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On Warped Product Gradient 7-Ricci Solitons
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Abstract. If the potential vector field of an n-Ricci soliton is of gradient type, using Bochner formula, we
derive from the soliton equation a nonlinear second order PDE. In a particular case of irrotational potential
vector field we prove that the soliton is completely determined by f. We give a way to construct a gradient
n-Ricci soliton on a warped product manifold and show that if the base manifold is oriented, compact and of
constant scalar curvature, the soliton on the product manifold gives a lower bound for its scalar curvature.

1. Introduction

Ricci flow, introduced by R. S. Hamilton [15], deforms a Riemannian metric g by the evolution equation
% g = =25, called the “heat equation” for Riemannian metrics, towards a canonical metric. Modeling the
behavior of the Ricci flow near a singularity, Ricci solitons [14] have been studied in the contexts of complex,
contact and paracontact geometries [2].

The more general notion of n-Ricci soliton was introduced by J. T. Cho and M. Kimura [10] and was
treated by C. Célin and M. Crasmareanu on Hopf hypersurfaces in complex space forms [9]. We also
discussed some aspects of n-Ricci solitons in paracontact [5], [6] and Lorentzian para-Sasakian geometry
[4].

A particular case of soliton arises when the potential vector field is the gradient of a smooth function.
The gradient vector fields play a central role in the Morse-Smale theory [21]. G. Y. Perelman showed that
if the manifold is compact, then the Ricci soliton is gradient [17]. In [13], R. S. Hamilton conjectured that a
compact gradient Ricci soliton on a manifold M with positive curvature operator implies that M is Einstein
manifold. In [11], S. Deshmukh proved that a Ricci soliton of positive Ricci curvature and whose potential
vector field is of Jacobi-type, is compact and therefore, a gradient Ricci soliton. Different aspects of gradient
Ricci solitons were studied in various papers. In [1], N. Basu and A. Bhattacharyya treated gradient Ricci
solitons in Kenmotsu manifolds having Killing potential vector field. P. Petersen and W. Wylie discussed
the rigidity of gradient Ricci solitons [19] and gave a classification imposing different curvature conditions
[18].

The aim of our paper is to investigate some properties of gradient 7-Ricci solitons. After deducing some
results derived from the Bochner formula, we construct a gradient 1-Ricci soliton on a warped product
manifold and for the particular case of product manifolds, we show that if the base is oriented and of
constant scalar curvature, then we obtain a lower bound for the scalar curvature of the product manifold.
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2. Bochner Formula Revisited

Let (M, g) be an m-dimensional Riemannian manifold and consider £ a gradient vector field on M. If
& = grad(f), for f a smooth function on M, then the g-dual 1-form n of £ is closed, as (X) := g(X, &) = df(X).
Then 0 = (dn)(X, Y) := X(n(Y)) = Y(n(X)) = n([X, Y]) = g(Vx&, Y) = g(Vy¢, X), hence:

g(vXé/ Y) = !](vYé/ X)/ (1)
for any X, Y € x(M), where V is the Levi-Civita connection of g.
Also:
div(&) = A(f) )
and
div(n) = trace(Z - §(VI)(Z, ) = Z(VE NE; = Z 9(E;, Vi &) = din(€), ()

i=1

for {Eihi<i<m a local orthonormal frame field with Vg E; = 0 in a point. From now on, whenever we make a
local computation, we will consider this frame.

In this case, the Bochner formula becomes:

SAEP) = V&P + 5(,6) + (o)), @

where S is the Ricci curvature of g. Indeed:

(dio(Leg))(X) i= trace(Z = H(V(Leg)(Z, -, X)) = Z(VE,-wgg))(Ei, X) = (5)
= Y AE((Leg)(Ei, X)) = (Leg)(Ei, Vi X)) = 22g<vE V& = Vy, x&, Ei) 1=
i=1 i=1

=2 g(V3 y& E) =2 Z (V5 &+ R(E, X)E, E) =

i=1
Z ) + 2trace(Z — R(Z, X)&) := 2 Z G(VXVEE = Vy £& Ej) +25(X, &) =
i=1 i=1
Z (VxVEE Ei) +25(X,&) =2 Z X(g(VE&, Ei) +25(X, &) = 2X(div(€)) + 25(X, &),
=1 i=1

where R is the Rlemann curvature and S is the Ricci curvature tensor fields of the metric g and the relation
(5), for X := &, becomes:

(div(Leg))(E) = 2E(div(E)) + 25(, ). (6)
But the Bochner formula states that for any vector field X [19]:

