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Abstract. In this paper, we investigate scattering theory of the impulsive Sturm–Liouville boundary value
problem (ISBVP). In particular, we find the Jost solution and the scattering function of this problem. We also
study the properties of the Jost function and the scattering function of this ISBVP. Furthermore, we present
two examples by getting Jost function and scattering function of the impulsive boundary value problem.
Besides, we examine the eigenvalues of these boundary value problems given in examples in detail.

1. Introduction

Let us consider the Sturm–Liouville boundary value problem

−y′′ + q(x)y = λ2y, x ∈ [0,∞), (1)

y(0) = 0, (2)

where λ is a spectral parameter, q is a real-valued function and∫
∞

0
x|q(x)|dx < ∞. (3)

Under the condition (3), the equation (1) has a solution e(x, λ) satisfying the condition

lim
x→∞

e(x, λ)e−iλx = 1, λ ∈ C+ := {λ ∈ C : Imλ ≥ 0} . (4)

e(x, λ) is called the Jost solution of (1) [7]. The Jost solution is analytic with respect to λ in C+ :=
{λ ∈ C : Imλ > 0} and continuous up to the real axis. It is well-known that the solution e(x, λ) has an
integral representation

e(x, λ) = eiλx +

∫
∞

x
K(x, t)eiλtdt, λ ∈ C+ (5)

where the kernel K(x, t) may be expressed in terms of the potential function q [7]. The function

e(λ) := e(0, λ) = 1 +

∫
∞

0
K(0, t)eiλtdt, λ ∈ C+

2010 Mathematics Subject Classification. Primary 34L25, 34L05; Secondary 34K10.
Keywords. Scattering theory; Scattering function; Sturm-Liouville equation.
Received: 6 May 2017; Accepted: 13 June 2017
Communicated by Erdal Karapınar
Email addresses: bairamov@science.ankara.edu.tr (Elgiz Bairamov), yaygar@ankara.edu.tr (Yelda Aygar),

baaaaasaaaaak@hotmail.com (Basak Eren)



E. Bairamov et al. / Filomat 31:17 (2017), 5401–5409 5402

is called the Jost function of (1). It is well known from [7] that under the condition (3), e(λ) has a finite
number of zeros in the half complex plane C+. They are all simple and lie on the imaginary axis. Let
iλk, k = 1, 2, ...,n be the zeros of the Jost function e(λ), numbered in the order of increase of their module
(0 < λ1 < λ2 < ... < λn), and let m−1

k be the norm of the function e(x, iλk) in L2(0,∞), i.e.,

m−2
k =

∫
∞

0
e2(x, iλk)dx, k = 1, 2, ...,n,

and

S(λ) :=
e(λ)
e(λ)

, λ ∈ (−∞,∞).

The function S(λ) is the scattering function of (1)-(2). The collection

{S(λ), λ ∈ (−∞,∞);λk,mk, k = 1, 2, ...,n} (6)

is the scattering data of boundary value problem (1)-(2). When the potential function q is given, the
problem of finding scattering data (6) and learning the properties of scattering data is the direct problem
for quantum scattering theory. Conversely, the problem of finding the potential function q according to the
scattering data given in (6) is an inverse problem of quantum scattering theory. Quantum scattering theory
of (1)-(2) was investigated in detail in [3, 5–7] and corresponding references cited therein. Let us consider
the impulsive Sturm–Liouville boundary value problem (ISBVP)

−y′′ + q(x)y = λ2y, x ∈ [0, 1) ∪ (1,∞), (7)

y(0) = 0, (8)

y(1+) = αy(1−), y′(1+) = βy′(1−), (9)

where λ is a spectral parameter, α, β are real numbers, αβ , 0 and q is a real valued function satisfying the
condition∫

∞

0
x|q(x)|dx < ∞.

Note that, the condition (9) is an impulsive condition for the equation (7). In literature impulsive conditions
are called different kinds of names. Some of this names are jump condition, interface condition, point
interaction condition and transmission condition. In particular, regular impulsive boundary value problems
have been investigated by Mukhtarov et al. [8–13]. Singular impulsive problems have been studied in
[2, 16–20]. In [1, 4, 15], the authors have examined the general theory of impulsive differential equations.
In this paper, we investigate the scattering theory of ISBVP (7)-(8). In particular, we find Jost solution, Jost
function and the scattering function of (7)-(8). We also studied the properties of the scattering function (7)-
(8). Furthermore, we obtain the scattering function and Jost function of two different impulsive boundary
value problem as an example and examine the properties of these functions. At the end, we investigate the
eigenvalues of the impulsive boundary value problem given in these examples.

