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Abstract. In this paper, taking into account two metrics on a space, we present a new fixed point theorem
for F-contractions. Our theorem includes both Agarwal and O’Regan’s and Wardowski’s results as properly.
Also we provide a nontrivial example showing this fact.

1. Introduction and preliminaries

In 2012, Wardowski [13] introduced a new concept for contraction mappings as called F-contraction by
considering a class of real valued functions. Let F be the set of all functions F : (0,∞) −→ R satisfying the
following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F(α) < F(β),
(F2) For each sequence {an} of positive numbers

lim
n→∞

an = 0⇔ lim
n→∞

F(an) = −∞,

(F3) There exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.
Then a self mapping T of a metric space (X, d) is said to be F-contraction if there exist F ∈ F and τ > 0

such that

∀x, y ∈ X, d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(d(x, y)). (1)

Taking in Eq.(1) different functions F ∈ F , one gets a variety of F-contractions, some of them are of a
type known in the literature. For example, let F1 : (0,∞) → R be given by the formula F1(α) = lnα. It is
clear that F1 ∈ F . Then each mapping T : X→ X is an F-contraction such that

d(Tx,Ty) ≤ e−τd(x, y), for all x, y ∈ X with Tx , Ty. (2)

Therefore every Banach contraction mapping with contractive constant 0 < L < 1 is an F-contraction with
F1(α) = lnα and τ = − ln L > 0. Also by the condition (F1), every F-contraction is a contractive mapping and
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hence it is continuous. From the Banach and Edelstein fixed point theorems, we know that every Banach
contraction mapping on a complete metric space has a unique fixed point and every contractive mapping
on a compact metric space has a unique fixed point. That is, passing from Banach to Edelstein fixed point
theorem, when the class of mapping is expending by contractive condition, the structure of the space is
restricted. Now, it may come to mind, is there any change of structure of the space when investigating the
existence of fixed points of F-contractions. Therefore, Wardowski [13] proved the following result with not
restricted the structure of the space:

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → X be an F-contraction. Then T has a unique
fixed point in X.

In the literature, there are many generalization of Theorem 1.1 (see [2–5, 7, 9–12]) which one of them as
follows:

Theorem 1.2 ([9]). Let (X, d) be a complete metric space and let T : X → X be a mapping. If there exist F ∈ F and
τ > 0 such that

∀x, y ∈ X, d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(M(x, y)), (3)

where

M(x, y) = max
{
d(x, y), d(x,Tx), d(y,Ty),

1
2

[d(x,Ty) + d(y,Tx)]
}
,

then T has a unique fixed point in X provided that T or F is continuous.

On the other hand, Agarwal and O’Regan [1] presented some fixed point results for generalized con-
tractions on space with two metrics. Unlike the conventional fixed point theory studies, here it is accepted
that the mapping is contraction or contraction type according to the one metric when the space is complete
for the other metric. It can be find the fundamental version of these type fixed point results in [6, 8].

Let (X, d′) be a complete metric space and d be another metric on X. If x0 ∈ X and r > 0 let

B(x0, r) = {x ∈ X : d(x, x0) < r},

and let B(x0, r)d′ denote the d′-closure of B(x0, r). In the following we will use the notation d � d′, which
means that d(x, y) � d′(x, y) for some x, y ∈ X.

Definition 1.3. Let (X, d) and (Y, ρ) be two metric spaces and let T : X → Y be a mapping. Then T is said to be
uniformly continuous on X, if for every ε > 0 there exists δ > 0 such that d(x, y) < δ implies ρ(Tx,Ty) < ε.

Agarwal and O’Regan [1] presented the following results:

Theorem 1.4 ([1]). Let (X, d′) be a complete metric space, d another metric on X, x0 ∈ X, r > 0 and T : B(x0, r)d′ → X
be a mapping. Suppose there exists q ∈ (0, 1) such that for x, y ∈ B(x0, r)d′ we have

d(Tx,Ty) ≤ qM(x, y). (4)

In addition assume the following three properties hold:

d(x0,Tx0) < (1 − q)r (5)

if d � d′ assume T is uniformly continuous from (B(x0, r), d) into (X, d′),

and

if d , d′ assume T is continuous from
(
B(x0, r)d′ , d′

)
into (X, d′).

Then T has a fixed point. That is, there exists x ∈ B(x0, r)d′ with x = Tx.
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The following global result can easily be deduced from Theorem 1.4.

