ii) If U(0, 1) = 1, then

U(x, y) =


eT

(
x
e ,

y
e

)
if (x, y) ∈ [0, e]2,

e + (1 − e)S
(

x−e
1−e ,

y−e
1−e

)
if (x, y) ∈ [e, 1]2,

max(x, y) otherwise,
(2)

where T is a t-norm, and S is a t-conorm.
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A t-norm T from (1) (and (2)) is called the underlying t-norm of U and a t-conorm S is called the
underlying t-conorm of U. Generally, the class of all uninorms of the form (1) is denoted by Umin,while the
class of all uninorms of the form (2) is denoted by Umax.More on this subject can be found in [8, 9, 29].

Remark 2.4. The first class of uninorms were considered by Yager and Rybalov (see [29]). They introduced
the idempotent uninorms Umin

e and Umax
e of the following form

Umin
e =

{
max on [e, 1]2,
min otherwise, (3)

and

Umax
e =

{
min on [0, e]2,
max otherwise. (4)

Uninorms given by (3) and (4) are the only idempotent uninorms from classes Umin and Umax. Conse-
quently, the only idempotent t-norm and t-conorm are operators minimum and maximum, respectively.

2.1.2. Commutative and associative aggregation operators
with annihilator

Another class of aggregation operators that is necessary for the presented research is a subclass of
aggregation operator with an annihilator (absorbing element). Generally, an element a ∈ [0, 1] is an
annihilator for aggregation operator A if A(a, x) = A(x, a) = a for all x ∈ [0, 1]. The class of commutative
aggregation operators with an annihilator a, generally known as a-CAOA, was studied in [19] and of the
special interest for this research is its associative case. For an arbitrary binary operator A : [0, 1]2

→ [0, 1],
and a fixed element c ∈ [0, 1], by Ac is denoted the section Ac : [0, 1] → [0, 1] given by Ac(x) = A(c, x).
As it can be seen from the following results from [19], the continuity of A0 and A1 plays a crucial role in
classification of associative a-CAOA.

Definition 2.5. ([19]) Let A : [0, 1]2
→ [0, 1] be an associative a-CAOA.

• A is called a S-uninorm if:

– A0 is continuous and A1 is not;

– there exists e ∈ (0, 1) such that e is idempotent, Ae is continuous and Ae(1) = 1.

• A is called a T-uninorm if:

– A1 is continuous and A0 is not;

– there exists e ∈ (0, 1) such that e is idempotent, Ae is continuous and Ae(0) = 0.

• A is called a bi-uninorm if:

– A0 and A1 are not continuous;

– there exist idempotent elements e0, e1 ∈ (0, 1) such that Ae0 and Ae1 are continuous and Ae0 (0) = 0 and
Ae1 (1) = 1.

• A is called a nullnorm if:

– A0 and A1 are continuous.
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Figure 1

Remark 2.6. Distributivity between semi-nullnorm (or nullnorm) and Mayor’s operators was investigated in [10],
therefore that type of associative a-CAOA will not be considered further in this paper.

As it can be seen from the following overview of results from [19], the form of associative a-CAOA is
closely related to uninorms, t-norms and t-conorms.

Theorem 2.7. ([19]) Let A : [0, 1]2
→ [0, 1] be a binary operator. The following statements are equivalent:

(i) A is a S-uninorm.

(ii) There exists a ∈ [0, 1), a t-conorm S′ and a conjunctive uninorm U′ with neutral element e′ ∈ (0, 1) such that
A is given by

A(x, y) =


aS′

(
x
a ,

y
a

)
if (x, y) ∈ [0, a]2,

a + (1 − a)U′
(

x−a
1−a ,

y−a
1−a

)
if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a] × [a, 1] ∪ [a, 1] × [0, a]
(5)

(iii) There exists a ∈ [0, 1), a t-conorm S and a conjunctive uninorm U with neutral element e ∈ (0, 1) such that
U(x, a) ≤ a for all x ∈ [0, 1], U ≤ S and A = med(a,U,S).