2. Jost solution and scattering function of the impulsive equations

Let S(x, λ2) and C(x, λ2) are the fundamental solution of (7) in the interval [0, 1) satisfying the initial
conditions

S(0, λ2) = 0, S′(0, λ2) = 1,

and

C(0, λ2) = 1, C′(0, λ2) = 0,
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respectively. It is clear that the solutions S(x, λ2) and C(x, λ2) are entire functions of λ and

W[S(x, λ2),C(x, λ2)] = −1, λ ∈ C,

where W[y1, y2] denotes the wronskian of the solutions y1 and y2 of the equation (7). We consider the
following function

E (x, λ) =

{
a (λ) C

(
x, λ2

)
+ b (λ) S

(
x, λ2

)
, x ∈ [0, 1)

e (x, λ) , x ∈ (1,∞) ,
(10)

for λ ∈ C+, where e(x, λ) defined by (4) and (5). Using the impulsive condition (9), we find the coefficients
a(λ) and b(λ):

E
(
1−, λ

)
=

1
α

E (1+, λ)

E
′ (

1−, λ
)

=
1
β

E
′

(1+, λ) .

It follows from (10) that

a (λ) C
(
1, λ2

)
+ b (λ) S

(
1, λ2

)
=

1
α

e (1, λ) (11)

a (λ) C
′
(
1, λ2

)
+ b (λ) S

′
(
1, λ2

)
=

1
β

e
′

(1, λ) . (12)

Using (11) and (13), we obtain

a(λ) = −
1
αβ

[
αe′(1, λ)S

(
1, λ2

)
− βe(1, λ)S′(1, λ2)

]
, λ ∈ C+, (13)

b(λ) =
1
αβ

[
αe′(1, λ)C

(
1, λ2

)
− βe(1, λ)C′(1, λ2)

]
, λ ∈ C+. (14)

The function E(x, λ) is the Jost solution of the impulsive Sturm–Liouville boundary value problem (7)-(9),
where a(λ) and b(λ) are defined by (13) and (14), respectively. So we get

E(0, λ) = a(λ)

by (13), i.e., the function a(λ) is the Jost function of (7)-(9). Note that the function a(λ) is analytic in C+ and
continuous up to the real axis.

Theorem 2.1. For all λ ∈ R \ {0}, a(λ) , 0.

Proof. It is clear that ([7])
W[e(x, λ), e(x,−λ)] = −2iλ, λ ∈ R \ {0}.

Now, we will consider the following solution of (7)-(9)

F (x, λ) =

{
S
(
x, λ2

)
, x ∈ [0, 1)

c(λ)e (x, λ) + d(λ)e (x,−λ) , x ∈ (1,∞) .

Using the impulsive condition (9), we get that

c(λ) = −
1

2iλ

[
αS(1, λ2)e′(1,−λ) − βS′(1, λ2)e(1,−λ)

]
, λ ∈ R \ {0}, (15)

d(λ) =
1

2iλ

[
αS(1, λ2)e′(1, λ) − βS′(1, λ2)e(1, λ)

]
, λ ∈ R \ {0}. (16)
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It follows from (13), (15) and (16) that

d(λ) = −
αβ

2iλ
a(λ), c(λ) = d(λ) =

αβ

2iλ
a(λ), λ ∈ R \ {0}. (17)

Assume that, there exists a λ0 ∈ R \ {0} such that a(λ0) = 0. Since a(λ0) = 0, we find c(λ0) = d(λ0) = 0 by
using (17). Then the solution F(x, λ0) is equal to zero identically. So this is a trivial solution of (7)-(9), this
gives a contradiction, i.e., a(λ0) , 0 for all λ ∈ R \ {0}.

It can be easily seen from (10) that for all λ ∈ R \ {0},

E(x, λ) = E(x,−λ).

The function

S(λ) =
E(0, λ)
E(0, λ)

=
a(λ)
a(λ)

λ ∈ R \ {0} (18)

is the scattering function of the impulsive boundary value problem (7)-(9). It is clear from (13) and (18) that

S(λ) =
αe′(1,−λ)S(1, λ2) − βe(1,−λ)S′(1, λ2)
αe′(1, λ)S(1, λ2) − βe(1, λ)S′(1, λ2)

, (19)

for all λ ∈ R \ {0}. It follows from (19) that

S(0) = lim
λ→0
S(λ) = 1.

Theorem 2.2. For all λ ∈ R \ {0}, the scattering function satisfies

S(−λ) = S(λ) = S−1(λ).

Proof. From the definition of S(λ), we have

S(−λ) =
E(0,−λ)
E(0,−λ)

. (20)

Since E(0,−λ) = E(0, λ) and E(0,−λ) = E(0, λ), using (20), we get

S(−λ) = S−1(λ) = S(λ).

It completes the proof.