(div(Lxg)(X) = %A(IXIZ) —[VXP? + $(X, X) + X(div(X)) (7)
and from (6) and (7) we deduce that:
A(IEP) = 2IVEP = 25(&, &) + 2&(div(€)). 8)
Remark that (5) can be written in terms of (1, 1)-tensor fields:
div(Leg) = 2d(div(E)) + 2igeg, )

where Q is the Ricci operator defined by g(QX, Y) := 5(X, Y).
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3. Gradient 7-Ricci Solitons
Consider now the equation:
Leg+25+20g+2un®n =0, (10)

where g is a Riemannian metric, S its Ricci curvature, 7 a 1-form and A and y are real constants. The data
(g,¢, A, 1) which satisfy the equation (10) is said to be an n-Ricci soliton on M [10]; in particular, if p = 0,
(g,¢&, A) is a Ricci soliton [14]. If the potential vector field & is of gradient type, & = grad(f), for f a smooth
function on M, then (g, &, A, u) is called gradient n-Ricci soliton.

Proposition 3.1. Let (M, g) be a Riemannian manifold. If (10) defines a gradient n-Ricci soliton on M with the
potential vector field & := grad(f) and n is the g-dual 1-form of &, then:

(VXQ)Y = (VyQ)X = ~Vi, £+ Vi L+ pldf @ VE - VE@AN(X, Y), (11)
forany X, Y € x(M), where Q stands for the Ricci operator.

Proof. As g(QX,Y) := S(X,Y), follows:

VE+Q+ ALy +pdf ® & =0. (12)
Then:
(VxQ)Y = =(VxVv& = Vy,v&) — plg(Y, VxEE +df(Y)Vx &} i=i= =V & — plg(Y, Vx&)E +df(V)VxE) (13)

and using (1) we get the required relation. (O

Theorem 3.2. If (10) defines a gradient n-Ricci soliton on the m-dimensional Riemannian manifold (M, g) and 1 is
the g-dual 1-form of the gradient vector field & := grad(f), then:

%(A = Vo(IEP) = Hess(HIP + AP + uleHIER = 2A())- (14)

Proof. First remark that if & = Y77, &'E;, for {Eili<i<m a local orthonormal frame field with VEE; =0ina
point, then:

m m
trace(n®n) = z[df(Ei)]2 = 2 &Ik g(E;, E)g(E;, Ey) = 2(5)2 == Yocijem &' E9(Ei Ej) = [EF. (15)
i=1 1<i jk<m i=1
Taking the trace of the equation (10), we obtain:
div(&) + scal + mA + pl&f* =0 (16)
and differentiating it:
d(div(&)) + d(scal) + ud(|€]*) = 0. (17)
Then taking the divergence of the same equation, we get:
div(Leg) + 2div(S) + 2u - div(df ® df) = 0. (18)

Substracting the relations (18) and (17) computed in &, considering (6), (8) and using the fact that the
scalar and the Ricci curvatures satisfy [19]:

d(scal) = 2div(S), (19)
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we obtain:
SAEP) - VEF + S(€,€) + pl2(iotdf @ df)(E) - (2P = 0)

As

(@io(@df @dN)E) = ) (E(Af(ENAFE) ~dfENAf (VRO = Y 9(Ei, E)a(VEE, )+ (&, O)g(Ei, V&) = (21)
i=1 i=1

= 1
= g(Ve&, &) + &P Z g(VE& Ei) = zé(IéF) + &P div(E),

i=1

the equation (20) becomes:
1
EA(Iélz) — IVEP + S(&, &) + 2ul&Pdiv(E) = 0. (22)

From the 7-soliton equation (10), we get:

1
S(&,€) = =5E(1EP) = AleP — et (23)

and the equation (22) becomes:

1 1 .
EA(IEIZ) = Ve + Eé(lélz) + AlEP + plelt = 2ulEPdiv(&). (24)
As & := grad(f) follows Hess(f) = V(df) and |V&P? = |Hess(f)I>. O
Remark 3.3. For u = 0 in Theorem 3.2, we obtain the relation for the particular case of gradient Ricci soliton [19].