Remark 2.8. Let A : [0, 1]2
→ [0, 1] be a S-uninorm.

• For a = 0 the observed S-uninorm becomes a conjunctive uninormi.e., A = U′.

• a , 1 in order to ensure discontinuity of A1, and since Ae(1) = 1, there holds a < e.

• If U′ ∈ Umin, then the accepted convention is that A is a S-uninorm in Umin.

Applying the previous theorem on some well-known operators, the following example of S-uninorm
can be constructed.

Example 2.9. Binary Operator A : [0, 1]2
→ [0, 1] given by

A(x, y) =


a if (x, y) ∈ [0, a] × [a, 1] ∪ [a, 1] × [0, a],
max(x, y) if (x, y) ∈ [0, a]2

∪ [e, 1]2,
min(x, y) otherwise,

(6)
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is an idempotent S-uninorm in Umin with annihilator a, obtained by (5) for S′ = max and U′ = Umin
e .

Theorem 2.10. ([19]) Let A : [0, 1]2
→ [0, 1] be a binary operator. The following statements are equivalent:

(i) A is a T-uninorm.

(ii) There exists a ∈ (0, 1], a t-norm T′ and a disjunctive uninorm U′ with neutral element e′ ∈ (0, 1) such that A
is given by

A(x, y) =


aU′

(
x
a ,

y
a

)
if (x, y) ∈ [0, a]2,

a + (1 − a)T′
(

x−a
1−a ,

y−a
1−a

)
if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a] × [a, 1] ∪ [a, 1] × [0, a]
(7)

(iii) There exists a ∈ (0, 1], a t-norm T and a disjunctive uninorm U with neutral element e ∈ (0, 1) such that
U(x, a) ≥ a for all x ∈ [0, 1], T ≤ U and A = med(a,T,U).

Remark 2.11. Let A : [0, 1]2
→ [0, 1] be a T-uninorm.

• For a = 1 the observed T-uninorm becomes a disjunctive uninormi.e., A = U′.

• a , 0 in order to ensure the discontinuity of A0, and since Ae(0) = 0, there holds e < a.

• If U′ ∈ Umax, then the accepted convention is that A is a T-uninorm in Umax.

Again, by applying the previous theorem on some well-known operators, an interesting example of
T-uninorm can be constructed.

Example 2.12. Binary Operator A : [0, 1]2
→ [0, 1] given by

A(x, y) =


a if (x, y) ∈ [0, a] × [a, 1] ∪ [a, 1] × [0, a],
min(x, y) if (x, y) ∈ [0, e]2

∪ [a, 1]2,
max(x, y) otherwise,

(8)

is an idempotent T-uninorm in Umax with annihilator a, obtained by (7) for T′ = min and U′ = Umax
e .

Theorem 2.13. ([19]) Let A : [0, 1]2
→ [0, 1] be a binary operator. The following statements are equivalent:

(i) A is a bi-uninorm.

(ii) There exists a ∈ (0, 1), a disjunctive uninorm U′0 and a conjunctive uninorm U′1 with neutral elements
e′0, e

′

1 ∈ (0, 1), respectively, such that A is given by

A(x, y) =


aU′0

(
x
a ,

y
a

)
if (x, y) ∈ [0, a]2,

a + (1 − a)U′1
(

x−a
1−a ,

y−a
1−a

)
if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a] × [a, 1] ∪ [a, 1] × [0, a]
(9)

(iii) There exists a ∈ (0, 1), a disjunctive uninorm U0 and conjunctive uninorm U1 with neutral elements e0, e1 ∈

(0, 1), respectively, such that U1(x, a) ≤ a ≤ U0(x, a) for all x ∈ [0, 1], U1 ≤ U0 and A = med(a,U1,U0).

Remark 2.14. Let A : [0, 1]2
→ [0, 1] be a bi-uninorm.

• 0 < a < 1 in order to ensure discontinuity of A0 and A1, and since Ae0 (0) = 0 and Ae1 (1) = 1, there holds
e0 < a < e1.

