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Abstract. The nonlinear neutral integro-differential equation

x′ (t) = −

∫ t

t−τ(t)
a (t, s) 1 (x (s)) ds + c (t) x′ (t − τ (t)) ,

with variable delay τ (t) ≥ 0 is investigated. We find suitable conditions for τ, a, c and 1 so that for a given
continuous initial function ψ a mapping P for the above equation can be defined on a carefully chosen
complete metric space S0

ψ in which P possesses a unique fixed point. The final result is an asymptotic
stability theorem for the zero solution with a necessary and sufficient conditions. The obtained theorem
improves and generalizes previous results due to Burton [6], Becker and Burton [5] and Jin and Luo [16].

1. Introduction

Lyapunov’s direct method has been, for more than 100 years, the most efficient tool for investigating
the stability properties of a wide variety of ordinary, functional, partial differential and integro-differential
equations. Nevertheless, the application of this method to problems of stability in differential and integro-
differential equations with delays has encountered serious obstacles if the delays are unbounded or if the
equation has unbounded terms [7]–[9]. In recent years, several investigators have tried stability by using a
new technique. Particularly, Burton, Furumochi, Becker and others began a study in which they noticed that
some of these difficulties vanish or might be overcome by means of fixed point theory (see [1]–[18], [20]).
The fixed point theory does not only solve the problem on stability but has other significant advantage over
Lyapunov’s. The conditions of the former are often averages but those of the latter are usually pointwise
(see [7]).

In this paper we consider the nonlinear neutral integro-differential equation with variable delay

x′ (t) = −

∫ t

t−τ(t)
a (t, s) 1(x (s))ds + c (t) x′ (t − τ (t)) , (1)
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with the initial condition

x (t) = ψ (t) for t ∈ [m (0) , 0] ,

such that ψ ∈ C ([m (0) , 0] ,R) where m (0) = inf {t − τ (t) , t ≥ 0}.
Here C (S1,S2) denotes the set of all continuous functions ϕ : S1 → S2 with the supremum norm ‖·‖.
Throughout this paper we assume that a ∈ C (R+

× [m (0) ,∞) ,R) , c : R+
→ R is differentiable and τ : R+

→

R+ is differentiable with t − τ (t)→∞ as t→∞.
Special cases of (1) have been considered and investigated by many authors. For example, Burton in

[6], Becker and Burton in [5], Jin and Luo in [16] have studied the equation

x′ (t) = −

∫ t

t−τ(t)
a (t, s) 1(x (s))ds, (2)

and have respectively proved the following theorems.

Theorem A (Burton [6]). Suppose that τ (t) = r is constant and assume that there is an l > 0 such that 1 is an odd,
Lipschitz, and increasing function on [−l, l] such that 1′(x) is continuous, 1′(0) , 0 and 0 6 x−1(x) is non-decreasing
on [0, l]. If there exists a constant α < 1 such that

β := sup
t≥0

∫ r

0

∣∣∣∣∣∫ r

w
a (v + t − w, t − w) dv

∣∣∣∣∣ dw <
1
2
, (3)

and ∫ t

0
A (s, s) ds→∞ as t→∞, (4)

where

A (t, s) =

∫ r

t−s
a (u + s, s) du with A (t, t) =

∫ r

0
a (u + t, t) du ≥ 0.

Then the zero solution of (2) is asymptotically stable.

Theorem B (Becker and Burton [5]). Suppose a constant l > 0 exists such that 1 satisfies a Lipschitz condition on
[−l, l] and G(t, t) > 0 for t > 0. Assume, further, that

(i) 1 is odd and strictly increasing on [−l, l];
(ii) x − 1(x) is non-decreasing on [−l, l];
(iii) there is an α ∈ (0, 1) such that 2

∫ t

t−τ(t) |G (t,u)| du 6 α for t > 0, with

G (t, s) =

∫ f (s)

t
a (u, s) du, G (t, t) =

∫ f (t)

t
a (u, t) du,

where f is the inverse function of t − τ (t) which is supposed to be strictly increasing. Then a δ ∈ (0, l) exists such
that, for each continuous function ψ : [m (0) , 0]→ (−δ, δ), there is a unique continuous function x : [m (0) ,∞)→ R
with x (t) = ψ (t) on [m (0) , 0] that satisfies (2) on [0,∞). Moreover, x is bounded by l on [m (0) ,∞). Furthermore,
the zero solution of (2) is stable at t = 0. If, in addition, 1 is continuously differentiable, 1′ (0) , 0 and∫ t

0
G (s, s) ds→∞ as t→∞, (5)

then the zero solution is asymptotically stable.
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Theorem C (Jin and Luo [16]). Suppose there exists a constant l > 0 such that 1 satisfies a Lipschitz condition on
[−l, l], and H(t) > 0 for t > 0 is a continuous function. Assume that there exists a continuous function q such that
|B(t, s)| 6 q(s) for t − r(t) 6 s 6 t. Suppose further that

(i) 1 is odd and strictly increasing on [−l, l];
(ii) x − 1(x) is non-decreasing on [0, l];
(iii) there exists an α ∈ (0, 1) such that, for t > 0∫ t

t−τ(t)
|H (s) + B (t, s)| ds +

∫ t

0
e−

∫ t
s H(v)dv

|H (s)|
(∫ s

s−τ(s)
|H (u) + B (s,u)| du

)
ds

+

∫ t

0
e−

∫ t
s H(v)dv

|H (s − τ (s)) + B (s, s − τ (s))| |1 − τ′ (s)| ds ≤ α , (6)

where

B (t, s) =

∫ s

t
a (u, s) du with B (t, t − τ (t)) =

∫ t−τ(t)

t
a (u, t − τ (t)) du.

