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Estimation for inverse Gaussian Distribution Under First-failure
Progressive Hybird Censored Samples
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?College of Science, Inner Mongolia University of Technology, Hohhot 010051, P. R.

Abstract. In this paper, a first-failure progressive hybird censoring scheme is introduced that combines
progressive first-failure censoring and Type-I censoring. We obtain the maximum likelihood estimators
(MLEs) and the Bayes estimators of the unknown parameters from the inverse Gaussian distribution based
on the first-failure progressive hybird censoring scheme. The Bayes estimates are computed under squared
error, Linex and general entropy loss functions. The asymptotic confidence intervals and coverage proba-
bilities for the parameters are obtained based on the observed Fisher’s information matrix. Also, highest
posterior density credible intervals for the parameters are computed using Gibbs sampling procedure. A
Monte Carlo simulation study is conducted in order to compare the Bayes estimators with the MLEs. Real
life data sets are provided to illustration purposes.

1. Introduction

The probability density function (PDF) and the cumulative distribution function (CDF) of inverse
Gaussian (IG) distribution are given by
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where p is the location parameter, A is the shape parameter and ®(-) denotes the standard normal CDFE.
Since the review article of Folks and Chhikara [5] was published, the inverse Gaussian (IG) distribution
as a useful modeling tool to model and analyse right skewed data has received a lot of attention in many
different fields, such as finance, lifetime testing, demography, etc. The IG distribution was first obtained by
Schrodinger [9] as first passage time distribution of Brownian. Tweedi[10] has investigated the properties of
IG distribution in detail. Koutrouvelis and Karagrigorious [7] provided a complete review on existing tests
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for the IG distribution. Basak and Balakrishnan [1] developed estimation methods based on progressive
Type-1I censored samples from three-parameter IG distribution.

Censoring schemes are common in life tests because of time limits and other restrictions on data
collection. There are several censoring methods available to experimenters, for Type-I, Type-1I and first-
failure censoring. The first-failure censored sampling plan has an advantage in terms of shorter test time
and a saving resources. Wu and Kus [12] introduced the progressively first-failure scheme. In this article,
we develop a new life test scheme that combines progressive first-failure censoring and Type-I censoring,
name the first-failure progressive hybird censoring scheme.

The life-testing experiment of first-failure progressive hybird censoring scheme can be described as
follows: assume that k X n items are put on test in n independent groups with k items in each group.
The integer m <= n is fixed at the beginning of the experiment and the progressive censoring scheme
R = (Ry,Ry,- -+ ,Ry) is prefixed. The time point T is also a fixed constant before the experiment. At the
first-failure of unit (say XX =), we remove that group in which first failure occurred and R; additional
groups randomly from the remaining n — 1 groups in the experiment. As soon as second failure (say Xﬁm:n:k
) takes place we remove that group and additional R, groups randomly from remaining n — R; — 2 groups
and so on. This process continues until, the m th failure of unit (say XX ) observed or time point T, all the
remaining surviving units are removed and the test is terminated. If Xﬁl:m:n:k < T, the experiment proceeds
with the pre-specified progressive censoring scheme R = (R, Ry, - -, R,;) and stops at the time X‘r[i:m:n:k‘ On
the contrary, if Xﬁ — and only ] failures occur before the time point T, where 1 < | < m, then, at the
time point T, all remaining surviving groups are removed and the experiment is terminated. Obviously,
we have R} =n—]—(Ri+Ry+---+Rj). Denote the above two cases as case I and case II respectively.
This censoring scheme is so-called first-failure progressive hybird censoring scheme. Specifically, under
first-failure progressive hybird censoring scheme, we only have one case of the following two types of
observations:

. YR R ... wR R
Case I Xl:]}{n:n:k’ XZ:Rm:n:k’ 4 Xmlém:n:k’ Xnﬁ:m:n:k < T’ R
Case II: Xl:m:n:k’ XZ:m:n:k’ B X]:m:n:k’ X]:m:n:k <T< X]+1:m:n:k’

Supposed we denote the number of progressively censored ordered failures occur before time T by d,
then the likelihood function can be expressed as
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whereC,, =n(n—Ry—1)n-R{—Ry—2)---(n—Ry—---—Ry_1 —m+1),F(:) = 1 — F(-) denotes the survival
function and C,; can be written similarly taking m = d.