Theorem 1.5 ([1]). Let (X, d′) be a complete metric space, d another metric on X, and T : X → X be a mapping.
Suppose there exists q ∈ (0, 1) such that for x, y ∈ X we have Eq.(4).

In addition assume the following two properties hold:

if d � d′ assume T is uniformly continuous from (X, d) into (X, d′),

and

if d , d′ assume T is continuous from (X, d′) into (X, d′).

Then T has a fixed point.

In this paper, by considering the both Wardowski and Maia’s techniques, we present a fixed point result
for single valued mapping on a space with two metrics.

2. The Result

In this section we will consider F ∈ F as continuous.

Theorem 2.1. Let (X, d′) be a complete metric space, d another metric on X and T : X→ X be a mapping. Suppose
F ∈ F and there exists τ > 0 such that

∀x, y ∈ X, d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(M(x, y)).

In addition assume the following two properties hold:

if d � d′ assume T is uniformly continuous from (X, d) into (X, d′), (6)

and

if d , d′ assume T is continuous from (X, d′) into (X, d′). (7)

Then T has a fixed point in X.

Proof. Let x0 ∈ X be an arbitrary and define a sequence {xn} in X by xn = Txn−1 for n ∈ {1, 2, ...}. If xn0+1 = xn0 for
some n0 ∈ {0, 1, 2, ...}, then Txn0 = xn0 . Therefore T has a fixed point. Now let xn+1 , xn and let dn = d(xn+1, xn)
for n ∈ {0, 1, 2, ...}. Then dn > 0 for all n ∈ {0, 1, 2, ...}. Now using Eq.(3), we have

F(dn) = F(d(xn+1, xn)) = F(d(Txn,Txn−1))
≤ F(M(xn, xn−1)) − τ

= F
(
max

{
d(xn, xn−1), d(xn, xn+1),

1
2

d(xn−1, xn+1)
})
− τ

≤ F(max{d(xn, xn−1), d(xn, xn+1)} − τ
= F(max{dn−1, dn}) − τ. (8)

If dn ≥ dn−1 for some n ∈ {1, 2, ...}, then from Eq.(8) we have F(dn) ≤ F(dn) − τ, which is a contradiction since
τ > 0. Therefore dn < dn−1 for all n ∈ {1, 2, ...} and so from Eq.(8) we have

F(dn) ≤ F(dn−1) − τ.

Thus we obtain

F(dn) ≤ F(dn−1) − τ
≤ (F(dn−2) − τ) − τ

...

≤ F(d0) − nτ. (9)
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Letting n→ ∞ in Eq.(9), we get lim
n→∞

F(dn) = −∞. Hence, from (F2), we have lim
n→∞

dn = 0. By (F3), there exists

k ∈ (0, 1) such that

lim
n→∞

dk
nF(dn) = 0.

From Eq.(9), the following holds for all n ∈ {1, 2, ...}

dk
nF(dn) − dk

nF(d0) ≤ −dk
nnτ ≤ 0. (10)

By Eq.(10), we obtain that

lim
n→∞

ndk
n = 0.

Hence, there exists n1 ∈ {1, 2, ...} such that ndk
n ≤ 1 for all n ≥ n1. Therefore, we have, for all n ≥ n1

dn ≤
1

n1/k
. (11)

In order to show that {xn} is a Cauchy sequence consider m,n ∈ N such that m > n ≥ n1. By Eq.(11) and
using the triangular inequality for the metric, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)
= dn + dn+1 + ... + dm−1

=

m−1∑
j=n

d j ≤

∞∑
j=n

d j ≤

∞∑
j=n

1
j1/k

.

From the convergence of the series
∞∑
j=1

1
j1/k , we obtain limn→∞ d(xn, xm) = 0. Thus {xn} is a Cauchy sequence

in (X, d).
Now we claim that {xn} is a Cauchy sequence with respect to d′.
If d ≥ d′ this is trivial. In that case suppose that d � d′. Let ε > 0 be given. By Eq.(6), there exists δ(ε) > 0

such that

d′(Tx,Ty) < ε (12)

where x, y ∈ X and d(x, y) < δ. Since limn→∞ d(xn, xm) = 0, then there exists N ∈ {1, 2, ...} such that

d(xn, xm) < δ (13)

for all n,m ≥ N. Now Eq.(12) and Eq.(13) guarantee that

d′(xn+1, xm+1) = d′(Txn,Txm) < ε

for all n,m ≥ N and hence {xn} is a Cauchy sequence with respect to d′. Since (X, d′) is a complete metric
space, there exists x ∈ X with d′(xn, x)→ 0 as n→∞.