Then a δ ∈ (0, l) exits such that for each continuous initial function ψ : [m (0) , 0] → (−δ, δ), there is a unique
continuous function x : [m (0) ,∞) → R with x (t) = ψ (t) on [m (0) , 0] that satisfies (2) on [0,∞). Moreover, x is
bounded on [m (0) ,∞). Furthermore, the zero solution of (2) is stable at t = 0. If, in addition, 1 is continuously
differentiable, 1′ (0) , 0 and∫ t

0
H (v) dv→∞ as t→∞, (7)

then the zero solution is asymptotically stable.

Remark 1.1. The result of Becker and Burton obtained in Theorems B requires that t − τ (t) is strictly increasing.
However, in Theorem C, this condition is clearly removed. Also, the conditions of stability in Theorem C are less
restrictive than Theorem B. That is, Theorem C improves Theorems A and B.

Our hope is to improve Theorem C and extend it to support a wide class of nonlinear integro-differential
equations with variable delay of neutral type presented as (1). Our results are obtained with no need of
further assumptions on the inverse of delay t − τ (t), so that for a given continuous initial function ψ a
mapping P for (1) is constructed in such a way to map, a suitably chosen, complete metric space S0

ψ into
itself and on which P is a contraction mapping and so possesses a fixed point. This procedure will enable
us to establish and prove an asymptotic stability theorem for the zero solution of (1) using less restrictive
conditions. The theorem is concluded by means of the contraction mapping principle and the end results
improve and generalize the main results in [5, 6, 16]. We provide an example to illustrate our claim.

2. Main results

For each ψ ∈ C ([m (0) , 0] ,R), a solution of (1) through
(
0, ψ

)
is a continuous function x : [m (0) ,T)→ R

for some positive constant T > 0 such that x satisfies (1) on [0,T) and x = ψ on [m (0) , 0]. We denote such a so-
lution by x (t) = x

(
t, 0, ψ

)
. From the existence theory we can conclude that for eachψ ∈ C ([m (0) , 0] ,R), there

exists a unique solution x (t) = x
(
t, 0, ψ

)
of (1) defined on [0,∞). We define

∥∥∥ψ∥∥∥ = max
{∣∣∣ψ (t)

∣∣∣ : m (0) ≤ t ≤ 0
}
.

Stability definitions may be found in [7], for example. In our investigation we need that τ is twice differen-
tiable and

τ′ (t) , 1 for all t ∈ R+. (8)

The absence of linear terms in (1) makes it difficult to obtain a fixed point mapping. So, to make equation
(1) more tractable, we have to transform it.
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Generally, the investigation of the stability of an equation using fixed point technic involves the con-
struction of a suitable fixed point mapping. This can, in so many cases, be an arduous task. So, to construct
our mapping, we begin by transforming (1) to a more tractable, but equivalent, equation, which we then
invert to obtain an equivalent integral equation from which we derive a fixed point mapping. After then,
we define prudently a suitable complete space, depending on the initial condition, so that the mapping is
a contraction. Using Banach’s contraction mapping principle, we obtain a solution for this mapping, and
hence a solution for (1), which is asymptotically stable.

First, we have to transform (1) into an equivalent equation that possesses the same basic structure and
properties to which we apply the variation of parameters to define a fixed point mapping.

Lemma 2.1. Equation (1) is equivalent to

x′ (t) = B (t, t − τ (t)) (1 − τ′ (t)) 1 (x (t − τ (t)))

+
d
dt

∫ t

t−τ(t)
B (t, s) 1 (x (s)) ds + c (t) x′ (t − τ (t)) , (9)

where

B (t, s) :=
∫ s

t
a (u, s) du with B (t, t − τ (t)) =

∫ t−τ(t)

t
a (u, t − τ (t)) du.

Proof. Differentiating the integral term in (9), we obtain

d
dt

∫ t

t−τ(t)
B (t, s) 1 (x (s)) ds

= B (t, t) 1 (x (t)) − B (t, t − τ (t)) (1 − τ′ (t)) 1 (x (t − τ (t))) +

∫ t

t−τ(t)

∂
∂t

B (t, s) 1 (x (s)) ds.

Substituting this into (9), it follows that (9) is equivalent to (1) provided B satisfies the following conditions

B (t, t) = 0 and
∂
∂t

B (t, s) = −a (t, s) . (10)

Now (10) implies

B (t, s) = −

∫ t

0
a (u, s) du + φ (s) , (11)

for some function φ, and B (t, s) must satisfy

B (t, t) = −

∫ t

0
a (u, t) du + φ (t) = 0.

Consequently,

φ (t) =

∫ t

0
a (u, t) du.

Substituting this into (11), we obtain

B (t, s) = −

∫ t

0
a (u, s) du +

∫ s

0
a (u, s) du

=

∫ s

t
a (u, s) du.

This definition of B satisfies (10). Consequently, (1) is equivalent to (9).
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Lemma 2.2. Let ψ : [m(0), 0] → R be a given continuous initial function. If x is a solution of (1) on an interval
[0,T) with x = ψ on [m(0), 0], then x is a solution of the integral equation

x(t) =

{
ψ(0) −

c(0)
1 − τ′(0)

ψ(−τ(0)) −
∫ 0

−τ(0)
[H(s) + B(0, s)] 1(ψ(s))ds

}
e−

∫ t
0 H(v)dv

+
c(t)

1 − τ′(t)
x(t − τ(t)) +

∫ t

t−τ(t)
[H(s) + B(t, s)] 1(x(s))ds

−

∫ t

0
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
[H(u) + B(s,u)] 1(x(u))du ds

+

∫ t

0
e−

∫ t
s H(v)dv {

[H(s − τ(s)) + B(s, s − τ(s))] (1 − τ′(s))1(x(s − τ(s))) − µ(s)x(s − τ(s))
}

ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)

[
x(s) − 1(x(s))

]
ds, (12)

where

µ(s) =
[c′(s) + H(s)c(s)](1 − τ′(s)) + τ′′(s)c(s)

(1 − τ′(s))2 ,

and H : [m(0),∞)→ R is an arbitrary continuous function. Conversely, if a continuous function x is equal to ψ on
[m(0), 0] and is a solution of (12) on an interval [0, σ), then x is a solution of (1) on [0, σ).

