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Abstract. In this paper, we consider the system of generalized variational-like inclusion problems in
semi-inner product spaces. We define a class of (H, ¢)--monotone operators and its associated class of
generalized resolvent operators. Further, using generalized resolvent operator technique, we give the
existence of solution of the generalized variational-like inclusion problems. Furthermore, we suggest an
iterative algorithm and give the convergence analysis of the sequences generated by the iterative algorithm.
The results presented in this paper extend and unify the related known results in the literature.

1. Introduction

Variational inclusions, as the generalization of variational inequalities, have been widely studied by
many authors in recent years. One of the most interesting and important problems in the theory of varia-
tional inclusions is the development of an efficient and implementable iterative algorithm. Various kinds
of iterative algorithms have been suggested to find solutions for variational inclusions. Among these meth-
ods, the resolvent operator techniques for solving variational inclusions have been widely used by many
authors. For further study in this direction, we refer to [3,5,6,8,12-16,18,21,23,25,28,33,34] and the related
references therein.

In 2014, Sahu et al. [23] proved the existence of solutions for a class of nonlinear implicit variational
inclusion problems in semi-inner product spaces, which is more general than the results studied in [24].
Moreover, they constructed an iterative algorithm for approximating the solution for the class of implicit
variational inclusion problems involving A-monotone and H-monotone operators by using the generalized
resolvent operator technique. It is remarked that they discussed the existence and convergence analysis by
relaxing the condition of monotonicity on the set-valued map considered.

Very recently Luo and Huang [19], introduced and studied a class of (H, ¢)-n-monotone operators in Ba-
nach spaces which provides a unifying framework for classes of maximal monotone operators, maximal
n-monotone operators, m-n-accretive operators, H-monotone operators and (H, )-monotone operators. Us-
ing proximal-point operator technique, they studied the convergence analysis of the iterative algorithms for
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some classes of variational inclusions. For further study of these types of operators and their applications
in variational inequalities and variational inclusions, see for example [3,6-9,14-16,18,19,21,25-27,30-34].
Motivated and inspired by the research work mentioned above, in this paper, we define the generalized
resolvent operator associated with (H, ¢)-n-monotone operator in semi-inner product spaces. Using the
properties of graph convergence of (H, ¢)-n-monotone operator, we construct a new class of iterative algo-
rithms to solve the system of generalized variational-like inclusions involving (H, ¢)-1-monotone operator
in semi-inner product spaces. Using the technique in this paper, one may generalize the results for sym-
metric generalized quasi-variational inclusion problems considered in [1,11]. The methods and results
presented in this paper improve and generalize many known results in the literature.

2. Preliminaries and Basic Results
The following definitions and results are needed in the sequel.

Definition 2.1. (Lumer [20], Sahu et al. [23]) Let X be a vector space over the field F of real or complex numbers. A
functional [-,-] : X X X — F is called a semi-inner product if it satisfies the following conditions:

(i) [x + y,z] = [x,z] + [y,z], Vx,y,z€X,
(i) [Ax,y] = A[x,y], VA€ E xyeX,
(iii) [x,x] >0, forx#0,

(iv) |[x, y]|2 < [x, x][y, y].
The pair (X, [-, -]) is called a semi-inner product space. We note that ||x|| = [x, x]% is a norm on X, hence every

semi-inner product space is a normed linear space. On the other hand, in a normed linear space, one can generate
semi-inner product in infinitely many different ways. Giles [10] had proved that if the underlying space X is a
uniformly convex smooth Banach space then it is possible to define a semi-inner product, uniquely. Also the unique
semi-inner product has the following properties:

(i) [x, y] = 0 iff y is orthogonal to x, that is iff ||yl < |ly + Ax||, for all scalars A.

(ii) Generalized Riesz representation theorem: If f is a continuous linear functional on X then there is a unique
vector y € X such that f(x) = [x,y], forall x € X.