By the definition of the wronskian, we have

W [E(x, λ),F(x, λ)] =

{
a (λ) , x ∈ [0, 1)
αβa (λ) , x ∈ (1,∞)

for all λ ∈ R \ {0}. We will denote the set of eigenvalues of (7)-(9) by σd.

Theorem 2.3. The following equation holds:

σd = {µ : µ = λ2, λ ∈ C+, a(λ) = 0} (21)
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Proof. Let ĕ(x, λ) denote the solution of the equation (7) in (1,∞), subjecting the conditions ([14])

lim
x→∞

ĕ(x, λ)eiλx = 1, lim
x→∞

ĕ′(x, λ)eiλx = −iλ, λ ∈ C+.

Note that ĕ(x, λ) is the unbounded solution of (7) in (1,∞). It is evident that

W[e(x, λ), ĕ(x, λ)] = −2iλ, x ∈ (1,∞) λ ∈ C+.

For all C+ \ {0}, we will consider the following solution of (7)

G(x, λ) =

{
S
(
x, λ2

)
, x ∈ [0, 1)

γ(λ)e (x, λ) + δ(λ)ĕ(x, λ) , x ∈ (1,∞) .
(22)

Using the impulsive condition (9), we find that

δ(λ) = −
αβ

2iλ
a(λ) (23)

and

γ(λ) = −
1

2iλ
[αS(1, λ2)ĕ′(1, λ) − βS

′
(
1, λ2

)
ĕ (1, λ)], (24)

for all λ ∈ C+ \ {0}. The function G(x, λ) is the unbounded solution of impulsive boundary value problem
(7)-(9). It follows from (22), (23) and the definition of eigenvalues that [14]

σd = {µ = λ2 : λ ∈ C+, δ(λ) = 0}

or

σd = {µ = λ2 : λ ∈ C+, a(λ) = 0}.

It completes the proof.

Using (10) and (22), we obtain

W[E(x, λ),G(x, λ)] =

{
a (λ) , x ∈ [0, 1)
αβa (λ) , x ∈ (1,∞) ,

for allC+ \{0}. Theorem 2.3 shows that, in order to investigate the quantitative properties of the eigenvalues
of impulsive boundary value problem (7)-(9), we need to discuss the quantitative properties of the zeros of
the function a(λ) in C+.

Theorem 2.4. Under the condition (3), the Jost function of (7)-(9) satisfies

a(λ) = eiλ
(

1
α

cosλ −
i
β

sinλ
)

+ o(1), λ ∈ C+, |λ| → ∞. (25)

Proof. It is clear that the solution S(x, λ2) has an integral representation

S(x, λ2) =
sinλx
λ

+

∫ x

0
B(x, t)

sinλt
λ

dt, λ ∈ C, (26)

where the kernel B(x, t) may be expressed in terms of the potential function q ([5]). We easily find from (5)
and (26) that

e(1, λ) = eiλ +

∫
∞

1
K(1, t)eiλtdt, λ ∈ C+, (27)
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e′(1, λ) = iλ − K(1, 1)eiλ +

∫
∞

1
Kx(1, t)eiλtdt, λ ∈ C+, (28)

S(1, λ2) =
sinλ
λ

+

∫ 1

0
B(1, t)

sinλt
λ

dt, λ ∈ C, (29)

and

S′(1, λ2) = cosλ + B(1, 1)
sinλ
λ

+

∫ 1

0
Bx(1, t)

sinλt
λ

dt, λ ∈ C. (30)

Using (13), (27)-(30), we see that the Jost function a(λ) satisfies the asymptotic equation (24).

3. Examples

In this Section, we will find the Jost function, scattering function and eigenvalues of two different
impulsive Sturm–Liouville boundary value problems.

Example 3.1. Let us consider the following impulsive Sturm–Liouville problem

−y′′ = λ2y, x ∈ [0, 1) ∪ (1,∞)

y(0) = 0

y(1+) = αy(1−)

y′(1+) = βy′(1−),

(31)

where α, β ∈ R and αβ , 0. It is evident that

e(x, λ) = eiλx, S(x, λ2) =
sinλx
λ

, C(x, λ2) = cosλx,

and

E(x, λ) =

{
eiλm(λ) cosλx + λeiλn(λ) sinλx

λ , x ∈ [0, 1)
eiλx , x ∈ (1,∞) , (32)

where m(λ) =
(

cosλ
α −

i sinλ
β

)
and n(λ) =

(
sinλ
α + i cosλ

β

)
. From (32), we obtain the Jost function and scattering

function of (31) as

E(0, λ) = eiλ
(

cosλ
α
−

i sinλ
β

)
, λ ∈ C+, (33)

and

S(λ) = e−2iλ
(
β cosλ + iα sinλ
β cosλ − iα sinλ

)
, λ ∈ R \ {0},

respectively. Now, we can write the set of eigenvalues of (31) using the Theorem 2.4

σd = {µ = λ2 : λ ∈ C+, E(0, λ) = 0}.