• If U′0 ∈ Umax and U′1 ∈ Umin, then the accepted convention is that A is a bi-uninorm in Umax ∪Umin.
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2.1.3. Mayor’s aggregation operators
Aggregation operators introduced by G. Mayor in [20] that, for the sake of simplicity, will be refereed

to as the GM aggregation operators are given by the following definition.

Definition 2.15. ([20]) A GM aggregation operator F : [0, 1]2
→ [0, 1] is a commutative binary aggregation operator

that satisfy the following boundary conditions for all x ∈ [0, 1] :

F(x, 0) = F(0, 1)x and F(x, 1) = (1 − F(0, 1))x + F(0, 1).

The following properties of the GM aggregation operators are essential for the further characterizations.

Theorem 2.16. ([20]) Let F : [0, 1]2
→ [0, 1] be a GM aggregation operator. Then the follwing holds:

(i) F is associative if and only if F is a t-norm or t-conorm;

(ii) F = min or F = max if and only if F(0, 1) = 0 or F(0, 1) = 1 and F(x, x) = x for all x ∈ [0, 1];

(iii) F is idempotent if and only if min ≤ F ≤ max .

2.2. Distributivity equations

Finally, functional equations that are called left and right distributivity laws ([1], p. 318) are given by
the following definition.

Definition 2.17. Let F,G : [0, 1]2
→ [0, 1] be two operators. F is distributive over G, if the following two laws hold:

(LD) F is left distributive over G i.e.,

F(x,G(y, z)) = G(F(x, y),F(x, z)) for all x, y, z ∈ [0, 1]

and

(RD) F is right distributive over G i.e.,

F(G(y, z), x) = G(F(y, x),F(z, x)) for all x, y, z ∈ [0, 1]

Of course, for a commutative F, laws (LD) and (RD) coincide.
The following two lemmas provide some additional information on distributivity law that are needed

for the further research.

Lemma 2.18. ([3]) Let X , ∅ and F : X2
→ X have neutral element e in a subset Y ⊂ X (i.e. ∀x∈YF(e, x) = F(x, e) =

x). If operator F is left or right distributive over operator G : X2
→ X fulfilling G(e, e) = e, then G is idempotent in Y.

Lemma 2.19. ([3]) Every increasing function F : [0, 1]2
→ [0, 1] is distributive over max and min .

3. Distributivity between GM aggregation operators and T-uninorms

Let F be a GM aggregation operator such that k = F(0, 1), and let G be a T-uninorm with annihilator
0 < a ≤ 1 in Umax. Now, two problems can be distinguished: distributivity of F over G and distributivity of
G over F.

3.1. Distributivity of F over G

Through this section the distributivity of GM aggregation operator over T-uninorm is being considered.
Here two subcases can be distinguished a = 1 and a < 1.
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3.1.1. Case a = 1
Let a = 1. In this case operator G is a uninorm U and the obtained result extends the Theorem 23 from

[10].

Theorem 3.1. Let F be a GM aggregation operator and let G be a uninorm from the class Umax. F is distributive over
U if and only if U is an idempotent uninorm, i.e., U = Umax

e and F is given by

F =


A on [0, e]2,
B on [e, 1]2,
max otherwise,

(10)

where A : [0, e]2
→ [0, e] is a commutative aggregation operator with neutral element 0 and B : [e, 1]2

→ [e, 1] is a
commutative aggregation operator with neutral element e.

1


1


max


max
 B


e


e


A


1


1


max


max
 max


e


e


min


Figure 2. Distributive pair of operators from Theorem 3.1.

Proof. (⇒) As in the Theorem 23 from [10] there can prove that k has to be from {0, 1} and that U = Umax
e .

Now, the next step is to show that k can not be 0. Let us assume the opposite, i.e., that k = 0. From definition
of GM aggregation operator follow that F(x, 1) = x and F(x, 0) = 0 for all x ∈ [0, 1]. For 0 < x < e, y = 0, z = 1
assumed distributivity gives the following contradiction:

x = F(x, 1) = F(x,U(0, 1)) = U(F(x, 0),F(x, 1)) = U(0, x) = 0.