(iii) The semi-inner product is continuous, that is for each x, y € X, we have Re[y, x + Ay] — Re[y,x] as A — 0.

The sequence space I, p > 1 and the function space L, p > 1 are uniformly convex smooth Banach spaces.
So one can define semi-inner product on these spaces, uniquely.

Example 2.2. (Sahu et al. [23]) The real sequence space IV for 1 < p < oo is a semi-inner product space with the
semi-inner product defined by

[+4] - ||y|TPz Y xlyl %,y <l
p i

Example 2.3. (Giles [10], Sahu et al. [23]) The real Banach space LF(X, u) for 1 < p < oo is a semi-inner product
space with the semi-inner product defined by

1
gl

[f.9]= fx FEOlgEP sgn(go)dy, fg e 1.
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Definition 2.4. (Sahu et al. [23], Xu [29]) Let X be a real Banach space. The modulus of smoothness of X is the
function px : [0, +00) —> [0, +00) defined by

1
px(t) = sup {E(le +yll+ I =yl =1 Ikl = 1, liyll = ¢, £ > 0}.
A Banach space X is said to be uniformly smooth, if

t
t—0 t

X is said to be q-uniformly smooth, if there exists a constant ¢ > 0, such that
px(®) <ctl,g>1.
X is said to be 2-uniformly smooth, if there exists a constant ¢ > 0, such that
px(t) <c £,

Lemma 2.5. (Sahu et al. [23], Xu [29]) Let p > 1 be a real number and X be a smooth Banach space. Then the
following statements are equivalent:

(i) X is 2-uniformly smooth.
(ii) there is a constant ¢ > 0, such that for every x, y € X, the following inequality holds

llx + Yl < lIxl> + 2y, fo) + cliylP, 2.1)
where f, € J(x) and J(x) = {x* e X* : {x, x*) = |Ix|| |Ixl|* = ||x||} is the normalized duality mapping.

Remark 2.6. (Sahu et al. [23]) Every normed linear space is a semi-inner product space (see, [20]). Infact by Hahn
Banach theorem, for each x € X, there exists at least one functional f. € X* such that (x, f) = |Ix][2. Given any such

mapping f from X into X*, we can verify that [y, x] = (y, fx) defines a semi-inner product. Hence we can write the
inequality (2.1) as
b+ yIP < I + 2]y, x] + cllyl?, Vx,y € X, (2.2)

where c is the constant of smoothness of X and is chosen with best possible minimum value.

Example 2.7. (Sahu et al. [23]) The functions space LF is 2-uniformly smooth for p > 2 and it is p-uniformly smooth
forl<p <2 If2 <p < oo, then we have for all x,y € L?,

b+ yIP < I + 2]y, x] + (0 = DilyIP.
Here the constant of smoothness is p — 1.

Definition 2.8. (Luo and Huang [19], Sahu et al. [23]) Let X be a real 2-uniformly smooth Banach space, 1 :
XxX— Xand T : X — X be single-valued mappings. Then T is said to be

(i) monotone, if
[T(0) - T(y),x -y 20, ¥x,yeX,

(ii) strictly monotone, if
[T() - T(y),x-y] 20, ¥x,yeX,

and equality holds if and only if x = y,
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(iii) y-strongly monotone, if there exists a constant y > 0 such that
[T() - T, x - y| 2 ylx = yI2, Vx,y € X,
(iv) 0-Lipschitz continuous, if there exists a constant 6 > 0 such that
ITCx) =TIl < dllx = yll, Vx,y € X,

(v) n-monotone, if

[T - T 9] 20, VxyeX,
(vi) strictly-n-monotone, if

[T - T 9] 20, Vxy e X,

and equality holds if and only if x = y,
(vii) y-strongly n-monotone, if there exists a constant y > 0 such that