Remark 3.4. i) Assume that u # 0. Denoting by Az 1= A — Vg, the equation (14) can be written:

SACEP) = Hess(FP +EP1A + ulleF - 2A(1)),

where & = grad(f). If A > u[2A(f) — I&17], then Ag(IE*) > 0 and from the maximum prlnczplefollows that |E is
constant in a neighborhood of any local maximum. If || achieve its maximum, then M is quasi-Einstein. Indeed,
since Hess(f) = 0, from (10) we have S = —Ag — udf ® df. Moreover, in this case, |E[H{A + pl[|EP* — 2A(f)] = 0,
which implies either & = 0, so M is Einstein, or Iél2 = 2A(f) - ’—\ > 0. Since A(f) = —scal — mA — ulé|* we get
u@u+1)EP = —(u-scal + 2mAp + A). If u = =3, the scalar curvature equals to A(1 —m) and if u # —3, it is either
locally upper (or lower) bounded by — A(Hzmy for u < —% (u> -1, respectively). On the other hand, if the potential
vector field is of constant length, then ZyA(f) > A+ ylél2 equivalent to u(2u + 1)|EP + (2u - scal + 2mAu+ A) <0
with equality for A(f) = " + Ii' 25, A and Hess(f) = 0 which yields the quasi-Einstein case.
ii) For u = 0, we get the Ricci soliton case [19].

Proposition 3.5. Let (M, g) be an m-dimensional Riemannian manifold and 1 be the g-dual 1-form of the gradient
vector field & = grad(f). If & satisfies VE = L) — n® &, where V is the Levi-Civita connection associated to g, then:

1. Hess(f)=g—-n®n;
2. RX, Y)E =n(X)Y —=n(YV)X, forany X, Y € x(M);
3. S(&,&) = (1 -m)EP.

The condition satisfied by the potential vector field &, namely, V& = I, — 1 ® &, naturally arises if
(M, ¢, &,1,9) is for example, Kenmotsu manifold [16]. In this case, M is a quasi-Einstein manifold.
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Example 3.6. Let M = {(x,y,z) € R3,z > 0}, where (x, Yy, z) are the standard coordinates in R3. Set

d d d 1
Q= _8_y ®dx + a@dy, &= —ZE, n:= —Edz,
g:= Z%(dx@dx+dy®dy+dz®dz).

Then (¢, &, 1, 9) is a Kenmotsu structure on M.
Consider the linearly independent system of vector fields:

d d d
E1 = 25, E2 = Za_]/’ E3 = _ZEI

Follows
@E1 =-E;, 9E; =E;, 9¢E3 =0,
n(E1) =0, n(Ez) =0, n(Es) =1,
[E1,E2]1 =0, [Ez Es]l = Ez, [Es Ei]l=-E;
and the Levi-Civita connection V is deduced from Koszul’s formula

29(VxY, Z) = X(9(Y, 2)) + Y(9(Z, X)) = Z(9(X, Y)) = (X, [X, Z]) + g(Y, [Z, X]) + 9(Z, [X, Y]),

precisely
Vg E1 =-E;3, Vg E; =0, VgE3=E,

VE,E1 =0, VgE; = —E;3, VgEs =E,
Ve,Ey =0, Vi,E; =0, Vg,E;=0.
Then the Riemann and the Ricci curvature tensor fields are given by:
R(E1, E2)Ez = —E1, R(E1, E3)Es = —E1, R(Ez E1)Er = —Es,
R(Ez, E3)Es = —E», R(Es, E1)E1 = —E3, R(E3, E2)Ez = —Es,
S(E1, E1) = S(Ez, E2) = S(E3, E3) = —2.
From (10) computed in (E;, E;):
2[g(E;, Ei) = n(E)n(En] + 25(E;, Ei) + 2Ag(E;, E;) + 2un(Ei)n(E;) = 0,
forallie({1,2,3}, we have:
21— i3) —4+20 +2u3 =0 & A—1+(u—1)53=0,

5795

forallie(1,2,3}. Therefore, A = u =1 define an n-Ricci soliton on (M, @, &, 1, g). Moreover, it is a gradient n-Ricci

soliton, as the potential vector field & is of gradient type, & = grad(f), where f(x,y,z) := —Inz.