Therefore, k = 1, i.e., F(x, 0) = x and F(x, 1) = 1 for all x ∈ [0, 1].
Next, there should be shown that F(e, e) = e : for x = z = e, y = 0 distributivity law insures

e = F(e, 0) = F(e,U(0, e)) = U(F(e, 0),F(e, e)) = U(e,F(e, e)) = F(e, e).

Now, for x ≤ e, there holds e = F(e, 0) ≤ F(x, e) ≤ F(e, e) = e, i.e., F(x, e) = e for x ≤ e. On the other hand,
for x ≥ e the following holds:

x = F(x, 0) = F(x,U(0, e)) = U(F(x, 0),F(x, e)) = U(x,F(x, e)).

Since F(x, e) ≥ F(x, 0) = x ≥ e,we obtain that

x = U(x,F(x, e)) = max(x,F(x, e)) = F(x, e).

Consequently

F(x, e) =

{
e for x ≤ e,
x for x ≥ e. (11)
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Thus, the restrictions A = F |[0,e]2 and B = F |[e,1]2 are aggregation operators with the desired properties.
It is easy to show that on the remaining part of the unit square holds F = max .
(⇐) Conversely, let F be given by (10) and let U = Umax

e . On the squares [0, e]2 and [e, 1]2 distributivity
follows from Lemma 2.19. Otherwise, U(y, z) = z for y < e < z. Let L = F(x,U(y, z)) = F(x, z) and
R = U(F(x, y),F(x, z)). Now, the following holds:

• if x ≤ e, then L = max(x, z) = z and, since F(x, y) ≤ e < z, there holds R = U(F(x, y),F(x, z)) =
max(F(x, y), z) = z;

• if x ≥ e, then L = F(x, z) and, since F(x, z) ≥ x ≥ e and F(x, y) = max(x, y) = x, there holds R =
U(F(x, y),F(x, z)) = max(x,F(x, z)) = F(x, z).

For all considered cases we obtain L = R, that is the distributivity law holds. �

Remark 3.2. a) The previous result also holds if commutativity and associativity are left out from the
definition of uninorm, i.e., a semi-uninorm from the class Nmax

e is used (see [3]).

b) The following result concerning a semi-uninorm from the class Nmax
e has been proved in [10](Theorem

23 [10]):

Let F be a GM aggregation operator such that F(0, 1) = k and let G ∈ Nmax
e . If F is distributive over G,

then k ∈ {0, 1} and G = Umax
e .

Therefore, Theorem 3.1 extends and upgrades the result from [10], because it shows that k can not be
0 and it gives both necessary and sufficient condition.

3.1.2. Case a < 1
Now, the case a < 1 is being considered.

Theorem 3.3. Let G be a T-uninorm with annihilator a < 1 in Umax, and let F be a GM aggregation operator. F is
distributive over G if and only if G is an idempotent T-uninorm given by (8), and F is given by

F =


A1 on [0, e]2,
A2 on [e, a]2,
B on [a, 1]2,
max otherwise,

(12)

where A1 : [0, e]2
→ [0, e] is a commutative aggregation operator with neutral element 0, A2 : [e, a]2

→ [e, a] is
a commutative aggregation operator with neutral element e, and B : [a, 1]2

→ [a, 1] is a commutative aggregation
operator with neutral element a.

e


e


1


1


a


a


a


a


min


min


max



e


e


1


1


max
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1
A


A
2


max



Figure 3. Distributive pair of operators from Theorem 3.3.
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Proof. (⇒) If x = 1, y = 0, z = 1, the (LD) condition provides

F(1, a) = F(1,G(0, 1)) = G(F(1, 0),F(1, 1)) = G(k, 1).

Now, as in Theorem 3.4, there can be proved that k ∈ {0, 1}. Also, it is easy to show that G(x, x) = x for all
x ∈ [0, 1] :

• for k = 0, it holds x = F(x, 1) = F(x,G(1, 1)) = G(F(x, 1),F(x, 1)) = G(x, x);

• for k = 1, it holds x = F(x, 0) = F(x,G(0, 0)) = G(F(x, 0),F(x, 0)) = G(x, x).