[T = T), nx, )| 2 yllx - yIP, Vx,y e X,
(viii) A-cocoercive if there exists a constant A > 0 such that
[T) - T(y), x - y] = AITG) - TWIP, Vx,y € X.
Let M : X — 2X be a set-valued mapping. We denote its graph by graph(M), that is, graph(M) = {(x, y):ye
M(x)}. The domain of M is defined by
Dom(M) = {x eX:dyeX:(xy) EM}.
The range of M is defined by
Range(M) = {y eX:IxeX:(x,y € M}.
The inverse M~! of M is {(y, x):(x,y) € M}
For any two set-valued mappings N and M, and any real number p, we define
N+M= {(x,y+z) (% y) €N, (x,2) GM},
pM = {(x, py) : (x,y) € M.
For a mapping A : X — X and a set-valued map M : X — 2%, we define
A+M= {(x,y+z) : Ax = yand (x, z) EM}.

Definition 2.9. (Luo and Huang [19], Sahu et al. [23]) Let X be a real 2-uniformly smooth Banach space. The
mapping M : X — 2% is said to be

(i) monotone if
[u —-U,Xx— y] >0, Vx,ye X, uecMx),veMy),

(ii) y-strongly monotone if there exists a constant y > 0, such that

[u —v,x—y] >yllx—yl?>, Vx,yeX ueMx),veMy),
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(iii) n-monotone if
[u-o.n0, 9] 20, Yx,yeX, ueM@),oeMy),

(iv) y-strongly n-monotone if there exists a constant y > 0, such that

[u-on0 ]2yl -yI2, Vr,yeX, ueMx),oeMy).
Definition 2.10. (Sahu et al. [23]) Let H : X — X be an r-strongly monotone operator. The mapping M : X — 2%
is said to be H-monotone if
(i) M is monotone;
(ii) (H + pM)(X) = X, where p is a positive real number.

Definition 2.11. (Sahu et al. [23]) The generalized resolvent operator ]II\{/LP : X — X is defined by ]ﬁ,p(u) =
(H + pM)~Y(u) for all u € X.

(H, p)-n-Monotone Operator:

Definition 2.12. Let X be a real 2-uniformly smooth Banach space. Let H: X - X, ¢ : X - X, n: XX X — X be
single-valued mappings and M : X — 2% be a multi-valued mapping. The mapping M is said to be (H, @)-n-monotone
if o M is n-monotone and (H + ¢ o M)(X) = X.

Definition 2.13. (Luo and Huang [19]) Let X be a real 2-uniformly smooth Banach space. Let H : X — X,
¢ :X > X, n: XxX - X be single-valued mappings and M : X — 2% be a multi-valued mapping. The mapping
M is said to be

(i) (H, p)-monotone if (p o M) is monotone and (H + ¢ o M)(X) = X.
(ii) maximal @-monotone if (¢ o M) is monotone and (] + ¢ o M)(X) = X,
(iii) maximal @-n-monotone if (¢ o M) is n-monotone and (] + ¢ o M)(X) = X.

where | is the normalized duality mapping.

Now, we define the generalized resolvent operator associated with (H, ¢)-n- monotone operator.

Definition 2.14. Let X be a real 2-uniformly smooth Banach space. Let ¢ : X = X, n: XX X — X be single-valued
mappings, H : X — X be a y-strongly n-monotone and &-Lipschitz continuous mapping and M : X x X — 2% be

a (H, p)-n-monotone mapping. Then the generalized resolvent operator ]]\Ijgx)q) : X — X associated with (H, ¢)-n-

monotone operator is defined by ]11\{/1(’7 9 (p(u) = (H + pp o M(-,x)) " (u), Vx,u € X.

Graph convergence plays a crucial role in variational problems, optimization problems and approximation
theory. For details on graph convergence, see Aubin and Frankowska [2], Rockafellar [22] and Sahu et.al.,
[24].