Since E(0, λ) = 0, it follows from (33) that eiλ
(

cosλ
α −

i sinλ
β

)
= 0. Using the last equation, we find

λk = −
i
2

ln
∣∣∣∣∣1 + A
1 − A

∣∣∣∣∣ +
1
2

Ar1
(1 + A

1 − A

)
+ kπ, k ∈ Z = 0,±1,±2, ...,
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where A =
β
α .

Case1: For 0 < A < 1, we see that

λk = −
i
2

ln
1 + A
1 − A

+ kπ, k ∈ Z.

Since λk ∈ C− := {λ ∈ C : Imλ < 0} in this case, (31) has no eigenvalues.
Case2: For 1 < A < ∞, we find

λk = −
i
2

ln
∣∣∣∣∣1 + A
1 − A

∣∣∣∣∣ + (k + 1)π, k ∈ Z.

Similarly to the Case1, λk ∈ C− and in this case again, the eigenvalues of (31) are not existing.
Case3: For A ∈ (−1, 0), we obtain that

λk =
i
2

ln
1 − A
1 + A

+ kπ, k ∈ Z,

here λk ∈ C+ and µk = λ2
k , k ∈ Z are the eigenvalues of the impulsive boundary value problem (31).

Case4: For A ∈ (−∞,−1), we find

λk =
i
2

ln
∣∣∣∣∣1 − A
1 + A

∣∣∣∣∣ + (k + 1)π, k ∈ Z,

and similar to the Case3, the numbers µk = λ2
k , k ∈ Z are the eigenvalues of (31).

Example 3.2. Let us consider the Sturm–Liouville problem{
−y′′ = λ2ρ(x)y, 0 ≤ x < ∞

y(0) = 0, (34)

where

ρ(x) =

{
w2, 0 ≤ x ≤ 1
1, 1 < x < ∞ (35)

and w ∈ R \ {−1, 0, 1}. Note that (34)-(35) boundary value problem can be stated as an impulsive Sturm–Liouville
boundary value problem

−y′′ = λ2ρ(x)y, 0 ≤ x < ∞

y(0) = 0

y(1−) = y(1+)

y′(1−) = y′(1+).

(36)

It can be easily seen that

e(x, λ) = eiλx, S(x, λ2) =
sin(λwx)
λw

, C(x, λ2) = cos(λwx),

and

E(x, λ) =

{
eiλa0(λ) cos(λwx) + λeiλb0(λ) sin(λwx)

λw , x ∈ [0, 1]
eiλx , x ∈ (1,∞) ,

where a0(λ) =
[
cos(λw) − i sinλw

w

]
and b0(λ) = [sin(λw) + i cos(λw)] For this problem, we get the Jost function and

scattering function of (36) (or (34)-(35)) as

E(0, λ) = eiλ
(
cosλw − i

sinλw
w

)
,
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and

S(λ) = e−2iλw cosλw + i sinλw
w cosλw − i sinλw

.

Using Theorem 2.4, we obtain the eigenvalues of impulsive Sturm-Liouville boundary value problem (34)-(35)

σd = {µ = λ2 : λ ∈ C+,
(
cosλw − i

sinλw
w

)
= 0},

it follows from that
(
cosλw − i sinλw

w

)
= 0 and

λk = −
i
2

ln
∣∣∣∣∣w + 1
w − 1

∣∣∣∣∣ + Ar1
(1 + w

1 − w

)
+ kπ, k ∈ Z.

Case1: If w ∈ (0, 1), then

λk = −
i
2

ln
1 + w
1 − w

+ kπ, k ∈ Z.

In this case, λk ∈ C−, so the impulsive Sturm-Liouville boundary value problem (34)-(35) has no eigenvalues.
Case2: If w ∈ (1,∞), then

λk = −
i
2

ln
∣∣∣∣∣1 + w
1 − w

∣∣∣∣∣ + (k + 1)π, k ∈ Z.

In this case, again there is no eigenvalues of impulsive Sturm-Liouville boundary value problem (34)-(35).
Case3: If w ∈ (−1, 0), we obtain that

λk =
i
2

ln
1 + w
1 − w

+ kπ, k ∈ Z,

here µk = λ2
k , k ∈ Z are the eigenvalues of (34)-(35).

Case4: For w ∈ (−∞,−1), we find that µk = λ2
k , k ∈ Z are the eigenvalues of (36), where

λk =
i
2

ln
∣∣∣∣∣1 + w
1 − w

∣∣∣∣∣ + (k + 1)π, k ∈ Z.
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