Proof. Multiplying both sides of (9) by the factor e
∫ t

0 H(v)dv and integrating from 0 to any t ∈ [0,T), we obtain

x(t) = e−
∫ t

0 H(v)dvψ(0) +

∫ t

0
e−

∫ t
s H(v)dvH(s)x(s)ds +

∫ t

0
e−

∫ t
s H(v)dvc(s)x′(s − τ(s))ds

+

∫ t

0
e−

∫ t
s H(v)dv d

ds

∫ s

s−τ(s)
B(s,u)1(x(u))duds

+

∫ t

0
e−

∫ t
s H(v)dvB(s, s − τ(s))(1 − τ′(s))1(x(s − τ(s)))ds

= e−
∫ t

0 H(v)dvψ(0) +

∫ t

0
e−

∫ t
s H(v)dvH(s)x(s)ds

+

∫ t

0
e−

∫ t
s H(v)dv d

ds

∫ s

s−τ(s)
[H(u) + B(s,u)] 1(x(u))duds

+

∫ t

0
e−

∫ t
s H(v)dvc(s)x′(s − τ(s))ds +

∫ t

0
e−

∫ t
s H(v)dvB(s, s − τ(s))(1 − τ′(s))1(x(s − τ(s)))ds

−

∫ t

0
e−

∫ t
s H(v)dv d

ds

∫ s

s−τ(s)
H(u)1(x(u))duds.

Then an integration by parts yields (12). Conversely, suppose that a continuous function x is equal to ψ on [m(0), 0]
and satisfies (12) on an interval [0, σ). Then, x is differentiable on [0, σ). Differentiating x with the aid of Leibniz’s
rule, we obtain (9).

From equation (12) we shall derive a fixed point mapping P for (1). But the challenge here is to choose
a suitable metric space of functions on which the map P can be defined. Below a weighted metric on a
specific space is defined. Let C be the set of real-valued bounded continuous functions on [m(0),∞) with
the supremum norm ‖·‖, that is, for φ ∈ C,∥∥∥φ∥∥∥ := sup

{∣∣∣φ (t)
∣∣∣ : t ∈ [m(0),∞)

}
.
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In other words, we carry out our investigations in the complete metric space (C, d) where d denotes the
supremum metric d

(
φ1, φ2

)
=

∥∥∥φ1 − φ2

∥∥∥ for φ1, φ2 ∈ C. For a given initial function ψ : [m(0), 0] → [−l, l],
l > 0, define the set

Sψ := {φ : [m(0),∞)→ R | φ ∈ C, φ(t) = ψ(t) f or t ∈ [m(0), 0],
∣∣∣φ(t)

∣∣∣ ≤ l}.

Since Sψ is a closed subset of C, the metric space
(
Sψ, d

)
is complete.

Theorem 2.3. Let H : [m(0),∞)→ R be a continuous function and define a mapping P on Sψ as follows, for φ ∈ Sψ(
Pφ

)
(t) = ψ(t) if t ∈ [m(0), 0]; while, for t > 0

(
Pφ

)
(t) =

{
ψ(0) −

c(0)
1 − τ′(0)

ψ(−τ(0)) −
∫ 0

−τ(0)
[H(s) + B(0, s)] 1(ψ(s))ds

}
e−

∫ t
0 H(v)dv

+
c(t)

1 − τ′(t)
φ(t − τ(t)) +

∫ t

t−τ(t)
[H(s) + B(t, s)] 1(φ(s))ds

−

∫ t

0
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
[H(u) + B(s,u)] 1(φ(u))duds

+

∫ t

0
e−

∫ t
s H(v)dv

{
[H(s − τ(s)) + B(s, s − τ(s))] (1 − τ′(s))1(φ(s − τ(s))) − µ(s)φ(s − τ(s))

}
ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)

[
φ(s) − 1(φ(s))

]
ds. (13)

Suppose that the following conditions are satisfied,
(i) there exists a constant l > 0 such that 1 satisfies a Lipschitz condition on [−l, l] and let L be the Lipschitz

constant for both 1(x) and x − 1(x) on [−l, l];
(ii) H(t) > 0 for t > 0;
(iii) there exists a continuous function q such that |B(t,u)| 6 q(u) for t − τ(t) 6 u 6 t.

Assume, further, that the following condition is satisfied for some constant k > 5

k
∣∣∣∣∣ c(t)
1 − τ′(t)

∣∣∣∣∣ ≤ 1. (14)

Then there is a metric dh for Sψ such that
(
Sψ, dh

)
is complete and P is a contraction on

(
Sψ, dh

)
if P maps Sψ into

itself.

Proof. It is clear that Pφ is continuous when φ is such. Now, for t ∈ [m(0),∞) and a constant k > 5, define

h(t) = kL
∫ t

0
[H(v) + q(v) + ω(v)]dv,

where

ω(v) =

{
0, i f v ∈ [m(0), 0]

|[H(v − τ(v)) + B(v, v − τ(v))] (1 − τ′(v))| + |
µ(v)|

L , i f v ∈ [0,∞).
(15)

Let S be the space of all continuous functions φ : [m(0),∞)→ R such that∣∣∣φ∣∣∣h := sup
{∣∣∣φ(t)

∣∣∣ e−h(t) : t ∈ [m(0),∞)
}
< ∞.

