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Abstract. The main object of this paper is to introduce and study systematically the univalence criteria

of a new family of integral operators by using a substantially general form of the widely-investigated
Srivastava-Attiya operator. In particular, we derive several new sufficient conditions of univalence for
this generalized Srivastava-Attiya operator. Relevant connections with other related earlier works are also
pointed out.

1. Introduction, Definitions and Preliminaries

Let A denote the class of functions f(z) of the form:

flz)=z+ Z a,z",
n=2
which are analytic and univalent in the open unit disk

U={z:z€eC and |z| < 1}.
If the function g € A is given by

g(z)=z+ Z b, 7",
n=2

)
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then the Hadamard product (or convolution) of f(z) and g(z) is defined by (see also [27])

(f+9@ =2+ ) a, by 2" = (g% ). 3)
n=2

In the year 2007, Srivastava and Attiya (see [21]) defined the operator J, by
= (T+ay
Toal @) =2+ Z:; (22 o= (4)

(zeU;aeC\Z,; Z,={0,1,2,---}; s € C).

In fact, in terms of the Hadamard product (or convolution), the linear Srivastava-Attiya operator J; ,(f) defined
by (4) can be written as follows (see also the recent works [8], [25] and [28]):

Tspf(2) = Gsal2) * f(2),
where G;,(z) is given by
Gsa(z) = (1 +a)’ [D(z,5,a) —a”°] (ze ) (5)

and the function ®(z,s,a) involved in the right-hand side of (5) is the well-known Hurwitz-Lerch zeta
function defined by (see [22])

D(z,s,a) = Z;S ﬁ (6)

(zelU;aeC\Za;seC when |z] <1; R(s) >1 when |z|>1).

Recently, a new family of A-generalized Hurwitz-Lerch zeta functions was investigated by Srivastava
(see [20]) who introduced this A-generalized Hurwitz-Lerch zeta function

(PI,"',Pp,Uh"'qu) .
q))\l/... ,/\p;‘ul/... Siq (ZI S/ a/ b/ A)

as well as gave the following explicit series representation for it (see [20, p. 1489, Eq. (2.1)]):

p
. 1j[1(/\ np;
QU P (7 5 b, ) = -

M Apitha = g AL (s) '
n=0 (g +n)° - j)no;
( ) ]E[l(H]) j
20 H |2
- H2 [(a +n)b 1), (O, %) ] o (>0 7)

(A>0; /\]'EC G=1,---,p); ‘quC\Za G=1,---,9)
pi>0 (j=1,---,p); 0;>0 (j=1,---,9)

q
1 +Za,« —Zp/ > 0; min{R(a), R®)} > 0],

4
=1 =1
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where the equality in the convergence condition holds true for suitably bounded values of |z| given by

o fi 1)

(A)y (A, v € €) denotes the general Pochhammer symbol (or the shifted factorial), occurring in (7), is defined,
in terms of the familiar Gamma function, by

r+v) | 1! (r=0; AeC\{0)

Ay = Th)

AA+D) (A +n-1) (v=nelN; L),

it being understood conventionally that (0)9 := 1 and assumed tacitly that the above I'-quotient exists.
Moreover, the H-function involved in the right-hand side of (7) is the well-known Fox’s H-function which
is defined by (see, for example, [26, Chapter 2] and [12, pp. 58 et seq.])

(up/Ap)
H'"”(z) H;’fé" z
(bg, By)
(allAl)/ ttty (ap/Ap) 1
= Hyj' |2 - o [ =0, ®
(b1,B1), -+, (by, By) L
where
Hr(b +Bjs) [ [r(1-a;-4)
: ]:1
E(s) = — . . ©9)
[T r(-b;-Bs) [T r(a+As)
j=m+1 j=n+1
Here

ze C\ {0} with |arg(z)| < m,

an empty product is interpreted as 1, m, n, p and g are integers such that1 Sm < gand 0 £n < p,
Ai>0 (j=1,---,p) and B;>0 (j=1,---,9),
a;eC (j=1,---,p) and B;eC (j=1,---,9),

and L is a suitable Mellin-Barnes type contour separating the poles of the gamma functions

{F(bj + B]'S)};n:l

from the poles of the gamma functions
{ra-a;- A,-s)}j:1

If, in the series representation (7), we make use of the following limit formula (see [20, p. 1496, Eq.
(4.12)])

hm{Hzo (a +n)bt ‘ . 1,(0,2) ]}:Ar(s) (A >0), (10)
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we find for the extended Hurwitz-Lerch zeta function