The rest of this paper is organized as follows: The MLEs and Bayes estimators unknown parameters of
IG distribution, based on first-failure progressively hybird censoring scheme are investigated in Section 2
and 3. For illustration, a set of real data is introduced and analyzed to show that the IG distribution is a
suitable distribution for these data in Section 4. In Section 5, Monte Carlo simulation results are presented.
Finally, we conclude the paper in Section 6.

2. Maximum Likelihood Estimation

Let XR XR -+, XR  be the first-failure progressive hybird censored sample from IG distribu-

Tnek? 2k’ D:m:nck
tion, with a censoring scheme R. Where D denotes the number of the observed failures up to the end of the

experiment. For simplicity, we used X; instead of X} . Based on Equation (3), the likelihood function is
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given by
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Then, the log-likelihood in function (4) can be combined as follows:

D
I(u, Alx) = log(C) + D > log(A) - 3 Zlog(xi i(ﬁ ~1)2+ kZ((R +1)-1)

log[®( \/g(l - Jﬁ)) —eh O \/7(— +1))] + kR log[( \/7(1 - —)) — T O(- \/X(I +1))], (5)

where R* = 0,D = m for case [ and R* = Rj, D = | for case II. The first derivative of Eq (5) with respect to
A, u and putting them equal zero we obtain
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where ¢() denotes the standard normal PDF and ¢ (y) = —yp(y), ¥1; = \/7( - ﬁ) Yo = — \/xz,-(l +
Xi 2 i d i Xi d i
Wi = \/;(1 - %)IIPZT = —\/7(1 + T) Ly=2 = 2\/17 ), Lo = aiﬁ = W My = 22 = _2\/1;72\(1
%), My = aai:i = Lp;. We observe that the exact solution of the likelihood Eq (6) and (7) for both the
above cases is not possible. Therefore, we intend to evaluate the MLEs by solving the likelihood equations
numerically using iteration method such as Newton-Raphson method.

2.1. Asymptotic confidence interval estimation
The second derivatives in Equations (5) are as follows
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parameters for A and p are given by the elements of the inverse of the Fisher’s information matrix
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Unfortunately, to get the exact mathematical expressions for the above expectations are very difficulty.
Therefore, we will take the approximate asymptotic variance-covariance matrix for MLEs, it is given by

Iy = —E( ), sk=1,2.

o2 cou(f, A)  var({)

oo ou?

N -2l 2L var(A)  cov(A, D)
IO(A, !:l) — [ I 3/\(9;1 } — [ U
(A,0)

Approximate confidence interval for A and u can be found by taking (4, 1) to be bivariate normal
distribution with mean (A, 1) and covariance matrix I;'(4, ). Namely, (A, 0)T ~ Na((A, )7, I;1(A, f2)). Thus,
the 100(1-a)% approximate confidence intervals for the parameters A and p become

At Zap \/UW(;\), fl £ Zayj2 AJoar(fi),

the coverage probabilities (CPs) of A and p can be found by the Monte Carlo simulations

CP = P(-42L | < Z,5) and CP,, = P22 | < Z,.),
A (Iml— a/Z)an u (| |— Jc/Z)

Voar(@)

where Z,, is the percentile of the standard normal distribution with right-tail probability «/2.
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3. Bsyesian Estimation

In this section we consider the Bayesian estimations of unknown parameters of IG distribution based
on a first-failure progressive hybrid censored sample. It is assumed that A and ¢ have independent gamma
priors:
pr a1 dcuc—le—dy
W’ g~ mo(p) = TC),
where 4,b,c and d are assumed to be known and non-negative. The joint prior for A and u is 7(A, y) o
Ai~1embAe=1e=di Thus, the joint posterior distribution of A and u be written as

LA, (A, p)
55 LeIA, @, ) dudA”

where the conditional posterior distributions 71 (u|A, x) and 7,(A|y, x) of parameters p and A can be com-
puted, respectively, as

A ~m(d) =

(A, ulx) = (11)
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The Bayes estimates of unknox:vr11 parameters depend on the form of loss function. In this paper, the
Bayes estimates have been obtained under three different loss functions, the squared error, the Linex and
the general entropy loss functions.