Then (S, |·|h) is a Banach space, which can be checked with Cauchy criterion for uniform convergence. Thus,
(S, dh) is a complete metric space where dh denotes the induced metric dh(φ, η) =

∣∣∣φ − η∣∣∣h for φ, η ∈ S. Being
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closed in S with this metric, the space (Sψ, |·|h) is also complete. Suppose now, that P : Sψ → Sψ. We need
to show that P defined by (13) is a contraction. Toward this end. Let φ, η ∈ Sψ, since, by hypothesis (i), 1
satisfies a Lipschitz condition on [−l, l], it follows that∣∣∣(Pφ)(t) − (Pη)(t)

∣∣∣ e−h(t)

6

∣∣∣∣∣ c(t)
1 − τ′(t)

∣∣∣∣∣ ∣∣∣φ(t − τ(t)) − η(t − τ(t))
∣∣∣ e−h(t)−h(t−τ(t))+h(t−τ(t))

+

∫ t

t−τ(t)
|H(s) + B(t, s)|L

∣∣∣φ(s) − η(s)
∣∣∣ e−h(t)+h(s)−h(s)ds

+

∫ t

o
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)|L

∣∣∣φ(u) − η(u)
∣∣∣ e−h(t)+h(u)−h(u)duds

+

∫ t

0
e−

∫ t
s H(v)dv

{
L |H(s − τ(s)) + B(s, s − τ(s))| |1 − τ′(s)| +

∣∣∣µ(s)
∣∣∣}

×

∣∣∣φ(s − τ(s)) − η(s − τ(s))
∣∣∣ e−h(t)+h(s−τ(s))−h(s−τ(s))ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)L

∣∣∣φ(s) − η(s)
∣∣∣ e−h(t)+h(s)−h(s)ds, (16)

for t > 0. There are five terms on the right hand side of inequality (16), denote them respectively by Ii,
i = 1, 2, ..., 5. For t − τ(t) ≤ s ≤ v ≤ t, we have

−h(t) + h(s) = −kL
∫ t

s
[H(v) + q(v) + ω(v)]dv ≤ −kL

∫ t

s
[H(v) + q(v)]dv.

Consequently,

I2 ≤

∫ t

t−τ(t)
e−kL

∫ t
s [H(v)+q(v)]dv

|H(s) + B(t, s)|L
∣∣∣φ(s) − η(s)

∣∣∣ e−h(s)ds.

For s − τ(s) ≤ u ≤ v ≤ s, we have

−h(t) + h(u) = −kL
∫ t

u
[H(v) + q(v) + ω(v)]dv ≤ −kL

∫ s

u
[H(v) + q(v)]dv.

So

I3 ≤

∫ t

0
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
e−kL

∫ s
u [H(v)+q(v)]dv

|H(u) + B(s,u)|L
∣∣∣φ(u) − η(u)

∣∣∣ e−h(u)duds

Similarly, using (15), we obtain for s − τ (s) ≤ v ≤ t

−h (t) + h (s − τ(s)) = −kL
∫ t

s−τ(s)
[H(v) + q(v) + ω(v)]dv ≤ −kL

∫ t

s
ω(v)dv

Thus

I4 ≤

∫ t

0
e−kL

∫ t
s ω(v)dvω (s) L

∣∣∣φ(s − τ(s)) − η(s − τ(s))
∣∣∣ e−h(s−τ(s))ds
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Consequently, inequality (16), became∣∣∣(Pφ)(t) − (Pη)(t)
∣∣∣ e−h(t)

≤ e−kL
∫ t

t−τ(t)[H(v)+q(v)+ω(v)]dv
∣∣∣∣∣ c(t)
1 − τ′(t)

∣∣∣∣∣ ∣∣∣φ(t − τ(t)) − η(t − τ(t))
∣∣∣ e−h(t−τ(t))

+

∫ t

t−τ(t)
e−kL

∫ t
s [H(v)+q(v)]dv

|H (s) + B(t, s)|L
∣∣∣φ(s) − η(s)

∣∣∣ e−h(s)ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
e−kL

∫ s
u [H(v)+q(v)]dv

|H(u) + B(s,u)|L
∣∣∣φ(u) − η(u)

∣∣∣ e−h(u)duds

+

∫ t

0
e−kL

∫ t
s ω(v)dvω(s)L

∣∣∣φ(s − τ(s)) − η(s − τ(s))
∣∣∣ e−h(s−τ(s))ds

+

∫ t

0
e−(kL+1)

∫ t
s H(v)dvH(s)L

∣∣∣φ(s) − η(s)
∣∣∣ e−h(s)ds.

By condition (iii), we have

|H(s) + B(t, s)| ≤ H(s) + q(s) for t − r(t) ≤ s ≤ t.

Consequently, by using (14), we obtain∣∣∣(Pφ)(t) − (Pη)(t)
∣∣∣ e−h(t)

≤

[1
k

+
( 1

kL
+

1
kL

+
1

kL
+

1
kL + 1

)
L
] ∣∣∣φ − η∣∣∣h ,

for all t > 0. Since Pφ and Pη agree on [m (0) , 0], the last inequality holds for all t ≥ m (0).
Thus∣∣∣Pφ − Pη

∣∣∣
h ≤

5
k

∣∣∣φ − η∣∣∣h .
Since k > 5, we conclude that P is a contraction on (Sψ, dh).

Now, by choosing
∥∥∥ψ∥∥∥ sufficiently small, we establish the existence and uniqueness of solutions by

showing that P : Sψ → Sψ.

Definition 2.4. The zero solution of (1) is said to be stable at t = 0 if, for every ε > 0, there exists a δ > 0 such that
ψ : [m (0) , 0]→ (−δ, δ) implies that |x (t)| < ε for t ≥ m (0).

Theorem 2.5. Suppose 1, H and B satisfy conditions (i)–(iii) in Theorem 2.3, (14) holds and suppose further that
(i) 1 is odd and strictly increasing on [−l, l];
(ii) x − 1(x) is non-decreasing on [0, l];
(iii) there exists an α ∈ (0, 1) such that, for t ≥ 0

l
(∣∣∣∣∣ c(t)

1 − τ′(t)

∣∣∣∣∣ +

∫ t

0
e−

∫ t
s H(v)dv

∣∣∣µ(s)
∣∣∣ ds

)
+ 1 (l)

(∫ t

t−τ(t)
|H (s) + B(t, s)| ds +

∫ t

0
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)| duds

+

∫ t

0
e−

∫ t
s H(v)dv

|H(s − τ(s)) + B(s, s − τ(s))| |1 − τ′(s)| ds
)

6 α1 (l) .