(pl, PpO1, -,Gq)

e Ay (z s,a)
that (see [29, p. 503, Eq. (6.2)])
00 ,li(/\f)npj "
oD = Y 2 a

n=0 7’[! ' H(‘u]‘)i’lﬁf
=1

(p,qEINO; NEC (=1, ,p); au €C\Zy (=1, ,0)
pjork€R" (j=1,---,p; k=1,---,q9); A>—-1 when s5,z€C;
A=-1 and s € C when |z] < V%
A=-1 and R(E) > % when |z| = V*),
which was defined by Srivastava et al. (see [20, p. 1496, Eq. (4.12)]). In fact, the function

(pl, Pp,O1, '/Gq)

i (z S,a)

in (11), which was introduced by Srivastava et al. [29], is a multiparameter extension and generalization of
the classical Hurwitz-Lerch zeta function ®(z, s, a) defined by (6).

By applying Srivastava’s A-generalized Hurwitz-Lerch zeta function
(P17 /Pp/O1+,0)
@Al ”Hl "(zsabA)

occurring on the left-hand side of (7), Srivastava and Gaboury [24] introduced the following linear operator:

T (f) A A,

(Aﬂ)'(yq)rh
which they defined by
Ty D@ =G (1, @ f@), (12)
where
AT'(s) ]1[1 (yj) (a+1)y
G A /= 1
(z) = [A(@+1,b,s,A)]
(AI’) (ug), ﬁ (A]
j=1
-[CD&?LI e o Es,aib ) - ”_(5) (@,b,s, A)]
p
I H (A]' + 1) 1
_ j=1 " (a+1 * Aa+nbsA) 2"
—Z+Z 7 (a+n) Al@+1,b,s,A) n! (13)
" H (‘u] + 1))1 1

.
I
—_
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with

A, b,s,A) = HYY [(a +n)b1

5,1), (0, %) ] . (14)

Now, from (12) and (13), we have

4
°°Hl(A+)”1 +1\° Af@a+n,b,s,A)
sa/\ J= ) a a+n,o,s,
(/\),u)bf(z) Z+Z_;‘ q (a+n) Al+1,b,s,A) (15)
" jzl_ll(‘uj-‘_l)n—l
(Ajec: =1, ,p) g €C\Zy (=1, ,q; pSq+1; zeU;
min {R(a), R(s)} >0; A >0 when R(b) >0 and s€C; acC\Z; when b=0).
It is easy to see from the definition (15) that
saA saA _ 5,0,
(T e FO) = O T FO= M T, S (16

Definition 1. Let W be the set of complex-valued functions (1, v, w) given by
Y(u,v,w): Cc-C

such that

(i) ¢(u,v,w)is continuous in a domain D c C3;
(i) (0,0,00eID and [(0,0,0)<1;

(iii) The following inequality holds true:

A +t] 1
16 1 i0
l‘b 1 +1]e 1

1\
—_

L 19)
I [/\1+2t+ /\1+1]e

when A ¢ Z; and

i0
D
’/\1+1 ]e )e

1 L
i0
ot
]e ’/\1+1[A1+ M

with R(L) 2 #(t — 1) forreal 6 € Rand t > 1.

By using the generalization of the Srivastava-Attiya operator defined by (15), we now introduce the
following integral operator:

,Bsa)\

(Ap) (4g) b O yez) AN - A

Definition 2. For f8,71,y2, -+, vk € C with
9%(.B) > O and %(7/771) > O (m € {1/ o Ik})/

we define the integral operator:

a/\ n
gﬁsw b Vv Y A= A
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by

5 a,A
5,0,/ (,\ (y bfm()
gf/\sp;(#q),b (7/1/ Vs Z) = f tﬁ 1 H P o dt . (17)

m=1

By suitably specializing Definition 2, we are led to the following integral operators:

g_l+k(a—l),s,a,/\ L . L z
(@=1ap=1),B-1-B=D0 \oy = 1" "a—=1"