The squared error loss function (SELF) is one of the most popular loss function. This loss is symmetric,
and its use is very popular due to its computational simplicity. Under the SELF, the Bayes estimator of the
parameter is the posterior mean. Therefore, the Bayesian estimation of any function of A and p, say ¢(A, p),
under SELF is given by

B R o, ploL(xlA, wym(A, wdpda
5T LeA, mm(A, mydudA

In life-testing and reliability analysis problem, the essence of losses is not always symmetric and hence the
use of SELF is not appropriate in some circumstances. To resolve such situation, Varian [4] introduced the
asymmetric Linex loss function. The Linex loss function is defined as follows:

Pas(A, plx) =E(O(A, plv)) = (14)

L(6,0) =efO-0 _ b -0)—1,%0,

where 0 is an estimate of 0. The sign of the constant f represents the direction and its magnitude represents
the degree of asymmetry. Under the Linex loss function, the Bayes estimate of ¢(u, A) is given by

) “[Ce PO (x| A, ) m(A ) pd A
1) =~ gl ) =L toggh o LM,
p p I L&A, wm(A, p)dudA

The Linex loss function is suitable for situations where overestimate may lead to serious consequence.
Basu and Ebrahimi [9] and Parsian and Farsipour [2] found that the Linex loss function is unsuitable for
estimating the scale parameter and other quantities. Hence, Calabria and Pulcini [3] proposed a suitable
alternative to the modified Linex loss function that is, the general entropy loss function.

The general entropy loss function is defined as

(15)

. 0 ]
L(6,6) = ()"~ qlog(5) ~ 1,4 #0.
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Under the general entropy loss function, the Bayes estimate of ¢(A, u) is given by

BR o0 ) Leid e dpdA »
B Lei e, pdpdd

It is not possible to compute (14), (15) and (16) analytically, we recommend approximating it by using
the Gibbs sampling technique. The following steps are used for computation purpose:
Step 1. Start with initial value A¢. Set7 = 1.
Step 2. Generate y; from 711 (u, [Ai-1, x).
Step 3. Generate A; from ma(A, |ui, x). Seti =i+ 1.
Step 4. Repeat steps 2-3 N times. Obtain the Bayes estimates of ¢ = A and p with respect to squared error,
Linex and general entropy loss functions as

=

Bce(A ) = [E(G(, 1) )] 7= [

1 i 1 1 1 i .
Pps = i, Pp=—=logl—— Y e P, Ppce=[—= Y ¢.'177,
NM L B OBNTM L NM L)

where M is burn in period, and BS,BL and BGE denote respectively the Bayes estimates under squared
error, Linex and general entropy loss functions.

3.1. HPD Credible Interval Estimation

Now, we construct the highest posterior density (HPD) credible interval of A and u using Gibbs sampling
procedure. Let Aqy, A, -, Ay denote the order values of Ay, Ay, -+, Apm. Then using the algorithm
proposed by Chen and Shao [7], the 100(1-a)% HPD credible interval for A is given by (A(j), Aj+{a-amy), [a]
is the integer part of 4. Similarly, we can construct the 100(1-a)% HPD credible interval for p.

4. Real Life Data

In this section, we consider a real life data to illustrate the proposed method in the previous sections and
verity how our estimators work in practice. The data set is from Kimber [6], and it represents the lifetimes
of steel specimens tested at stress level of 32 MPa. There were 24 observations listed: 1144, 231, 523, 474,
4510, 3107, 815, 6297, 1580, 605, 1786, 206, 1943, 935, 283, 1336, 727, 370, 1056, 413, 619, 2214, 1826, 597.

Before progressing further, we first fit the IG to the complete data set and compare its fitting with some
well-known lifetime distributions, namely normal, Weibull, Lindly and exponential distributions.To test
the goodness of fit of above models, we have used the (i) Akaikes information criterion (AIC),(ii) Bayesian
information criterion (BIC) and (iii) Kolmogrov-Smirnov (K-S) values for date set has been presented in
Table 1. This Table shows that the IG is the best choice among the competing reliability models in the
literature for fitting lifetime data, since it has the smallest —log(L), AIC, BIC, K-S statistic values and highest
p—value.