Assume now that (10) defines a gradient n-Ricci soliton on (M, g) with u # 0. Under the hypotheses of

the Proposition 3.5, the equation (24) simplifies a lot. Compute:

m

VER =Y g(VEE VEE) = Y {1+ (EP = 2[NENP) = m + EP(EP - 2),
i=1

i=1

for {Eihi<i<m a local orthonormal frame field with Vg,E; = 0 in a point,

(EP) = E(9(E, ) = 29(Veg, &) = 2(1EP ~ 1Y),

(25)

(26)
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E(EM) = 21EPEER) = 4(1E* - [£1°). (27)
From the equation (10) we obtain:
S(&,&) = —(A + DIEP — (u - D)IEl*. (28)

Using Proposition 3.5 and the relation (28), we get:
€ = (m =1 = DIEP = (u = DIEI, (29)

s0 |EP(u —1) =m —2 - Aie. &is of constant length. Using (26) we get || = 1. Tt follows A + p = m — 1 and
we deduce:

Theorem 3.7. Under the hypotheses of the Proposition 3.5, if (10) defines a gradient n-Ricci soliton on (M, g) with
u # 0, then the Laplacian equation (24) becomes:

A — m_—l 30
(f) i (30)

Therefore, the existence of a gradient n-Ricci soliton defined by (10) with the potential vector field
& = grad(f), yields the Laplacian equation (30), and the soliton is completely determined by f.

4. Warped Product n-Ricci Solitons

Consider (B, gg) and (F, gr) two Riemannian manifolds of dimensions n and m, respectively. Denote by
7 and ¢ the projection maps from the product manifold B x F to B and F and by ¢ := ¢ o 7 the lift to B X F of
a smooth function ¢ on B. In this context, we shall call B the base and F the fiber of B X F, the unique element

X of X(B X F) that is mt-related to X € x(B) and to the zero vector field on F, the horizontal lift of X and the

unique element V of x(B X F) that is o-related to V € x(F) and to the zero vector field on B, the vertical lift
of V. For simplicity, we shall simply denote by X the horizontal lift of X € x(B) and by V the vertical lift
of V € x(F). Also, denote by L(B) the set of all horizontal lifts of vector fields on B, by L(F) the set of all
vertical lifts of vector fields on F, by H the orthogonal projection of T, (B X F) onto its horizontal subspace
T(p,(B X {q}) and by V the orthogonal projection of T, 4 (B X F) onto its vertical subspace T, ({p} X F).

Let ¢ > 0 be a smooth function on B and

gi=1'gp+(po n)zo*gp (31)
be a Riemannian metric on B X F.

Definition 4.1. [3] The product manifold of B and F together with the Riemannian metric g defined by (31) is called
the warped product of B and F by the warping function ¢ (and is denoted by (M := B X, F, g)).

If ¢ is constant equal to 1, the warped product becomes the usual product of the Riemannian manifolds.

Due to a result of J. Case, Y.-J. Shu and G. Wei [7], we know that for a gradient n-Ricci soliton (g, & :=
grad(f), A, u) with p € (=00,0) and 1 = df the g-dual of &, on a connected n-dimensional Riemannian
manifold (M, g), 2 [A(f) — [E]> - ﬁ] is constant. Choosing properly an Einstein manifold, a smooth function
and considering the warped product manifold, we can characterize the gradient 7-Ricci soliton on the
base manifold as follows [7]. Let (B, gg) be an n-dimensional connected Riemannian manifold, A and p
real constants such that —}ll is a natural number, f a smooth function on B, k := pezf‘f [A(f) — &7 - ﬁ] and
(E gr) an m-dimensional Riemannian manifold with m = —% and Sr = kgr. Then (g,¢& = grad(f), A, u) is a
gradient n-Ricci soliton on (B, gg) with n = df the g-dual of &, if and only if the warped product manifold
(M := B X, F, g) with the warping function ¢ = ¢~% is Binstein manifold with S = Ag.

Let S, S, Sr the Ricci tensors on M, B and F and :";;;, S~p the lift on M of Sp and S, which satisfy:
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Lemma 4.2. [3] If (M := B X,, F, g) is the warped product of B and F by the warping function ¢ and m > 1, then for
any X, Y € L(B) and any V, W € L(F), we have:
1. S(X,Y) = S:;(X, Y) - %’H‘P(X, Y), where H? is the lift on M of Hess(¢);
2. S(X,V)=0;
3. S(V, W) = Sp(V, W) - w122 4 (m — 1) 4L 10V, W),

Notice that the lift on M of the gradient and the Hessian of any smooth function f on B satisfy:

grad(f) = grad(f), (32)
(Hess())(X,Y) = (Hess()(X,Y), forany X,Y € L(B). (33)

We shall construct a gradient n-Ricci soliton on a warped product manifold following [12].
Let (B, gg) be a Riemannian manifold, ¢ > 0 and f two smooth functions on B such that:

Sg + Hess(f) — gHess((p) +Agg+udf®df =0, (34)

where A, p and m > 1 are real constants.