“ a-1 T+Ka=D)
= Fa(a, p1;2) = ([1 +k(a-1)]- f (Hj (e, p) it -+, [Hy G, B felt)] df) , (18)
0
where the operator F, (A4, p11;z) was investigated by Selvaraj and Karthikeyan [19];
1+k(a—1),5,a,A 1 1
8’(;1) A)O (0( 1 .’0( 1 ) Fka(z)
(1+k(a 1 ]f HI*t - ]! dt) , (19)

where the operator Fy ,(z) was investigated by Breaz et al. (see [1], [3] and [5]);

par (L1

8(/\,1),()\),0 ’ a_k;z) = Jay, o,p(2)

4 t ai t Qk :;
o2 - o

where the operator J, .. o, 5(2) was investigated by Breaz and Breaz [2] (see also Stanciu et al. [30]);

0,4, 1 1\
3(/\1) M),0 (_1 a—,z) = Foy e ,8(2)

Ly o]

where the operator Fy, .. o, 5(z) was investigated by Seenivasagan and Breaz [18] (see also [6]);

/ (21)

1 1
1,0/‘1’/\ —_— e —_ —
8()»1),()\),0 ( Y ak,Z) F(z)

By (), -

where the operator F(z) was investigated by Breaz and Breaz [2];

1+k(a—1),0,a,A 1 1\ 3
S21.1,0.00 (a 1 g 1/2) = Fao(2) = ([1 +k(a - 1)]

. jo\z tk(a—l) [fll(t)]a—l N [fk’(t)]a_l dt) T+k(a=T) , (23)
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where the operator F,(z) was investigated by Selvaraj and Karthikeyan [19];

1 1
1,0,a,A .
3(2/1,1)/(1,0)/0 (al Tty a_kr Z) (Xl -0 (Z)

:JT[gaﬂ“*.”Uygrrldn (24)

where the operator F,(z) was investigated by Breaz et al. [7];

1
; 1 1 : “
5,0,0,1 . - -1
A0 (a -1 a- 1’Z) =Flz) = (afo ror ) b 2
where the operator F,(z) was investigated by Pescar [17].

By making use of the integral operator defined in (15), we have the following definition.

Definition 3. A function f,, € A (m € {1,--- ,k}) is said to be in the class S’}"
condition:

2 su/\

Z( A n®) )
sa/\

( (Ap)wqbf’”(t))

In our investigation of the function class S

a ) )b if it satisfy the following

-1l <1 (zeU;, mefl,--- ,k}). (26)

a ) Y given by Definition 3, we shall need the univalence

criteria and other results asserted by the followmg lemmas.
Lemma 1. (see [14]) Let the function f be analytic in the disk
Ur=1{z:z€C and |z| < R}
with |f(z)] < M for some fixed M > Q. If f(z) has one zero with multiplicity order bigger that m for z = 0, then

If@) = R_m 2" (z € Ug). (27)

The equality holds true in (27) only if
f&)=89£%zm (z € Up),
where O is real constant.
Lemma 2. (see [15] and [16]) Let B € C with R (B) > 0. If the function f(z) € A is constrained by

1- P20) 127 (2)
RE) | @)

then the function Fg(z) given in terms of the following integral operator:

Fi@) = (ﬁ [F#rw dt)ﬁ

2y 3a;  2B(1-p)a;
ﬁ+1zz+(ﬁ+2_ (+17 Jz3+

is in the class S of normalized analytic and univalent functions in U.

=1 (zel),

=z+

(28)
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Lemma 3. (see [17]) Let p € C with
RPB)>0 and ceC lc] £ 1.
If the function f(z) € A is constrained by

Zf”(Z) -
B2~

then the function Fg(z) given in terms of the following integral operator:

Fil@) = (ﬁ | Far dt)ﬁ

is in the class S of normalized analytic and univalent functions in U.

clz + (1 - [z1*F) 1 (zel),

Lemma 4. (see [13]) Let the function w(z) given by

w@) =a+wz + w2+

be analytic in U with
w(z) #a and reNN.
If .
w=re’ O<r<l) ad |o) = max(wEi,
z| < 1o
then
20w z0) _ 9%(1 L 2w (Zo)) >z
w(zo) @’ (20)

where T is a real number and

w(zo) —al® | lw(zo)l
w(zo)P —laf? = (o)l + ol

2. Main Results and Their Corollaries

We begin by proving Theorem 1 below.

2108

(29)

(30)

Theorem 1. Let the functions f,(z) € A (m=1,--- k). Suppose that B,y € C (m=1,--- k) with

R(B)>0 and M,>0 (m=1,---,k).