Next, we generate a first-failure progressively hybird censored samples with n = 24, k = 1, m = 20 under
the two following censoring schemes (CS):

Scheme 1: Ry = (4,0,---,0); and Scheme 2: R, = (0,0,--- ,4).

Because we have no prior in formation about the unknown parameters, the Bayesian is done under the
non-informative prior assuming the value of hyper-parameters to be (2 = b = ¢ = d = 0) . The estimates of
A and u under two schemes for T = 2000 and T = 4000 based on different methods are provided in Table 2.

Table 1 Fitting summary of various models for above data set

Model MLEs —log(L) AIC BIC K-S p-value
Normal 1400 1424 208.3 4207 423 0.2 0.3
IG 1400 1243 194.8 393.6 39 0.081 0.99
Weibull 1 0.0007147 197.9 399.7 4021  0.14 0.7
Lindley 0.001427 198.3 3985 399.7 0.9 0.3
Exponential ~ 0.0007143 197.9 397.7 3989  0.14 0.7

Table 2 The MLEs and Bayes estimates of the parameters for the real data set
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Bayes
BS B L B GE

T CS parameter MLE q=- p=-0.5 p=0.5 q=-0.5 q=0.5
2000 1 pu 1654 1567 1631 1510 1534 1473
A 1320 1299 1339 1262 1270 1212

2 u 1284 1506 1589 1453 1472 1414

A 1334 1290 1327 1255 1262 1207

4000 1 1798 1710 1834 1633 1666 1591
A 1218 1220 1245 1189 1194 1142

2 1284 1507 1591 1453 1472 1414

A 1334 1289 1326 1254 1261 1206

5. Simulations

In this section, we report the obtained results of a simulation study, which was carried out by software
R, to compare the performance of the MLEs and Bayes estimates based on first-failure progressive hybrid
censoring schemes. This simulation has done by considering different values of n,m,k and T, and by
choosing 1 = 1.5 and A = 1.5 in all cases. We have used three different censoring schemes:

Schemel: Ri=n-m, R;=0fori#+1.
Scheme II: Ry, =n—m, R;=0fori+m/2.
SchemeIll: R,, =n—-m, R;=0fori+m.

In the Bayes estimates, we have chosen the hyper-parameters in such a way that the prior mean became
the expected value of the corresponding parameter(a = 1.5,b = 1,c = 1.5 and d = 1). We simulate the
whole process 1000 times and compute biases and MSEs of different estimates. Also, we obtain the average
lengths of 95% confidence/HPD credible intervals and the CPs of the parameters based on simulation.

To save space, we only present part of results. The results of the Monte Carlo simulation study are given
in Tables 3-5. From these tables the following conclusions are made:

(1) From the reported values, we observe that the biases and MSEs of the parameters decrease as the
value of T increases, and the average lengths of the confidence/HPD credible interval decrease when the
value of T increases. This can be explained by the fact that more failures can be observed on average for
larger value of T. It is also observed that when (1, m) increases, the biases and MSEs decrease for both
MLESs and Bayesian estimators. The biases and MSEs for the all estimates based on first-failure progressive
hybrid censoring schemes with k = 2 are similar to those for first-failure progressive hybrid censoring with
k=3.

(2) In most simulations, the Bayes estimates outperform the MLEs for estimation of A, however, the
MLEs outperform the Bayes estimates for estimation of y. We can easily notice that scheme II gives the
smallest bias and MSEs among the other schemes for estimation of A, but the scheme I gives the smallest bias
and MSEs among the other schemes for estimation of u. Tables 3-4 show that Bayes estimates of A, u based
on asymmetric loss function (Linex and general entropy) are sensitive to the value of the scale parameters
B and g. The Bayes estimates based on symmetric and asymmetric loss functions are all perform well.

(3) For interval estimation, we can see that CPs for A, u based on HPD intervals are always close to the
desired level of 95%. The CP for A based on the approximate confidence intervals is close to the desired
level of 95%, however, the CP for u based on the approximate confidence intervals is always less than the
desired level. HPD credible interval are better than confidence intervals in respect of average length. As
k increases, the length of confidence interval and HPD credible intervals for A narrow down. For fixed
n,m, as T increases, the average interval lengths decrease and the corresponding CPs increase. The average
lengths of all intervals become shorter as (1, 1) increases.