Definition 2.15. (Sahu et al. [23]) Let H : X — X be an r-strongly monotone and s-Lipschitz continuous operator.
Let {M"}, M" : X — 2X be a sequence of H-monotone set-valued mappings for n = 0,1,2,.... Then the sequence

{M"} is graph convergent to M, denoted by M" 25 M, if for every (x,y) € graph (M), there exists a sequence
{(xn, yu)} C graph (M") such that x, — x and y, — yasn — oo.
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Definition 2.16. (Sahuetal. [24]) Let X be a real 2-uniformly smooth Banach space. Let H : X — X be an s-Lipschitz
continuous and r-strongly monotone. Let {M"}, M" : X — 2X be a sequence of H-monotone set-valued mappings.

Then the sequence M" He pm if and only #]ﬁn,p(u) - ]ﬁlp(u)for all u € X and p > 0, where ]ﬁ’p = (H+pM)™.

Now we prove the following important lemma:

Lemma 2.17. Let X be a real 2-uniformly smooth Banach space. Let ¢ : X — X be a single-valued mapping,
n: X XX — X be a t-Lipschitz continuous mapping, H : X — X be a y-strongly n-monotone and 6-Lipschitz
continuous mapping; and {M"}, M” XxX—2Xbea sequence of (H, ¢)-n-monotone mappings forn = 0,1,2, ....

Then the sequence @ o M" (-, x,) He @ o M(:, x) if and only zf]M,1 (u) — ]ﬁgx)(p(u)for all x,u € Xand p >0,

where ]M(. 0 = H+pp o M(,x)” L

CXn)p

Proof. For any u € X, let

]ﬁ("x w)=0o 2.3)

= (H+ pp o M(-,x)) '(u) =0
= u € H(v) + pp o M(v, x)

N %(u ~H(v)) € ¢ o M(v, %)

Hence (v, I%(u — H(v))) € graph(p o M(-,x)). Since ¢ o M"(:,x,) EEN @ o M(-,x), there exists a sequence
(on, L(u = H(v,))) € graph(p o M"(:,x,)) such that

on = 0, %(u ~ H(oy) — %(u _HQ©)). (2.4)

Again we have %(u — H(vy,)) € ¢ o M"(vy, x,). This implies that

u € (H+ppoM'(,x,))(vn) = (H+ pp o M"(-, x)) " (1) = 0. (2.5)
Therefore from (2.3)-(2.5), we have ] MG, )q)(u) x) q}( ).
Conversely, let ]Mn( . )(P(u) - ;('?x)qj(u), Yu € X,

-1
ie, (H + pp o M”(-,xn)) (u) - (H + pg o M(-,x)) ().

-1 -1
Suppose that (H + pp o M"(, xn)) (1) = v, and (H + pp o M(,, x)) (1) = v. This implies that %(u —H(vy)) €
@ o M"(v,, x,) and %(u — H(v)) € ¢ o M(v, x).
Since H is continuous, we have

on =0 %(u ~ H(o,) — %(u ~ H@).

Hence, for each (v, (u H(v))) € graph poM(-, x), there exists a sequence (v,,, 1 (u H(v,))) € graph poM"(:, x,,)
such thatv, — v and p(u H(v,)) — ;(u H@)). O

Lemma 2.18. Let X be a real 2-uniformly smooth Banach space. Let ¢ : X — X be a single-valued mapping,
n: X x X — X be a t-Lipschitz continuous mapping, H : X — X be a y-strongly n-monotone and 0-Lipschitz
continuous mapping; and M : X x X — 2% be a (H, ¢)-n-monotone mapping. Then, the resolvent operator
H,n
Jm

T, . . .
: X — X is —-Lipschitz continuous, i.e.,
M(x),p %

||]M( X)(p( ) M( x)(p(y )” = _Hx - y ” VX*,y* € X
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Proof. Let x*, y* € X. It follows that
Tty @) = (H + pg o M(, ) < "),
T ) = (H+ pp o MG, ) ()

and hence

e = HRL ) € (o o MO 0)(7 00,

Sl = H( ) € (o o MC D)1, 07)

Since (¢ o M) is n-monotone, we have

%[ = H(Iyl o @) = (v* = HOGL o)) 100, 6 Tl o 0)] 2 0

It follows that

Hn (*)_I M)