Also let
k
2M,,, +1
Y, o= SR,
m=1 Vm

If, forallme {1,--- Kk},
s,a,A
fm(Z) € S(Ap),(‘uq),h (Z)

and
j(s/’\’:)‘j(yq),b fn(@)| £ My, (z e 1),

then the general integral operator defined by (17) is analytic and univalent in U.

(31)

(32)
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Proof. 1t is easy to verify that

Sth
Tyt fn@

z

# 0.

Hence, for z = 0, we find that

[ SAH;/(Hi)hfl(Z)] [ swu)bfm(z)] 1

z V4

Let us define the function g(z) as follows:

9(z) = fﬂ[ (SAQ)A(“)bfm()]w dt.

Then we have

sa/\ ’
FZE N md e

(/\V ()b
so that
sa A
29" (2) <Zk:L ( H>bfm(z)) 1
_mzl |Vm| SHA )b fm(z)

Therefore, we get

1- P20 1257 (2)

RP) 9@
1 P20) = (T s @)

+1

k
1
R (p) ZW T o fu@)

()\p) (ug)b

1- |Z|2%—(ﬁ) i L Zz(jf%??xww % "’(Z))/
R Sl | (8 fm(z))z

sa)\
A b fm(z)
( p)Atig), 1

k [ 5,4, / 5,4,
< 1- |Z|2Y\(ﬁ) Z L Zz(j@p/)\,(uq),b fj(z)) _ 1‘ +1 j(AVA Mgk (@) + 1]
= 2
Rp) m=1 |7/m| | (*7(53‘;/)\,(;@)10 f"(z)) ’
2M,, + 1
- ‘R(ﬁ) mzl [y

By using the Schwarz lemma, we have

| fAi)qu>bfm(z)| My lzl  (zeU).

Now, from (31), we obtain
1— zP20)

Zg” (Z) <
R () B

7'(2)

2109

(33)
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Finally, by applying Lemma 2 for the function g(z), we obtain the required result asserted by Theorem
1. O

Remark 1. If, in Theorem 1, we set
Alzal_lr"'/Ap:a}?_l/ I-ll:ﬂl_l/"'/uq:ﬂq_l/

1 1
N TAED (v and M,=1 (1£mZk),

we obtain a known result proven in [19].

Corollary 1. Let the functions f,,(z) € A (m € {1,---,k}). Also let o € C with

R(a) >0 and Ia—ll§%.
If
e p) 0) 1‘ .
[H] (@1, 1) fu(H)]
and

|5 (@, p0) fu()| My (m=1,--- ,k; z€U),
then the general integral operator defined by (18) is analytic and univalent in U.

Remark 2. Putting

1

PZZ/ q:1/ Ale/ AZZ]-/ [Ul:A, V]:aj

and
M, =1 1=mzgk)

in Theorem 1, we obtain another known result given in [4].
Corollary 2. Let the functions f,(z) € A (me{1,---,k}). Also let « € C with

R(a) >0 and |a—l|§%.

If

and  |fu(®|1 (=1 ,kzel),

2 £1 t
Zf“)—4<1
0]
then the general integral operator defined by (19) is analytic and univalent in U.
We now prove another result asserted by Theorem 2 below.

Theorem 2. Let the functions f,(z) € A (m=1,--- k). Suppose that

c,peC and M,>0 (m=1,---,k).
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Also let

@M, + Dk B
Vm € [1 1I?i<k{m}] (=1, k)

and

| <1 - w}

1
—— - ImaxXx
‘R(ﬁ)lsmSk{ [l
If, forallm=1,--- k,

fo@ e S, @ and T f@|SMy e,
then the general integral operator defined by (17) is analytic and univalent in U.