Take (F, gr) an m-dimensional manifold with Sr = kg, for k := '[-A@* + A(p) + (m — 1)|grad(p)|* —
@(grad(f))(@)]lr, where 7 and ¢ be the projection maps from the product manifold B X F to B and F,
respectively, and g := 7'gp + (¢ 0 1)*0*gr a Riemannian metric on BX F. Then, for & := grad(f o nt), if consider
p=0in (34), (g,&, A) is a gradient Ricci soliton on B X, F called the warped product Ricci soliton [12].

With the above notations, we prove that:

Theorem 4.3. Let (B, gg) be a Riemannian manifold, ¢ > 0, f two smooth functions on B, let m > 1, A, p be real
constants satisfying (34) and (F, gr) an m-dimensional Riemannian manifold. Then (g, ¢, A, ) is a gradient n-Ricci

soliton on the warped product manifold (B X, F, g), where & = gmd(ﬁ and the 1-form n is the g-dual of &, if and only
if:

Sg = —Hess(f) + %Hess((p) —Agp —pudf ®df (35)

and
Sk = kg, (36)
where k := ' [-A@* + pA(p) + (m — 1)|grad(p)l> — p(grad(£))(@)]lF-
Proof. The gradient n-Ricci soliton (g, &, A, u) on (B X, F, g) is given by:
Hess(f) + S+ Ag+un®n = 0. 37)
Then for any X, Y € £(B) and for any V, W € L(F), from Lemma 4.2 we get:

HA (X, Y) + S5(X,Y) — %H@(x, Y) + Ags(X,Y) + ud f(X)df(Y) = 0

H/(V, W) + Sp(V, W) = 7 [pA(p) + (m = Digrad(@)* = A¢?lieg(V, W) = 0
and using the fact that

HY (V, W) = (Hess(f))(V, W) = g(Vy(grad(f)), W) = =

d
[W]W%(v, W),

we obtain: _
Se(V, W) = ' [pA(@) + (m — 1)lgrad(p)* - p(grad())(¢) = A@1lrgr(V, W).
Conversely, notice that the left-hand side term in (37) computed in (X, V), for X € £L(B) and V € L(F)

vanishes identically and using again Lemma 4.2, for each situation (X, Y) and (V, W), we can recover the
equation (37) from (35) and (36). O
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Remark 4.4. In the case of product manifold (for ¢ = 1), notice that the equation (34) defines a gradient n-Ricci
soliton on B and the chosen manifold (F, gr) is Einstein (Sp = —Agr), so a gradient n-Ricci soliton on the product
manifold B X F can be naturally obtained by "lifting” a gradient n-Ricci soliton on B.

Remark 4.5. If for the function ¢ and f on B there exists two constants a and b such that V(grad(p)) = @lal s +
bdf ® grad(f)], then Hess(p) = p(ags + bdf ® df) and (g, grad(f), A — ma, u — mb) is a gradient n-Ricci soliton on
B.

Let us make some remark on the class of manifolds that satisfy the condition (34):
Sp + Hess(f) — gHess((p) +Agp+udf ®df =0, (38)

for ¢ > 0, f smooth functions on the oriented and compact Riemannian manifold (B, gg), A, y and m > 1
real constants. Denote by & := grad(f).
Taking the trace of (38), we obtain:

scaly + A(f) - ;‘P) + 1A+ plEf = (39)
Remark that:
Hess(f) ~ “Lgf = Y (Hess(PEL E) ~ L gu(E, E)P = 0
1<i,j<n
2 2
= |Hess(f)P —2Aflf ) Z (V& )+ f V. \Hess()P - (A(I{ Ly
Also:

(div(Hess(P)E) := Y (Ve (Hess(D)E;, €) = Y [Ei(Hess())(E;, £)) — Hess(f)(E;, Vi, £)] =

i=1 i=1

=Y Edgs(VEE, ) = ) gp(VeE, Vi) = ) gp(Ve Ve, Ei) - IVEP = div(Ve&) — [Hess(f)P

i=1 i=1 i=1

and

div(V¢) : Z g8(VE Ve, Ej) = ZE (@8(VeE, Ei) = ZE (Hess(f)(&, E) =

i=1 i=1
= Y (Ve Hess(NEE = dio(Fiess( (S,
i=1

therefore:
(div(Hess()))() = div(Hess(f)(£)) — [Hess(f)1 (41)
Applying the divergence to (38), computing it in £ and considering (21), we get:

(div(Hess(f)))(€) = —(div(Sp))(E) + m(diU(Hess(go)

= ) ioatess()(E) ~ 2 Hess(p)grad), ) = W d(EE)E) + AP =

NE) ~ HGAER) + AINE) = )

2

= S i) )~ s, Hess(p) = il 0EPE) + APIEPL
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From (39), (40), (41) and (42), we obtain:

dio(Hess(P)E) = Hess(f) — “ D gyt — 08y "800 o) - (43)
- - diofHess()( ) - %(HeSS(f),HESS&p» - Lagemye) - " ulepac).