Now, there should be shown that k can not be 0.
Let suppose the opposite, i.e., that k = 0. Now, since

F(x, a) = F(x,G(0, 1)) = G(F(x, 0),F(x, 1)) = G(0, x)

the following is obtained:

• for x ≥ a, since G(0, x) = a, there holds F(x, a) = a;

• for e < x ≤ a, since G(0, x) = x, there holds F(x, a) = x;

• for x ≤ e, since G(0, x) = 0, there holds F(x, a) = 0 and thus F(e, a) = 0.

Let z ≤ e < y, x ≤ a. The (LD) condition insures

F(x,G(y, z)) = F(x,max(y, z)) = F(x, y) = G(F(x, y),F(x, z)).

Since F(x, z) ≤ F(a, e) = 0, the (LD) condition has the form

F(x, y) = G(F(x, y), 0) for all (x, y) ∈ (e, a]2.

Additionally for (x, y) ∈ (e, a]2 holds 0 = F(e, e) ≤ F(x, y) ≤ F(a, a) = a and there can be concluded that
restriction F |(e,a]2= A3 : (e, a]2

→ [0, a] is a commutative, increasing operator with neutral element a. An
example of the operator A3 can be given by the following

A3(x, y) =

{
e if max(x, y) < a,
min(x, y) if max(x, y) = a. (13)

Now, if (x, y) ∈ (e, a)2, the (LD) condition yields e = G(e, 0) = 0 which is a contradiction.
Therefore k = 1 and, using the similar arguments as previous, the following can be shown

F(x, a) =

{
x for x ≥ a,
a for x ≤ a. (14)

Thus A = F |[0,a]2 is a commutative aggregation operator with neutral element 0, B = F |[a,1]2 is a
commutative aggregation operator with neutral element a and F is given by

F =


A on [0, a]2,
B on [a, 1]2,
max otherwise.

(15)

By applying Theorem 3.1 to the square [0, a]2, the following form of A is obtained
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A =


A1 on [0, e]2,
A2 on [e, a]2,
max otherwise,

(16)

where A1 : [0, e]2
→ [0, e] is a commutative aggregation operator with neutral element 0, A2 : [e, a]2

→ [e, a]
is a commutative aggregation operator with neutral element e.
(⇐) Conversely, let F be given by (12) and let G be idempotent T-uninorm given by (8). On the square [0, a]2

distributivity can be proved as in Theorem 3.1, and on the square [a, 1]2 distributivity holds from Lemma
2.19. Otherwise G(y, z) = a for y < a < z, and L = F(x,G(y, z)) = F(x, a) is given by (14). On the other hand,
for the right side of the distributivity law R = G(F(x, y),F(x, z)) holds:

• if x ≤ a, then L = a and, since F(x, y) ≤ F(a, y) = a < z = F(x, z), there is R = G(F(x, y),F(x, z)) = a,

• if x ≥ a, then L = x and, since F(x, z) ≥ F(x, a) = x ≥ a, there is R = G(max(x, y),F(x, z)) = min(x,F(x, z)) =
x.

In all considered cases the equality L = R is obtained, which proves that distributivity law holds. �

3.2. Distributivity of G over F
The problem of distributivity of G over F is being addressed in this section. Since for a = 1 operator G is

a uninorm from the class Umax,which is the case investigated in [10], the working assumption is that a < 1.
Therefore, the following results are ”the next step” regarding the research from [10].

Theorem 3.4. Let F be a GM aggregation operator such that the function f (x) = F(x, x) is a right continuous at the
point x = e, and let G be a T-uninorm with annihilator a < 1 in Umax. G is distributive over F if and only if F = min
or F = max .