Proof. From Theorem 1, we have

su/\
2" (2) Zk"i 2 (g0 12 1
g’(z) = Vm Sa/\(y bfm(Z ’

so that

clef? + (1= ) o

s,a,A ¢
= |clzl + ( — Izl ﬁ) 1 Z(j"p) (g )bfm(z)) _
P =l (S/\H)A(H b fn(@)

sa)\
1 Z( <A><y)bfm(z)

k
1
S+ = -1
- A
& mZ=1 [yl (s/\[j,)(y)b fu(2)
k S,/ 5,01,/
<l L (Z 1|2l ‘W)bfnxz)z) T a0 o0 +1]
RB & |l | (5530 500)
k Ay N 5,4,
Yy il TR
# m=1 |7/’”) (jmp)(wh f,(z))
k
1 DMy + 1
< el +
SRS TP M

L @M, Dk
RPB)rsmsk |yl

=< e+

Now, by making use of (34), we obtain

clzP? + (1 - 2) ‘?g,—(zz))‘ <1

Finally, if we apply Lemma 3 for the function g(z), we obtain the result asserted by Theorem 2. [

2111

(34)

(35)



H. M. Srivastava et al. / Filomat 32:6 (2018), 2101-2114

Remark 3. If we set

p=2, q=1, A1=/\, /\2=1, [.11=/1 and )/]'=a{l (j=1,"'

in Theorem 2, we obtain a known result (see [31]).
Corollary 3. Let the functions f,,(z) € A (m=1,--- k). Suppose that
c,peC and M,21 (m=1,---,k).

Also let
M, + Dk 3

hn € [1 f?i’ik{(sz + k- 1}] (m=1,-.b
and

lel<1- max (2My; + 1) lan.

R () (ﬁ) "

If

|fm(z)|§Mm and Zf;—l((z))—l <1 (zeU;, m=1,---,k),

m Z

then the general integral operator defined by (20) is analytic and univalent in U.
Finally, we state and prove Theorem 3 below.

Theorem 3. Let Ay ¢ Z. Suppose that (u,v,w) € V and that

s a,A s a,A
( (Ap).(ptq) b f(Z) (M+1A2,,A0) () b f(Z),

s,a,A 3
J—(M/\z,__,Ap),(yq),bfm) eDcC.

If
A A
‘l#( (Sﬁa) (1g),b f@), (SAal+1 Aa, = A (ttg) b f@),
0,
j(s/\aHz,Az, -~~,Ap),(yq),bf(z)) <1 (zel)),

then

‘( (sAu)/‘(y)bfZ)) (z e V).
Proof. Let

Ia, )/\(y @ =0k  (zel).

Thus, clearly, it follows that w(z) is analytic in U,

w(0) =1 and w(z) #1 (z e U).

2112

(36)

(37)

(38)
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Upon differentiating both sides (38) with respect to z, if we make use of the identity (16), we readily obtain

(A + 1)( T f(z)) = 20/(2) + M(2). (39)

Moreover, by differentiating (39) with respect to z and using the following identity:

(T s @) = 42 T2 e

(M+1A2,- 4 (A+2.42, ,Ap) g) b

-(M+1) T f(),

(A+1A2,,Ap) (g b

which is a consequence of the identity (16), we obtain

s a,A
(Al * 2)( (A1+42,A2,+,4p),(ag).b f(Z))

= hw(z) + 2z’ (z) + 20"(z) (ze ). (40)

L
Al +1
We now claim that

lw(z)] <1 (ze ).

Otherwise, there exists a point zg € U such that

max |w(z)| = lw(zo)l = 1. (41)

Thus, by letting w(zp) = ¢’ and using Lemma 4 witha = 1 and r = 1, we see that

s a,A
T F@ =

1
s,a,A _ i0
T et dpugs f@ = 757 i+ e

and
1 L ;
s,a,/A _ i0
Tas2n- s fO = 17572 (n+2es o 1)
where
22w’ (z
= 0—(0) and 21
w(zo)

Furthermore, by an application of (30) in Lemma 4, we get
R(L) = 7(t - 1).

Since Y(u, v, w) € ¥, we have

0 2 19)
]e 'A1+1[A1+ T+A1+1]e

which contradicts the condition (37) of Theorem 3. Therefore, we conclude that

M+T
16
‘lll A1+1

>1, (42)

‘ T f(z)' <1 (zel),

which evidently completes the proof of Theorem 3. [
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3. Concluding Remarks and Observations

In our present investigation, we have introduced and studied systematically the univalence criteria
of a new family of integral operators by using a substantially general form of the widely-investigated
Srivastava-Attiya operator. In particular, we have derived new sufficient conditions of univalence for this
generalized Srivastava-Attiya operator. Our main results are contained in Theorems 1, 2 and 3. By suitably
specializing these main results, we have deduced several corollaries and consequences which were derived
in a number related earlier works on the subject of investigation here (see also the recent works [9], [10],
[11] and [23]).
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