Then a δ ∈ (0, l) exists such that for each initial continuous function ψ : [m(0), 0] → (−δ, δ), there is a unique
continuous function x : [m(0),∞)→ R with x = ψ on [m(0), 0], which is a solution of (1) on [0,∞). Moreover, x is
bounded by l on [m(0),∞). Furthermore, the zero solution of (1) is stable at t = 0.
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Proof. Since 1 is odd and satisfies the Lipschitz condition on [−l, l], 1(0) = 0 and 1 is uniformly continuous
on [−l, l]. So we can choose a δ that satisfies

δ

(
1 +

∣∣∣∣∣ c(0)
1 − τ′(0)

∣∣∣∣∣) + 1(δ)
∫ 0

−τ(0)
|H(s) + B(0, s)| ds 6 (1 − α)1 (l) . (17)

Let ψ : [m(0), 0] → (−δ, δ) be a continuous function. Note that (17) implies δ < l since 1(l) ≤ l by condition
(ii). Thus,

∣∣∣ψ (t)
∣∣∣ ≤ l for m(0) ≤ t ≤ 0. Now we show that for such a ψ the mapping P : Sψ → Sψ. Indeed,

consider (13). For an arbitrary φ ∈ Sψ, it follows from conditions (i) and (ii) that∣∣∣(Pφ)(t)
∣∣∣

≤ δ

(
1 +

∣∣∣∣∣ c(0)
1 − τ′(0)

∣∣∣∣∣) + 1(δ)
∫ 0

−τ(0)
|H(s) + B(0, s)| ds + l

∣∣∣∣∣ c(t)
1 − τ′(t)

∣∣∣∣∣
+ 1(l)

∫ t

t−τ(t)
|H(s) + B(t, s)| ds + 1(l)

∫ t

o
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)| duds

+

∫ t

0
e−

∫ t
s H(v)dv

{
1(l) |H(s − τ(s)) + B(s, s − τ(s))| |1 − τ′(s)| + l

∣∣∣µ(s)
∣∣∣} ds

+ (l − 1(l))
∫ t

0
e−

∫ t
s H(v)dvH(s)ds,

for t > 0. By applying (iii) and (17), we see that∣∣∣(Pφ)(t)
∣∣∣ ≤ δ

(
1 +

∣∣∣∣∣ c(0)
1 − τ′(0)

∣∣∣∣∣) + 1(δ)
∫ 0

−τ(0)
|H(s) + B(0, s)| ds + α1 (l) + l − 1(l)

≤ (1 − α)1 (l) + α1 (l) + l − 1(l) = (1 − α)1 (l) + (α − 1)1 (l) + l = l.

Hence,
∣∣∣(Pφ)(t)

∣∣∣ ≤ l for t ∈ [m(0),∞) because
∣∣∣(Pφ)(t)

∣∣∣ =
∣∣∣ψ (t)

∣∣∣ ≤ l for t ∈ [m (0) , 0]. Therefore, Pφ ∈ Sψ.
By Theorem 2.3, P is a contraction on the complete metric space (Sψ, dh). Then P has a unique fixed point
x ∈ Sψ. Thus |x (t)| ≤ l for all t ≥ m (0) and is a solution of (1) on [0,∞) by Lemmas 2.1 and 2.2. Hence x is
the only continuous function satisfying (1) such that x(t) = ψ(t) for t ∈ [m(0), 0].
To prove the stability at t = 0, let ε > 0 be given and choose r > 0 such that r < min {ε, l}. Replacing l with
r beginning with (17), we see that there is a δ > 0 such that

∥∥∥ψ∥∥∥ < δ implies that the unique continuous
solution x agreeing on [m (0) , 0] with ψ, satisfies |x(t)| 6 r < ε for all t > m(0).

Supposing that the conditions in Theorem 2.3 and Theorem 2.5 hold for some l > 0, we investigate
asymptotic stability with a necessary and sufficient condition by shifting our attention to the subset of
functions in Sψ that tend to zero as t→∞, namely,

S0
ψ =

{
φ ∈ Sψ | φ (t)→ 0 as t→∞

}
.

Since S0
ψ is a closed subset of Sψ, the metric space

(
S0
ψ, d

)
is complete. Under the conditions of the next

theorem, the zero solution of (1) is asymptotically stable.

Definition 2.6. The zero solution of (1) is asymptotically stable if it is stable at t = 0 and a δ > 0 exists such that for
any continuous functions ψ : [m (0) , 0]→ (−δ, δ), the solution x with x = ψ on [m (0) , 0] tends to zero as t→∞.

Theorem 2.7. Suppose all of the conditions in Theorem 2.3 and Theorem 2.5 hold. Furthermore, suppose 1 is
continuously differentiable on [−l, l] and 1′ (0) , 0. Then the zero solution of (1) is asymptotically stable if and only if∫ t

0
H (v) dv→∞ as t→∞. (18)



I. Soualhia et al. / Filomat 28:4 (2014), 781–795 790

Proof. First, suppose that (18) holds. We set

K = sup
t≥0

{
e−

∫ t
0 H(v)dv

}
. (19)

We argue that P : S0
ψ → S0

ψ, the conditions of Theorems 2.3 and 2.5 hold, and
∥∥∥ψ∥∥∥ is sufficiently small. For

δ > 0 satisfying (17), let ψ : [m (0) , 0]→ (−δ, δ) be a continuous function. Let φ ∈ S0
ψ. The proof of Theorem