Proof. (⇒) First, let us prove that k ∈ {0, 1}. Since the (LD) condition insures

G(1, k) = G(1,F(0, 1)) = F(G(1, 0),G(1, 1)) = F(a, 1) = (1 − k) · a + k,

we have the following:

• if k = a, and since G(1, a) = a, there follows (1 − a)a = 0, i.e., a = 0 or a = 1 which is a contradiction;

• if k < a, then G(1, k) = a, therefore k(1 − a) = 0, i.e., k = 0;

• if k > a, then G(1, k) = k, therefore (1 − k)a = 0, i.e., k = 1.

That is, k has to be either 0 or 1.
The next step is to show that F is indeed an idempotent operator, i.e., that F(x, x) = x for all x ∈ [0, 1] :

• if x ≥ a, then
x = G(x, 1) = G(x,F(1, 1)) = F(G(x, 1),G(x, 1)) = F(x, x),

• if e < x ≤ a, then
x = G(x, 0) = G(x,F(0, 0)) = F(G(x, 0),G(x, 0)) = F(x, x).

Therefore, F(x, x) = x for all x ∈ (e, 1] and by right continuity of the function f at the point x = e also holds
F(e, e) = e. Now, by Lemma 2.18, F is an idempotent operator in Y = [0, a]. Consequently F is idempotent,
and, since k ∈ {0, 1}, from Theorem 2.16 follows that F = min or F = max .
(⇐) Follows from Lemma 2.19. �

If the assumption of right continuity at x = e for function f (x) = F(x, x) is omitted from the previous
theorem, only the necessary condition remains, i.e., the following result holds.

Theorem 3.5. Let F be a GM aggregation operator and let G be a T-uninorm with annihilator a < 1 in Umax. If G is
distributive over F, then k ∈ {0, 1} and F(x, x) = x for all x > e.
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4. Distributivity between GM aggregation operators and S-uninorms

The logical next step is investigation distributivity between S-uninorms and GM aggregation operators.
Therefore, in this section F is a GM aggregation operator and G is a S-uninorm with annihilator 0 ≤ a < 1
in Umin. Again, two cases can be distinguished: distributivity of F over G and distributivity of G over F.

4.1. Distributivity of F over G

Now, the distributivity of GM aggregation operator over S-uninorm is considered. Again, two cases
can be distinguished: a = 0 and a > 0.

4.1.1. Case a = 0
Let a = 0. Now, operator G is a uninorm U and the obtained result extends the Theorem 25 from [10].

Theorem 4.1. Let F be a GM aggregation operator and let U be a uninorm from the class Umin. F is distributive over
U if and only if U is idempotent, i.e., U = Umin

e and F is given by

F =


A on [0, e]2,
B on [e, 1]2,
min otherwise,

(17)

where A : [0, e]2
→ [0, e] is a commutative aggregation operator with neutral element e and B : [e, 1]2

→ [e, 1] is a
commutative aggregation operator with neutral element 1.

1


1


min


min
 B


e


e


A


1


1


min


min
 max


e


e


min


Figure 4. Distributive pair of operators from Theorem 4.1.

Proof. (⇒) Similar to the previous theorems, there can be proved that k takes value from {0, 1} and that U
is an idempotent uninorm from the class Umin.Now, there has to shown that k can not be 1. Let assume the
opposite, i.e., that k = 1. For e < x < 1, y = 0, z = 1 distributivity gives a contradiction

x = F(x, 0) = F(x,U(0, 1)) = U(F(x, 0),F(x, 1)) = U(x, 1) = 1.

Therefore k = 0 and, similar to Theorem 3.1, the following can be proved:

F(x, e) =

{
x for x ≤ e,
e for x ≥ e. (18)

Thus, the restrictions A = F |[0,e]2 and B = F |[e,1]2 are aggregation operators with the desired properties.
It is easy to show that on the remaining part of the unit square holds F = min .
(⇐) This direction can be proved as in Theorem 3.1. �
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Remark 4.2. Theorem 4.1 also holds when instead of a uninorm U ∈ Umin a semi-uninorm from the class
Nmin

e is used. The following result has been proved in [10] (see Theorem 25):

Let F be a GM aggregation operator such that F(0, 1) = k and let G ∈ Nmin
e . If F is distributive over G, then

k ∈ {0, 1} and G = Umin
e .