> N0 @ Tt o)

> [t =yt (0 T )]

> [H(3 0, 000) = HOWL  0O) 10 00 T, )]
>yl e =T @

Thus,

Tt 0 &) = Tatt @) s;nx*— v, Yty e X, O

Lemma 2.19. (Liu [17]) Let {a,}, {b,} and {c,} be sequences of non-negative real numbers that satisfy: there exists a

positive integer ng such that n > ny,

Ap+1 < (1 - tn)an + bntn + Cn,y

where t, € [0,1], Ztn—+oo hmbn—Oanchn<oo Then Zan—O
n=0 n=0 n=0

3. Formulation of the Problem and Existence of Solution

Let X be a real 2-uniformly smooth Banach space. Fori € {1,2},let N; : X —» X, Fi,ni : XX X — X,
gi,H; : X = X be single-valued mappings, M; : X X X — 2X be (H;, ¢;)-n;-monotone mappings, respectively.
Then the system of generalized variational-like inclusions (in short, SGVLI) is: Find (x, y) € X X X such that

{ 0 € Ni(g1(x) = F1(x, ) + M1(g1(x), x), (3.1)

0 € Na(g2(y) — F2(x, y)) + Ma(92(y), v). (3.2)

Some Special Cases:

Case I: If Ny = N, = I, the Identity mapping, then SGVLI (3.1)-(3.2) reduces to the following system of
variational inclusions: Find (x, y) € X X X such that

{ 0 € g1(x) — F1(x,y) + M1(g1(x), x), (3.3)
0 € 92(y) — Fa(x, y) + Ma(92(y), ), (3.4)
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which is an important generalization of the problems considered by Chang et al. [4], Sahu et al. [23] and
Tang and Wang [25].

Case II: If g1 = g» = I, the Identity mapping, then SGVLI (3.3)-(3.4) reduces to the following system of
variational inclusions: Find (x, y) € X x X such that
0ex—Fi(x,y) +M(x,x),
0€y—Fax,y) + Ma(y, ),
which is an important generalization of the problems considered by Luo and Huang [19].
Case III: If N; = N, = [, the Identity mapping, g1 = 92 = g, Fi(x,v) = g(y), F2(x, y) = g(x), Mi(g91(x),x) =

M(g(x)), Ma(g2(y), y) = M(g(y)), where g : X —» X and M : X — 2%, then SGVLI (3.1)-(3.2) reduces to the
following system of variational inclusions: Find (x, y) € X X X such that

0 € g(x) = 9(y) + M(g()),
0 € g(y) - g(x) + M(g(y)),
which is an important generalization of the problem considered in [13-16,31].
Case IV: If N, = 0, N1(g1(x) — F1(x,y)) = S(u) — T(u) and Mi(g1(x), x) = M(g(u)), Yu € X where M : X — 2%

is a set-valued mapping, S,T,g : X — X are single-valued mappings, then SGVLI (3.1)-(3.2) reduces to the
following problem: Find an element u € X such that

0 € S(u) = T(u) + M(g(w)),
which is the generalization of variational inclusion problem considered by Sahu et al. [24].
Now we prove the following technical lemma.

Lemma 3.1. Let X bea real 2-uniformly smooth Banach space. Fori € {1,2}, suppose N; : X = X, F;, i : XXX — X,
gi : X = Xand H; : X — X be single-valued mappings. Let ¢; : X — X be single-valued mappings satisfying
@i(u +v) = @i(u) + @i(v),Yu,v € X and Ker(p;) = {0} (i.e., Ker(p;) = {u € X : gi(u) = 0}), M; : X x X — 2X be
(Hi, @i)-ni-monotone mappings, respectively. Then (x,y) € X X X is the solution of SGVLI (3.1)-(3.2) if and only if
it satisfies:

7@ = Ty 1 o [H1@1)) = pr(@1 0 ND)(1(x) = Fi(x, )| p1 > 0 (3.5)

and

529) = i oyl H2@20)) = p2(@02 0 No)(92(y) = Fa2(x, 9)f; 2> 0, (3.6)
where ]f/fll’gllx),(pl = (H1 + p1p1 © Ma (-, x))7%; ]ﬁzz’g?fy)&oz := (Ha + pag2 © Ma(-, )} are the generalized resolvent
operators.
Proof. From the definition of ]AIj/IIll/(T?,lx),qn’ we have

Hi(g1(x)) = pr(1 o No)(g1(x) - Fa(x, ) € {Hl + P11 0 Ml('/x)igl(x)

Hi(91(x)) = p1(p1 © N1)(1(x) = F1(x, ) € Hi(1(x)) + prp1 © Mi (g1 (%), x)

0 € p1(p1 0 N1)(91(x) = Fa(x, ) + prp1 © M (g1 (), )

Oegro {N1<g1(x) - Fi(x, y)) + Mi(g1(x), x)}

0 € Ni(g1(x) = F1(x, ) + Ma(1 ), ),

since @;(1t + v) = @i(u) + @;(v) and Ker(p;) = {0}.

Similarly, 0 € Nz(gz(y) — Fa(x, y)) +Ma(92(y), ), Y(x,y) € X x X. Thus (x,y) € X X X is the solution of SGVLI
(3.1-(3.2). O

[
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Theorem 3.2. Let X be a real 2-uniformly smooth Banach space. For i € {1,2}, let N; : X — X be r;-Lipschitz
continuous, g; : X — X be Bi-Lipschitz continuous and q;-strongly monotone and 1; : X X X — X be t;-Lipschitz
continuous, H; : X — X be a 6;-Lipschitz continuous and y;-strongly-n;-monotone mappings, respectively. Suppose
@i + X — X be single-valued mappings satisfying @;(u + v) = @;(1) + @i(v) and Ker(p;) = {0}, and let @; be
O;-Lipschitz continuous, M; : X X X — 2% be (H;, ¢;)-n-monotone mappings, respectively such that

3 e O = Tag oy o @ < sl =22, V1,22 € X, 51> 0, 37)
I @ =Tl <sallys = 3oll, Vi, y2 € X, 52> 0 ¢8)
Ma(,y1).02 M (- y2),92 = 52l = Yalls Y2 2 ' .

Suppose that F1 : XXX — X be a C;-Lipschitz continuous in the first argument and F» : XX X — X be a Co-Lipschitz
continuous in the second arqument. In addition, if

(1-291+¢f?) >0, (1-2g2+¢p3)>0, (3.9)

and

<yl-2m+ i + Plelrl(ﬁl +G)+ 51ﬁ1} +s51<1,

(3.10)
R ”. 2[]2 + C‘B + 2921’2(ﬁ2 + Cz) + (Szﬁz} +s <1,
where c is constant of smoothness of Banach space X, then SGVLI (3.1)-(3.2) has a solution.
Proof. Define the mappings S1,5, : X — X by
S1(x1) = x1 — ga(x1) + IMll(mxl)(Pl {H1(£71(x1)) —pilpro Nl)(!h(xl) - Fl(xlzy))}
Sa(y) = y1 = 92(1) + T o {H2(02(1)) = p2(2 © No)(92(y1) = Fa(x, 1)}
Then for the elements x71, x, € X, we have
116c) = S1 0l < [l =20 = (910) — )
” ﬁll(mxl)@ Hi(g1(x1)) = p1(pr © N1)<!71(x1) —Fi(x1, y))}
f/ﬂ (mm o {Hl (91(x2)) = p1(@1 © N1)(_l]1(x2) = Fi(x2, y))}” (3.11)

Using (3.7) and Lemma 2.18, we have the following estimate

e o {11 G0) = pa(or 0 Ni)(on (1) = Fatxr, )}

]ﬁl(mm o {Hl(!h(xz)) —pi(pr 0 N1)(!71(x2) - Fi(x, y))}“
| ﬁlglxlw Hi(g1(x1)) = pa(@r 0 Nl)(gl(xl) - Fl(xhl/))}