We claim that x = Tx.
If d , d′, then

0 ≤ d′(x,Tx)
≤ d′(x, xn) + d′(xn,Tx)
= d′(x, xn) + d′(Txn−1,Tx).

Letting n→∞ and using Eq.(7), we attain d′(x,Tx) = 0. Therefore x is a fixed point of T.
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Now suppose d = d′ and x , Tx. Thus, there exist an n0 ∈ N and a subsequence {xnk } of {xn} such that
d(Txnk ,Tx) > 0 for all nk ≥ n0. (If not, there exists n1 ∈N such that xn = Tx for all n ≥ n1, which implies that
xn → Tx. This is a contradiction, since x , Tx.). From d(Txnk ,Tx) > 0 for all nk ≥ n0, by Eq.(3), we obtain

τ + F(d(xnk+1,Tx)) = τ + F(d(Txnk ,Tx))
≤ F(M(xnk , x))

= F
(
max

{
d(xnk , x), d(xnk , xnk+1), d(x,Tx),

1
2
[
d(xnk ,Tx) + d(x, xnk+1)

] })
.

Taking the limit k→∞ and using the continuity of F we have

τ + F(d(x,Tx)) ≤ F(d(x,Tx)),

which is a contradiction. Thus x is a fixed point of T.

Remark 2.2. If we take d = d′ in Theorem 2.1, then Theorem 1.2 holds.

Remark 2.3. If we choose F(α) = lnα in Theorem 2.1, then Theorem 1.5 holds.

Theorem 2.1 yields the following version of Theorem 1.1.

Corollary 2.4. Let (X, d′) be a complete metric space, d another metric on X and T : X→ X be a mapping. Suppose
F ∈ F (without the continuity of F) and there exists τ > 0 such that

∀x, y ∈ X, d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(d(x, y)).

In addition assume (6) and (7) properties hold. Then T has a fixed point in X.

The following example shows Theorem 2.1 is real generalization of Theorem 1.5.

Example 2.5. Let X = {xn =
n(n+1)

2 : n ∈N}, d′(x, y) =
∣∣∣x − y

∣∣∣ and

d
(
x, y

)
=


0 , x = y

1 +
∣∣∣x − y

∣∣∣ , x , y

then (X, d′) is complete metric space. Define a map T : X→ X,

Tx =


x1 , x = x1

xn−1 , x = xn, n ≥ 2
.

Since

sup
n>1

d(Txn,Tx1)
M(xn, x1)

= sup
n>1

1 + |xn−1 − x1|

max
{

1 + |xn − x1| , 1 + |xn − xn−1| ,
1, 1

2 [1 + |xn − x1| + 1 + |xn−1 − x1|]

}
= sup

n>1

n(n−1)
2

max
{

n(n+1)
2 , 1 + n, 1, n2

2

} = 1

we can not find q ∈ (0, 1) satisfying the inequality (4). Therefore Theorem 1.5 can not be applied to this example.
Now consider for α > 0, F(α) = α + lnα and τ = 1, then contractive condition of Theorem 2.1 is equivalent to the
following:

d
(
Tx,Ty

)
> 0,

d(Tx,Ty)
M(x, y)

ed(Tx,Ty)−M(x,y)
≤ e−1.
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First observe that for all m,n ∈N

d(Txm,Txn) > 0⇐⇒ (m > 2 and n = 1) or (m > n > 1) .

Thus we must consider the following two cases:
Case 1: For m > 2 and n = 1, we have

d(Txm,Tx1)
M(xm, x1)

ed(Txm,Tx1)−M(xm,x1) =
m − 1
m + 1

e−m < e−1.

Case 2: For m > n > 1, we have (note that M(xm, xn) = d(xm, xn))

d(Txm,Txn)
M(xm, xn)

ed(Txm,Txn)−M(xm,xn) =
d(xm−1, xn−1)

M(xm, xn)
ed(xm−1,xn−1)−M(xm,xn)

=
1 +

(m−n)(m+n−1)
2

1 +
(m−n)(m+n+1)

2

en−m < e−1.

Therefore the contractive condition of Theorem 2.1 holds. On the other hand, since d ≥ d′, then (6) is satisfied and
since τd′ is discrete topology, then (7) is satisfied. As a consequence Theorem 2.1 guarantees that T has a fixed point
in X.
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