Therefore, Theorem 4.1 upgrades the result from [10], because it shows that k can not be 1 and it gives both
necessary and sufficient conditions.

4.1.2. Case a > 0
Theorem 4.3. Let G be a S-uninorm with an annihilator a > 0 in Umin and let F be a GM aggregation operator. F is
distributive over G if and only if G is the idempotent S-uninorm given by (6), and F is given by

F =


A on [0, a]2,
B1 on [a, e]2,
B2 on [e, 1]2,
min otherwise,

(19)

where A : [0, a]2
→ [0, a] is a commutative aggregation operator with neutral element a, B1 : [a, e]2

→ [a, e] is a
commutative aggregation operator with neutral element e, and B2 : [e, 1]2

→ [e, 1] is a commutative aggregation
operator with neutral element 1.
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Figure 5. Distributive pair of operators from Theorem 4.3.

Proof. (⇒) As in previous theorems there can be proved that k ∈ {0, 1} and that G is an idempotent operator
given by (6). Again, the next step is to show that k can not be 1. If the opposite is supposed, i.e., if k = 1, the
following is obtained

F(x, a) = F(x,G(0, 1)) = G(F(x, 0),F(x, 1)) = G(x, 1),

and

• for x ≤ a, since G(x, 1) = a, holds F(x, a) = a;

• for a ≤ x < e, since G(1, x) = x, holds F(x, a) = x;

• for x ≥ e, since G(1, x) = 1, holds F(x, a) = 1 and thus F(e, a) = 1.

Let a ≤ x, y < e ≤ z. The (LD) condition insures

F(x,G(y, z)) = F(x,min(y, z)) = F(x, y) = G(F(x, y),F(x, z)).

Since F(x, z) ≥ F(a, e) = 1 the (LD) condition has the form

F(x, y) = G(F(x, y), 1) for all (x, y) ∈ [a, e)2.
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Additionally, for (x, y) ∈ [a, e)2, 1 = F(e, e) ≥ F(x, y) ≥ F(a, a) = a and the conclusion is that restriction
F |[a,e)2= B3 : [a, e)2

→ [a, 1] is a commutative, increasing operator with neutral element a. An example of the
operator B3 is given by

B3(x, y) =

{
e if min(x, y) > a,
max(x, y) if min(x, y) = a. (20)

Now, if (x, y) ∈ (a, e)2, the (LD) condition insures e = G(e, 1) = 1 which is a contradiction. Therefore k = 0.
Now, using similar arguments as in Theorem 3.3, there can prove that F is given by (19).

(⇐) The other direction can be proved as in Theorem 3.3. �

4.2. Distributivity of G over F
The focus of this section is on distributivity of a S-uninorm over a GM aggregation operator. Since the

case when a = 0, i.e., when G is a uninorm from the class Umin is showed in [10], now the assumption is
that a > 0.

Theorem 4.4. Let F be a GM aggregation operator such that the function f (x) = F(x, x) is left continuous at the
point x = e, and let G be a S-uninorm with an annihilator a > 0 in Umin. G is distributive over F if and only if
F = min or F = max .

Proof. (⇒) Similarly as in Theorem 3.4 thee an be proved that k takes value in {0, 1}. The next step is to
show that F is an idempotent operator:

• if x ≤ a, then
x = G(x, 0) = G(x,F(0, 0)) = F(G(x, 0),G(x, 0)) = F(x, x);

• if a ≤ x < e, then
x = G(x, 1) = G(x,F(1, 1)) = F(G(x, 1),G(x, 1)) = F(x, x).

Therefore, F(x, x) = x for all x ∈ [0, e) and from left continuity of the function f at the point x = e follows
F(e, e) = e. Again, as in Theorem 3.4, the conclusion is that F = min or F = max .
(⇐) Conversely, distributivity law holds from Lemma 2.19. �

If the assumption that function f (x) = F(x, x) is a left continuous at the point x = e is omitted from the
previous theorem, only the necessary condition is obtained, i.e., the following result holds.