It can be conclude that the asymmetric loss function make the Bayes estimates attractive for use in really,
the scale parameters  and g of the Linex loss function and general entropy function make one to estimate
the unknown parameters with more flexibility. So, we would recommend to use the Bayes estimate of the
unknown parameters of IG distribution based on first-failure progressive hybird censoring scheme.
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Table 3 Biases and MSEs (in the parenthese) of u for different methods

Bayes

BS B L B GE

n m k CS MLE q=-1 B =-05 B =05 q=-0.5 q=0.5
40 30 2 I 02709 0.2845 0.3599 0.2175 0.2512 0.1872
(0.6328) (0.4083) (0.5389) (0.3113) (0.3698) (0.303)

I 02055 0.3408 0.4292 0.2615 0.3031 0.2302
(0.9459) (0.5259) (0.7056) (0.3845) (0.4741) (0.3822)

I 0.2055 0.2776 0.3509 0.2133 0.2459 0.1854
(0.176) (0.3897) (0.5192)  (0.2954) (0.3519)  (0.2866)

I 0.04144 0.21104 0.26831 0.16062 0.18527 0.13625
(0.1854) (0.2642) (0.3512) (0.1988) (0.2384) (0.1939)

I 0.08206 0.24947 0.31310 0.19355 0.22149 0.16823
(0.3374) (0.3544) (0.4605) (0.274) (0.324) (0.271)

I 0.02034 0.23187 0.29859 0.17336 0.20230 0.14600
(0.1935) (0.3231) (0.4288)  (0.2443) (02919)  (0.2381)

3 I 0.09018 0.2877 0.3659 0.2177 0.2536 0.1875
(0.1374) (0.4156) (0.5579)  (0.3061) 0.3729)  (0.298)

I 0.1943 0.3104 0.3960 0.2346 0.2735 0.2025

(0.506) (0.4554) (0.6153) (0.3372) (0.4089) (0.3278)

I 0.09718 0.2633 0.3418 0.1946 0.2288 0.1628
(0.1623) (0.4011) (0.5372) (0.304) (0.3626) (0.2975)

I 0.02422 0.2278 0.2926 0.1707 0.1989 0.1440
(0.1346) (0.3107) (04128)  (0.2354) 0.2801)  (0.2277)

I 0.04144 0.23370 0.30236 0.17314 0.20309 0.14452
(0.3327) (0.3272) (0.4397) (0.2462) (0.2942) (0.238)

III  0.04616 0.24599 0.32237 0.17878 0.21177 0.14649
(0.4457) (0.3533) (0.4725) (0.2654) (0.3178) (0.2575)

60 50 2 I 0.06693 0.22463 0.28334 0.17290 0.19845 0.14849
(0.2538) (0.269) (0.3562)  (0.2048) (02417)  (0.1949)

II  0.06395 0.24085 0.30249 0.18649 0.21361 0.16163

(0.246) (0.3065) (0.4037) (0.2342) (0.2769) (0.2261)

I 0.05139 0.18951 0.24015 0.14550 0.16669 0.12355
(0.2509) (0.2191) (0.2861) (0.1706) (0.1984) (0.1632)

I 0.03379 0.16811 0.20590 0.13510 0.15049 0.11714
(0.09412) (0.1509) (0.1924)  (0.1209) 0.1373)  (0.1142)

I 0.02335 0.17319 0.21428 0.13743 0.15416 0.11824
(0.08948) (0.1714) (0.2195)  (0.1369) (0.1564)  (0.1312)
I -0.008958 0.132423 0.170326  0.099387 0.114333 0.080278
(0.08664) (0.1377) 0.1747)  (0.1113) (0.1258)  (0.106)

3 I 0.05719 0.22907 0.30916 0.16816 0.19810 0.14200
(0.2208) (0.2456) (0.3749)  (0.176) (02142)  (0.1657)

I 0.07521 0.24521 0.32955 0.18026 0.21262 0.15335
(0.3215) (0.2829) (0.4209)  (0.2018) (0.2482)  (0.1928)

I 0.01328 0.19026 0.27598 0.13362 0.16034 0.10806
(0.1928) (0.1932) (0.297) (0.1434) (0.1702) (0.1356)