2.5 shows that δ < l and
∣∣∣∣(Pφ) (t)

∣∣∣∣ ≤ l for t ∈ [m(0),∞). Hence,
(
Pφ

)
(t)→ 0 would imply that P maps S0

ψ into

itself. To show that this is the case, consider
∣∣∣∣(Pφ) (t)

∣∣∣∣. But first note for any φ ∈ S0
ψ that

∣∣∣∣1 (φ (t)
)∣∣∣∣ ≤ L

∣∣∣φ (t)
∣∣∣ and

∣∣∣∣φ (t) − 1
(
φ (t)

)∣∣∣∣ ≤ L
∣∣∣φ (t)

∣∣∣ ,
since 1 (x) and x − 1 (x) satisfy a Lipschitz condition on [−l, l] with a common Lipschitz constant L and
1 (0) = 0. Because of this and (iii) of Theorem 2.5, it follows from (13) that

∣∣∣∣(Pφ) (t)
∣∣∣∣

≤

{∣∣∣ψ(0)
∣∣∣ +

∣∣∣∣∣ c(0)
1 − τ′(0)

∣∣∣∣∣ ∣∣∣ψ(−τ(0))
∣∣∣ +

∫ 0

−τ(0)
|H(s) + B(0, s)|

∣∣∣1(ψ(s))
∣∣∣ ds

}
e−

∫ t
0 H(v)dv

+

∣∣∣∣∣ c(t)
1 − τ′(t)

∣∣∣∣∣ ∣∣∣φ(t − τ(t))
∣∣∣ +

∫ t

t−τ(t)
|H(s) + B(t, s)|

∣∣∣1(φ(s))
∣∣∣ ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)|

∣∣∣1(φ(u))
∣∣∣ duds

+

∫ t

0
e−

∫ t
s H(v)dv

{
|H(s − τ(s)) + B(s, s − τ(s))| |1 − τ′(s)|

∣∣∣1(φ(s − τ(s)))
∣∣∣ +

∣∣∣µ(s)
∣∣∣ ∣∣∣φ(s − τ(s))

∣∣∣} ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)

∣∣∣φ(s) − 1(φ(s))
∣∣∣ ds. (20)

Denote the six terms on the right hand side of (20) by I1, I2, ..., I6, respectively. It is obvious that the first
term I1 tends to zero as t → ∞, by condition (18). Also, due to the facts that φ (t) → 0 and t − τ (t) → ∞ as
t→∞, the second term I2 in (20) tends to zero as t→∞. What is left to show is that each of the remaining
terms in (20) tends to zero as t→∞.

Let φ ∈ S0
ψ be fixed. For a given ε > 0, we choose T0 > 0 large enough such that t − τ (t) ≥ T0, implies∣∣∣φ (s)

∣∣∣ < ε if s ≥ t − τ (t). Therefore, the third term I3 in (20) satisfies

I3 ≤

∫ t

t−τ(t)
|H(s) + B(t, s)|L

∣∣∣φ(s))
∣∣∣ ds

≤ Lε
∫ t

t−τ(t)
|H(s) + B(t, s)| ds ≤ Lαε.

Thus, I3 → 0 as t→ ∞. Now consider I4. For the given ε > 0, there exists a T1 > 0 such that s ≥ T1 implies
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∣∣∣ < ε. Thus, for t ≥ T1, the term I4 in (20) satisfies

I4 ≤

∫ T1

o
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)|L

∣∣∣φ(s))
∣∣∣ duds

+

∫ t

T1

e−
∫ t

s H(v)dvH(s)
∫ s

s−τ(s)
|H(u) + B(s,u)|L

∣∣∣φ(s))
∣∣∣ duds

≤ sup
σ≥m(0)

∣∣∣φ(σ)
∣∣∣ L ∫ T1

o
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)| duds

+ Lε
∫ t

T1

e−
∫ t

s H(v)dvH(s)
∫ s

s−τ(s)
|H(u) + B(s,u)| duds.

By (18), there exists T2 > T1 such that t ≥ T2 implies

sup
σ≥m(0)

∣∣∣φ(σ)
∣∣∣ L ∫ T1

o
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)| duds

= sup
σ≥m(0)

∣∣∣φ(σ)
∣∣∣ Le−

∫ t
T2

H(v)dv
∫ T1

o
e−

∫ T2
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)| duds

< Lε.

Now, apply condition (iii) in Theorem 2.5 to have I4 < Lε + Lαε < 2Lε. Thus, I4 → 0 as t→∞. Similarly, by
using condition (iii) in Theorem 2.5, then, if t ≥ T2 then the terms I5 and I6 in (20) satisfy

I5 ≤ sup
σ≥m(0)

∣∣∣φ(σ)
∣∣∣ e− ∫ t

T2
H(v)dv

∫ T1

o
e−

∫ T2
s H(v)dv

×

{
L |H(s − τ(s)) + B(s, s − τ(s))| |1 − τ′(s)| +

∣∣∣µ(s)
∣∣∣} ds

+ε

∫ t

T1

e−
∫ t

s H(v)dv
{
L |H(s − τ(s)) + B(s, s − τ(s))| |1 − τ′(s)| +

∣∣∣µ(s)
∣∣∣} ds

< Lε + Lαε +
α1 (l)

l
<

(
2L +

1 (l)
l

)
ε,

and

I6 ≤ sup
σ≥m(0)

∣∣∣φ(σ)
∣∣∣ Le−

∫ t
T2

H(v)dv
∫ T1

o
e−

∫ T2
s H(v)dvH(s)ds + Lε

∫ t

T1

e−
∫ t

s H(v)dvH(s)ds

< Lε + Lε = 2Lε.

Thus, I5, I6 → 0 as t→∞. In conclusion
(
Pφ

)
(t)→ 0 as t→∞, as required. Hence P maps S0

ψ into S0
ψ.