Theorem 4.5. Let F be a GM aggregation operator and let G be a S-uninorm with an annihilator a > 0 in Umin. If
G is distributive over F, then k ∈ {0, 1} and F(x, x) = x for all x < e.

5. Distributivity between GM aggregation operators and bi-uninorms

Finally, the distributivity between bi-uninorms and GM aggregation operators is considered. In this
section F is a GM aggregation operator and G is a bi-uninorm with annihilator 0 < a < 1 in Umin ∪ Umax,
such that e0 is neutral element of the disjunctive uninorm U0, and e1 is neutral element of the conjunctive
uninorm U1.

5.1. Distributivity of F over G
Concerning distributivity of GM-aggregation operators over bi-uninorms by taking into account Theo-

rem 3.3 and Theorem 4.3, the following negative result emerges.

Theorem 5.1. Let G be a bi-uninorm in Umin ∪ Umax with annihilator 0 < a < 1. There is no GM aggregation
operator F distributive over G.

Proof. Let us suppose that there exists a GM aggregation operator F distributive over G. As in previous
theorems there can be proved that k ∈ {0, 1} and that G is an idempotent operator. Also, as in the Theorem
3.3 can be shown that k , 0, and as in the Theorem 4.3 that k , 1. Consequently, there is no GM aggregation
operator F distributive over bi-uninorm G from the class Umin ∪Umax. �
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5.2. Distributivity of G over F

Theorem 5.2. Let F be a GM aggregation operator such that the function f (x) = F(x, x) is left continuous at the
point x = e1, and right continuous at the point x = e0, and let G be a bi-uninorm. G is distributive over F if and only
if F = min or F = max .

Proof. (⇒) Similar to Theorem 3.4, there can be proved that k is from {0, 1}. The next step is to show that F
is an idempotent operator.

• If e0 < x ≤ a, then
x = G(x, 0) = G(x,F(0, 0)) = F(G(x, 0),G(x, 0)) = F(x, x).

• If a ≤ x < e1, then
x = G(x, 1) = G(x,F(1, 1)) = F(G(x, 1),G(x, 1)) = F(x, x).

Since the function f is left continuous at the point x = e1 there can be obtained that F(e1, e1) = e1, and
by Lemma 2.18, F(x, x) = x for all x ∈ [a, 1]. Analogously, since the function f is right continuous at the
point x = e0, there can be obtained that F(e0, e0) = e0, and that F(x, x) = x for all x ∈ [0, a]. Therefore, F is an
idempotent operator and, according to Theorem 2.16, F = min or F = max .
(⇐) The opposite direction follows from from Lemma 2.19. �

Again, the assumption that function f (x) = F(x, x) is a left continuous at the point x = e1 and right
continuous at the point x = e0 is can be omitted from the previous theorem. However, it that case, only the
necessary condition is obtained.

Theorem 5.3. Let F be a GM aggregation operator and let G be a bi-uninorm. If G is distributive over F, then
k ∈ {0, 1} and F(x, x) = x for all e0 < x < e1.

6. Conclusion

Distributivity law on the whole domain between GM aggregation operators and associative a-CAOA,
when the underlying uninorms are from the classes Umin and Umax, is considered through this paper. As it
can be seen from this paper, distributivity law considerably simplifies the structure of inner operator since it
is being reduced to an idempotent operator. Results from the third and fourth section of this paper complete
and upgrade the corresponding ones from [10]. In the forthcoming work the focus will be on distributivity
law when the underlying uninorms of associative a-CAOA are from some other classes of uninorms. Also,
since restricted setting turns out to be useful for modelling behavior of some decision makers [11], the
further research will also be focused on the conditional distributivity for associative a-CAOA and possible
application of obtained structures to the utility theory.
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[3] J. Drewniak, P. Drygaś, E. Rak, Distributivity between uninorms and nullnorms, Fuzzy Sets and Systems 159 (2008) 1646–1657.
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