Integrating with respect to the canonical measure on B, we have:

]l;d(scalg)(é) = fB(grad(scalB),E> = —L(scalg,div(é)) = —]';scalB-A(f)

fd(lélz)(cf)=f(gmd(lélz),é)=—f(lélz,div(é»=—f|§IZ-A(f)-
B B B B

(P - div(E) = div(EPE) — 1P

and integrating (43) on B, from the above relations and the divergence theorem, we obtain:

and similarly:

Using:

~ [tesst) - Lguf —m [ 2 htess() Hesstg+ (a4)

m A(p) n+2 9
o [ 22+ 2 | e

Proposition 4.6. Let (B, gg) be an oriented and compact Riemannian manifold, f a smooth function on B, let m > 1,
A, u be real constants satisfying (34) (for ¢ = 1) and (F, gr) be an m-dimensional Einstein manifold with Sr = —Agr.

If (9, &, A, p) is a gradient n-Ricci soliton on the product manifold (B X E, g), where & = gmd(f) and the 1-form 1 is

the g-dual of &, then:
f Hess(f) ~ =X gul? + 2 f £ (45)

Let now consider the product manifold B X F, in which case (39) (for ¢ = 1) becomes:

scalg + A(f) +nA + plé =0 (46)

and integrating it on B, we get:

j‘lél2 fscalg—n/\ vol(B). 47)

Replacing it in (45), we obtain:

2 fB scaly = fB |Hess(f) — %ﬂggﬁ— ”T”A-vol(B). (48)

Proposition 4.7. Let (B, gg) be an oriented, compact and complete n-dimensional (n > 1) Riemannian manifold of
constant scalar curvature, @ > 0, f two smooth functions on B, let m > 1, A, u be real constants satisfying (38). If
one of the following two conditions hold:

1 g=1land A= -,
2. there exists a positive function h on B such that Hess(f) = —h - Hess(p) and 1 > 0,

then B is conformal to a sphere in the (n + 1)-dimensional Euclidean space.
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Proof. 1. From (48) we obtain:

A
fB Hess(f) - 2 gy = X2y o),

so Hess(f) = %f) gp which implies by [22] that B is conformal to a sphere in the (1 + 1)-dimensional
Euclidean space.

2. From the condition Hess(f) = —h - Hess(¢) we obtain A(f) = —hA(@) and replacing them in (44), we

get:
A
st - 2 Lgup + 2224 g7 <o
B n B

n

From u > 0 we deduce that Hess(f) = % gp and according to [22], we get the conclusion.

Finally, we state a result on the scalar curvature of a product manifold admitting an n-Ricci soliton:

Proposition 4.8. Let (B, gp) be an oriented and compact Riemannian manifold of constant scalar curvature, f a
smooth function on B, let m > 1, A, p be real constants satisfying (34) (for ¢ = 1) and (F, gr) be an m-dimensional
Einstein manifold with S = —Agr. If (g,&, A, ) is a gradient n-Ricci soliton on the product manifold (B X F, g),

where & = grad(f) and the 1-form 1 is the g-dual of &, then the scalar curvature of B X F is > —(n + m)A.

Proof. From (48) we deduce that Z22(*2s 4 1) - vol(B) = J; | Hess(f) — %f)gglz > 0 and since scalp = —mA, we
get the conclusion. [

We end these considerations by giving an example of gradient n-Ricci soliton on a product manifold.

Example 4.9. Let (9um, Em, 1, 1) be the gradient n-Ricci soliton on the Riemannian manifold M = {(x,y,z) € R3,z >
0}, where (x,y, z) are the standard coordinates in R®, with the metric gy := % (dx ® dx + dy ® dy + dz ® dz) (given
by Example 3.6) and let S® be the 3-sphere with the round metric gs (which is Einstein with the Ricci tensor equals to
2gs). By Remark 4.4 we obtain the gradient n-Ricci soliton (g, &,1,1) on the "generalized cylinder” M x S3, where
g = gm + gs and & is the lift on M X S3 of the gradient vector field &y = grad(f), where f(x,y,z) := —Inz.
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