We verify that P is a contraction on
(
S0
ψ, d

)
. In a similar way as in [5, Theorem 3.13], let ζ ∈ [0, l], and

define

q (ζ) := min
{
1′ (x) : |x| ≤ ζ

}
and Q (ζ) := max

{
1′ (x) : |x| ≤ ζ

}
.

We prove that the mapping P defined by (13) is a contraction on
(
S0
ψ, d

)
provided

αQ (l) < q (l) , (21)

where α is given by condition (iii) in Theorem 2.5. To see this, first notice from (iii) in Theorem 2.5 that
α < 1, thus,

α = 1 − ε, (22)
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for some ε ∈ (0, 1). Clearly, lim
ζ→0

q (ζ) = lim
ζ→0

Q (ζ) = 1′ (0). Since 1 is strictly increasing, 1′ (0) , 0, and 1′ is

continuous, a neighborhood of x = 0 exists in which 1′ (x) > 0. Consequently, Q (ζ) > 0 for 0 ≤ ζ ≤ l. This
and lim

ζ→0
Q (ζ) , 0 imply

lim
ζ→0

q (ζ)
Q (ζ)

=

lim
ζ→0

q (ζ)

lim
ζ→0

Q (ζ)
= 1.

Hence, there is a ς ∈ (0, l] such that∣∣∣∣∣ q (ζ)
Q (ζ)

− 1
∣∣∣∣∣ < ε,

for 0 < ζ < ς. Choosing a value for ζ from (0, ς), we have (1 − ε) Q (ζ) < q (ζ). This, along with (22), yields

αQ (ζ) = (1 − ε) Q (ζ) < q (ζ) .

Replacing the original value of l with l = ζ, we obtain (21). Note that the conditions in Theorems 2.3 and
2.5 will still hold with this smaller l.

In the ensuing argument, bounds on the derivatives of 1 (x) and b (x) := x − 1 (x) on the interval [−l, l]
are used. By (i) in Theorem 2.5 and the definition of Q, 0 ≤ 1′ (x) ≤ Q (l). By (i) and (ii) in Theorem 2.5, b
is non-decreasing on [−l, l]. This and 1′ (x) ≥ q (l) imply 0 ≤ b′ (x) ≤ 1 − q (l). Let φ, η ∈ S0

ψ. By (13) and the
Mean Value Theorem, we have∣∣∣∣(Pφ) (t) −

(
Pη

)
(t)

∣∣∣∣
≤

∣∣∣∣∣ c(t)
1 − τ′(t)

∣∣∣∣∣ ∣∣∣φ(t − τ(t)) − η(t − τ(t))
∣∣∣

+

∫ t

t−τ(t)
|H(s) + B(t, s)|

∣∣∣1(φ(s)) − 1(η(s))
∣∣∣ ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)

∫ s

s−τ(s)
|H(u) + B(s,u)|

∣∣∣1(φ(u)) − 1(η(u))
∣∣∣ duds

+

∫ t

0
e−

∫ t
s H(v)dv

{
|H(s − τ(s)) + B(s, s − τ(s))| |1 − τ′(s)|

∣∣∣∣1 (φ(s − τ(s))
)
− 1(η(s − τ(s)))

∣∣∣∣
+

∣∣∣µ(s)
∣∣∣ ∣∣∣φ(s − τ(s)) − η(s − τ(s))

∣∣∣} ds

+

∫ t

0
e−

∫ t
s H(v)dvH(s)

∣∣∣∣b (
φ(s)

)
− b

(
η(s)

)∣∣∣∣ ds

≤
[
αQ (l) +

(
1 − q (l)

)] ∥∥∥φ − η∥∥∥ = ρ
∥∥∥φ − η∥∥∥ ,

for all t > 0, where ρ = αQ (l)+
(
1 − q (l)

)
. This implies

∥∥∥Pφ − Pη
∥∥∥ ≤ ρ ∥∥∥φ − η∥∥∥. Note ρ ∈ (0, 1). Consequently,

for a continuous ψ : [m (0) , 0] → (−δ, δ), P has a unique fixed point x ∈ S0
ψ. By Lemma 2.2, x is the unique

continuous solution of (1) with x (t) = ψ (t) on [m (0) , 0]. By virtue of x ∈ S0
ψ, x tends to 0 as t → ∞. By

Theorem 2.5, the zero solution is stable at t = 0. This shows that the zero solution of (1) is asymptotically
stable if (18) holds.

Conversely, suppose (18) fails. Then, there exists a sequence {tn}, tn → ∞ as n → ∞ such that
lim
n→∞

∫ tn

0 H (v) dv = β for some β ∈ R+. We may also choose a positive constant J satisfying

−J ≤
∫ tn

0
H (v) dv ≤ J,
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for all n ≥ 1. To simplify our expressions, we define

ω (s) = l
∣∣∣µ (s)

∣∣∣ + 1 (l) {|H (s − τ (s)) + B (s, s − τ (s))| |1 − τ′ (s)|

+H (s)
∫ s

s−τ(s)
|H (u) + B (s,u)| du

}
+ LH (s) ,

for all s ≥ 0. By by condition (iii) in Theorem 2.5, we have∫ tn

0
e−

∫ tn
s H(v)dvω (s) ds ≤ α1 (l) + L.

This yields∫ tn

0
e
∫ s

0 H(v)dvω (s) ds ≤
(
α1 (l) + L

)
e
∫ tn

0 H(v)dv
≤

(
1 (l) + L

)
eJ.

The sequence
{∫ tn

0 e
∫ s

0 H(v)dvω (s) ds
}

is bounded, so there exists a convergent subsequence. For brevity of

notation, we may assume that

lim
n→∞

∫ tn

0
e
∫ s

0 H(v)dvω (s) ds = γ,

for some γ ∈ R+ and choose a positive integer m so large that∫ tn

tm

e
∫ s

0 H(v)dvω (s) ds < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies{
δ0

(
1 +

∣∣∣∣∣ c (tm)
1 − τ′ (tm)

∣∣∣∣∣) + 1(δ0)
∫ tm

tm−τ(tm)
|H(s) + B (tm, s)| ds

}
KeJ
≤ (1 − α) 1 (l) .