1 0.01735 0.16561 0.21627 0.12554 0.14403 0.10460
(0.1009) (0.1508) (0.2079) (0.1176) (0.1353) (0.111)

I 0.00813 0.04053 0.04268 0.03839 0.03927 0.03672
(0.1249) (0.03246) (0.03359)  (0.03137) (0.03195)  (0.03096)
III  0.006098 0.140777 0.166915  0.115411 0.128056 0.102456
(0.142) (0.2325) (0.2809) (0.1911) (0.2183) (0.1913)

Table 4 Biases and MSEs (in the parenthese) of A for different methods
Bayes
BS B L B GE

n m k T CS MLE q=-1 B=-0.5 B =05 q=-0.5 q=0.5
40 30 2 1 1 0.124889 0.064259 0.098332 0.032945 0.045129 0.007443
(0.19) (0.1162) (0.134) (0.1029) (0.1104) (0.1015)
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0.09435 0.03549
(0.1836) (0.1147)
0.13067 0.06666
(0.1761) (0.1144)
0109563  0.055906
(0.1474) (0.1055)
0101993  0.044833
(0.1516) (0.1046)
0.14044 0.06540
(0.1981) (0.1243)
0.0896004  0.0439543
(0.1375) (0.09331)
0092799  0.043116
(0.1287) (0.08316)
0.14001 0.06822
(0.1625) (0.1007)
0.11545 0.06016
(0.1349) (0.09438)
0102255  0.045081
(0.1244) (0.08527)
0.14395 0.07281
(0.1705) (0.105)
0.07509 0.03101
(0.1095) (0.08114)
0.080868  0.031766
(0.1053) (0.07598)
0.076843  0.033620

0.09073)  (0.06803)

0.073288

0.034072

(0.08798)  (0.06954)
00562112 0.0155255
(0.07239)  (0.05868)

0.09183
(0.0959)
0.065902

0.04672
(0.07446)
0.026608

(0.08306)  (0.06317)
0.0710955  0.0302549
(0.08636)  (0.06381)

0.09771

0.04949

(0.08714)  (0.06328)
0.0639854  0.0280843
(0.06564)  (0.05271)

0.073318
(0.0666)
0.08514

0.015080
(0.04237)
0.03890

(0.08934)  (0.06394)

0.06608
(0.1299)
0.09741
(0.1306)
0.084470
(0.1181)
0.071249
(0.1167)
0.09610
(0.1421)
0.0695469
(0.104)
0.066954
(0.09261)
0.09482
(0.1141)
0.08422
(0.1048)
0.067029
(0.0942)
0.09962
(0.1192)
0.05253
(0.08839)
0.052350
(0.08284)
0.053026
(0.07376)
0.051847
(0.07463)
0.0319461
(0.06234)
0.06513
(0.08067)
0.043546
(0.06771)
0.0464949
(0.06852)
0.06622
(0.0686)
0.0428328
(0.0561)
0.022072
(0.04357)
0.05211
(0.06777)

0.00722
(0.1033)
0.03806
(0.1018)
0.029051
(0.09567)
0.019918
(0.09516)
0.03682
(0.1105)
0.0200317
(0.08503)
0.020763
(0.07577)
0.04346
(0.09002)
0.03744
(0.086)
0.024303
(0.07814)
0.04788
(0.0938)
0.01061
(0.07542)
0.012187
(0.07052)
0.015065
(0.06345)
0.016953
(0.06538)
-0.0033
(0.05576)
0.02903
(0.06933)
0.010350
(0.05948)
0.0146406
(0.05992)
0.03336
(0.05882)
0.0138029
(0.04991)
0.008150
(0.04131)
0.02618
(0.06069)

0.01804
(0.1101)
0.04925
(0.1089)
0.039224
(0.1014)
0.029365
(0.1008)
0.04808
(0.1186)
0.0291171
(0.08979)
0.029254
(0.0799)
0.05323
(0.09592)
0.04615
(0.09072)
0.032184
(0.08221)
0.05778
(0.09996)
0.01814
(0.07879)
0.019430
(0.07367)
0.021857
(0.06604)
0.023170
(0.06782)
0.0052780
(0.05754)
0.03560
(0.07224)
0.016256
(0.06161)
0.0203738
(0.06212)
0.03937
(0.06123)
0.0189305
(0.05149)
0.010586
(0.04192)
0.03089
(0.06252)