—Hm {Hl(gl(xl)) - pi(pr 0 Nl)(gl(xl) = F1(xy, y))}“

“IMi ()
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Jin {Hl(gl(xl)) —pi(pr 0 N1)(91(x1) - Fi(x1, y))}

M (x2),1

4

i o [H1(@132) = pr(pr 0 Nu)(g1(x2) = Faea, )|

M (-x2),01

IA

s1llx1 — x| + %"Hl(gl(xl)) —pi(p1o Nl)(gl(xl) - Fl(xlry))

—{Hl(fh(xz)) — pr(pr o N1)(g1(x2) = Fi(xa, ]/))}H

IN

siller =il + |01 (1)) ~ Hi(91(x2)
T 7
+;—T1”((P1 o N1)(g1(x1) = Fa(x1, ) = (1 © Nn)(91(x2) = Fi (2, y))H-

6060

(3.12)

Since H; is a 61-Lipschitz continuous, g; is a f1-Lipschitz continuous, ¢ is a 01-Lipschitz continuous, Nj is

an ri-Lipschitz continuous and F is a (;-Lipschitz continuous in the first argument,we have

IH1(g1(x1) ~ Ha(g1 ()| < d1alls =

a

nd
||((P1 o N1)(q1(x1) = Fi(x1,)) = (91 0 N1)(91(x2) = Fa(x2, y))H

< ngre) = g16) - (Faea, ) — Fateo, )
< 6m||91(x1) - 91(xz)|| + 61r1||F1(xhy) — Fi(e, y)||
< 917’1ﬁ1|lxl - xz” + 917’1C1||X1 - xz”-

Using (3.13) and (3.14) in (3.12), we have

’ Aljlllg,lxl)r(f’l {H1 (91(x1)) = p1(p1 © N1)(91(x1) - Fi(x, ]/))}

iy o {1 01(22) = pr(1 © N1)(g1(2) = Fi V))}”

M (-x2),01

IA

71011 ”xl B xz” . T1p10171B1 ||x1 _ Xz” . 1101611 G
1 V1

; ]

Sl||X1 - X2|| +

{51 + %(Plglrl(ﬁl +G) + 51ﬁ1)}Hx1 - sz-

Since X is a 2-uniformly smooth Banach space, we have

ey = 22l = 2[ g1 (1) = g1 (x2), 31 = 2]

IA

”xl - Xy — (91(x1) - _1]1(362))H2
+llg (x1) — g1 ()l

llx1 = x2l* = 2q1llx1 — x> + cB2llx1 — X2l
1

“x1 — Xy — (91(x1) - {71(362))” < 1= 2g1 + ¢ lx1 — xall.

IN

Thus,

(3.13)

(3.14)
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Therefore,
”51(351) - Sl(xz)H < {\/1 —2q1 +cf + %(Plelrl(ﬁl +Cy) + 61,31) + 51}”961 — x|
< ||x1 —Xx71|,

since by (3.10), 0 < /1 —2g; + cﬁf + %(plﬁlrl(& + () + 51ﬁ1) +51 < 1.

Thus it follows S; is a contraction mapping. Hence by Banach contraction principle, S; admits a fixed point
(say) x € X. Thus, we have

7@ = Tyl o (Hi@100) = pi(@1 0 Ni)(91(0) = Fi(x, )} 1 > 0.