If we replace l by 1 in the proof of Theorem 2.5, we have |x(t)| ≤ 1 for t ≥ tm. Now we consider the solution
x (t) = x

(
t, tm, ψ

)
of (1) with ψ (tm) = δ0 and

∣∣∣ψ (s)
∣∣∣ ≤ δ0 for s ≤ tm. We may choose ψ so that

ψ (tm) −
c (tm)

1 − τ′ (tm)
ψ (tm − τ (tm)) −

∫ tm

tm−τ(tm)
[H (s) + B (tm, s)] 1

(
ψ (s)

)
ds ≥

1
2
δ0.

It follows from (13) with x (t) = (Px) (t) that for n ≥ m∣∣∣∣∣∣x (tn) −
c (tn)

1 − τ′ (tn)
x (tn − τ (tn)) −

∫ tn

tn−τ(tn)
[H (s) + B (tn, s)] 1 (x (s)) ds

∣∣∣∣∣∣
≥

1
2
δ0e−

∫ tn
tm

H(v)dv
−

∫ tn

tm

e−
∫ tn

s H(v)dvω (s) ds

=
1
2
δ0e−

∫ tn
tm

H(v)dv
− e−

∫ tn
0 H(v)dv

∫ tn

tm

e
∫ s

0 H(v)dvω (s) ds

= e−
∫ tn

tm
H(v)dv

(
1
2
δ0 − e−

∫ tm
0 H(v)dv

∫ tn

tm

e
∫ s

0 H(v)dvω (s) ds
)

≥ e−
∫ tn

tm
H(v)dv

(
1
2
δ0 − K

∫ tn

tm

e
∫ s

0 H(v)dvω (s) ds
)

≥
1
4
δ0e−

∫ tn
tm

H(v)dv
≥

1
4
δ0e−2J > 0. (23)
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On the other hand, if the zero solution of (1) is asymptotically stable, then x (t) = x
(
t, tm, ψ

)
→ 0 as t→ ∞.

Since tn − τ (tn)→∞ as n→∞ and condition (iii) in Theorem 2.5 holds, we have

x (tn) −
c (tn)

1 − τ′ (tn)
x (tn − τ (tn)) −

∫ tn

tn−τ(tn)
[H (s) + B (tn, s)] 1 (x (s)) ds→ 0 as n→∞,

which contradicts (23). Hence condition (18) is necessary for the asymptotic stability of the zero solution of
(1). The proof is complete.

Remark 2.8. Obviously, if c(t) = 0, Theorem 2.7 extends Theorem C.

3. An example

In this section, we give an example to illustrate the application of Theorem 2.7.

Example 3.1. Consider the following nonlinear neutral integro-differential equation with variable delay

x′ (t) = −

∫ t

t−τ(t)
a (t, s) 1 (x (s)) ds + c (t) x′ (t − τ (t)) , (24)

where τ (t) = 0.482t, a (t, s) = 1/
(
s2 + 1

)
, c (t) = 0.031, 1 (x) = sin x. Then the zero solution of (24) is asymptotically

stable.

Proof. We have

B (t, s) =

∫ s

t

1
s2 + 1

du =
(s − t)
s2 + 1

.

Choosing l = π/4, k = 6 and H (t) = t/
(
t2 + 1

)
, clearly, condition (18) holds. Furthermore, we have L = 2,

1 (0) = 0, 1 (l) =
√

2/2, 1′ (0) = 1, 1 is odd and strictly increasing on [−π/4, π/4], x − 1 (x) is non-decreasing
on [0, π/4],

|B (t, s)| ≤
s

s2 + 1
for 0.518t ≤ s ≤ t,∣∣∣∣∣ c (t)

1 − τ′ (t)

∣∣∣∣∣ =

∣∣∣∣∣ 0.031
1 − 0.482

∣∣∣∣∣ < 0.06,∫ t

0
e−

∫ t
s H(v)dv

∣∣∣µ (s)
∣∣∣ ds =

∫ t

0
e−

∫ t
s

v
v2+1

dv 0.031s
0.518 (s2 + 1)

ds < 0.06,

and ∫ t

t−τ(t)
|H (s) + B (t, s)| ds

=

∫ t

0.518t

∣∣∣∣∣ 2s − t
s2 + 1

∣∣∣∣∣ ds =

∫ t

0.518t

2s − t
s2 + 1

ds

= t [arctan 0.518t − arctan t] + ln
(
t2 + 1

)
− ln

(
0.5182t2 + 1

)
= ω (t) .

Since the function ω is increasing in [0,∞) and

lim
t→∞

ω (t) = 1 − 1/0.518 − 2 ln (0.518) ' 0.385,
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then ∫ t

t−τ(t)
|H (s) + B (t, s)| ds < 0.386,

∫ t

0
e−

∫ t
s H(v)dv

|H (s)|
(∫ s

s−τ(s)
|H (u) + B (s,u)| du

)
ds < 0.386,

and ∫ t

0
e−

∫ t
s H(v)dv

|H (s − τ (s)) + B (s, s − τ (s))| |1 − τ′ (s)| ds

= (2 − 1/0.518)
∫ t

0
e−

∫ t
s

v
v2+1

dv s
s2 + 1/0.5182 ds

< 2 − 1/0.518 < 0.07.

It is easy to see that all the conditions of Theorems 2.3, 2.5 and 2.7 hold for α =
[
(π/4) /

(√
2/2

)]
(0.06 + 0.06)+

0.386 + 0.386 + 0.07 ' 0.976 < 1. Thus, Theorem 2.7 implies that the zero solution of (24) is asymptotically
stable.
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