-0.01631
(0.103)
0.01483
(0.1002)
0.006073
(0.09488)
-0.001385
(0.09462)
0.01378
(0.1092)
-0.001002
(0.08423)
0.001965
(0.07468)
0.02377
(0.088)
0.01841
(0.0847)
0.006657
(0.0772)
0.02827
(0.09159)
-0.00735
(0.07515)
-0.005011
(0.07002)
-0.001507
(0.06294)
0.001435
(0.05791)
-0.015163
(0.05591)
0.01345
(0.06858)
-0.004284
(0.05917)
0.0007553
(0.05937)
0.01923
(0.05778)
0.0006881
(0.04958)
0.001569
(0.04119)
0.01501
(0.0601)

Table 5 The average confidence/credible lengths and CPs (in the parenthese) of  and A for different methods

u A

n m k T CS MLE Bayes MLE Bayes
40 30 2 1 I 1.85(0.87) 1.73(0.939) 1.595(0.956) 1.331(0.956)
I 2.742(0.89) 1.85(0.951) 1.526(0.955) 1.26(0.944)
1T 2.34(0.869) 1.677(0.942) 1.492(0.963) 1.268(0.962)
2 T 1.602(0.88) 1.502(0.959) 1.391(0.96) 1.238(0.962)
I 1.927(0.872) 1.58(0.937) 1.345(0.944) 1.189(0.95)
I 1.742(0.864) 1.605(0.953) 1.47(0.956) 1.262(0.958)
3 1 I 2.815(0.885) 1.738(0.946) 1.371(0.954) 1.165(0.95)
II  1.757(0.852) 1.745(0.95) 1.356(0.966) 1.137(0.958)
I 1.865(0.857) 1.732(0.94) 1.409(0.96) 1.174(0.96)
2 1T  1.686(0.868) 1.576(0.947) 1.286(0.956) 1.134(0.956)
I 1.973(0.862) 1.634(0.937) 1.245(0.965) 1.085(0.958)
III  2.333(0.846) 1.712(0.946) 1.413(0.953) 1.174(0.951)
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60 50 2 1 I 1.812(09) 1.511(0.945) 1.227(0.948) 1.081(0.951)
I 1.821(0.881) 1.54(0.952) 1.203(0.953) 1.056(0.956)

I 1.623(0.907) 1.404(0.949) 1.153(0.949) 1.033(0.954)

2 1 1.269(091) 1.243(0.956) 1.076(0.965) 0.9957(0.958)

I 1.205(0.917) 1.285(0.956) 1.039(0.97) 0.9594(0.958)

I 1.155(0.89) 1.247(0.95) 1.099(0.952) 1.008(0.946)

3 1 1 1.6750.899) 1.681(0.958) 1.068(0.946) 0.9645(0.948)

I 1.871(0.888) 1.744(0.96) 1.051(0.948) 0.9426(0.96)

I 1.48(0.874) 1.616(0.956) 1.054(0.96) 0.9623(0.959)

2 1 1.237(0.902) 1.396(0.961) 0.9812(0.962)  0.9094(0.961)
I 1.298(0.874) 1.2903(0.95) 0.9683(0.96) 0.9137(0.96)
I 1.412(0.888) 1.304(0.951) 1.042(0.946) 0.8636(0.934)

6. Conclusions

In this paper, we combines the concepts of progressive first-failure censoring and Type-I censoring to
develop a new life plan called a first-failure progressive hybird censoring scheme. The Bayes and classical
estimates the unknown parameters of IG distribution have been obtained based on this new censoring
scheme. We computed Bayes estimators of the unknown parameters under square error, Linex and general
entropy loss functions. The MLEs and Bayes estimates cannot be obtained in closed form, but can be
derived numerically. The asymptotic confidence intervals and coverage probabilities for the parameters
are obtained based on the observed Fisher’s information matrix. Also, highest posterior density credible
intervals for the parameters are computed using Gibbs sampling procedure. From our study, we find Bayes
estimates for A are better in term of biases and MSEs. For intervals estimation of A and p, HPD credible
intervals is recommended.
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