Similarly, for the elements 1, > € X, we have

[$20) = 2| = 1 = 2 = (921) - 920

| {Ha(ga) = pa(@2 0 No)(ga(y1) - Fat, )}
- ;zz'gfyz)m{Hz(gz(yz)) — p2(p2 0 N2)(92(y2) - Falx, yz))}”- (3.15)

Again using (3.8) and Lemma 2.18, we have the following estimate

” Tt o fH2(@2(y1) = p2(2 © No)(92(31) = Fa(x, 1))}

]AIZ(rzzyZ) . {H2(!72(y2)) — pa(p2 0 Nz)(!]z(yz) - F(x, yz))}”

' ﬁzz(myl)(pz Ha(g2(y1)) = pa(ep2 © Nz)(gz(yl) - Fa(x, ]/1))}

IA

Tty o\ H2(@201)) = p2(p2 © No)(92(y1) = Fax, yl))}H

||];22(my2) o {Ha(g2(11)) = palp2 0 N2)(g2(01) = Falex, yn))

]AIZ(WW) (pz{Hz(gz(yz)) — pa(p2 0 Nz)(gz(yz) - Fy(x, yz))}H

IA

sallyr — yoll + %”Hz(!]z(yl)) = pa(p2 0 Nz)({]z(yl) - Fa(x, ]/1))

—{Hz(gz(yz)) — p2(p2 0 Nz)(!]z(]/z) - Fa(x, ]/2))}”

IA

sallyn = 2l + 2| Ha(g200) - Ha@a()|
V2

12_52"(% ° Nz)(!]z(yl) - Fa(x, y1)) —(pao NZ)(.‘D(W) - b, yZ))H' (3-16)
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Since Hj is a 6;-Lipschitz continuous, g, is a f2-Lipschitz continuous, ¢; is a ;-Lipschitz continuous, N is
an rp-Lipschitz continuous and F, is a (;-Lipschitz continuous in the second argument, we have

H2(9200) ~ Ha(g202)| < 8282l = w2l (317)

and
”((Pz o Nz)(_l]z(yl) - F(x, y1)) —(p20 Nz)(!]z(yz) - F(x, w))H

< 92?2”92(}/1) = 92(y2) — (Fz(xr 1) — Falx, 3/2))”
< 62r2||gz(y1) - gz(yz)“ + 921’2HFZ(X, y1) — Fa(x, yz)H
< 9272ﬁ2”y1 - ]/2“ + 927’2C2”y1 - y2||- (3.18)

Using (3.17) and (3.18) in (3.16), we have

||];22'(7_],2y1),¢2 {Hz(gz(yl)) — pa(2 © No)(92 (1) = Falx, yl))}

- ﬁi’g??yz),(pz {Hz(gz(yz)) = p2(p20 Nz)(!]z(yz) - F(x, yz))}”

< {52 + 7T/—i(Pz@sz(ﬁz +0) + 5252)}”]/1 - yz”-
Since X is a 2-uniformly smooth Banach space, we have
2
1 = v = (200 = 2))|| = Mlya = ol = 2[g1) = g2w2), 1 - 2]

+cllg2(11) — g2(2)IIP

< lya = vl = 292lly1 — yal P + eBallya — vall

Thus,
”]/1 -y - (9z(y1) - 92(]/2))” < J1-292+cB5 Iy — all.
Therefore,
”52(%) - Sz(yz)H < {\/1 — 20 + cpE + %(Pzezrz(ﬁz +0) + 52,32) + Sz}||y1 = yall
ool

since by (3.10), 0 < /1 —2q, + cf2 + %(ngzm(ﬁg +0)+ 52/32) +s <1,
2

Thus it follows that the mapping S, : X — X is a contraction mapping. Hence, by Banach contraction
principle, S has a fixed point (say) y € X. Thus, we have g»(y) = 12 {H2(gz(y)) — pa(p2 0 Nz)(gz(y) -

Ma(-y),p2
Ex, )} p2>0. O

When X = [F(R), 2 < p < oo, we have the following corollary:
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Corollary 3.3. Fori € {1,2}, let N; : LP — L? be r;-Lipschitz continuous, g; : L¥ — L? be p;-Lipschitz continuous
and g;-strongly monotone and 1; : LP XLP — LF be 1;-Lipschitz continuous, H; : LV — L be a 0;-Lipschitz continuous
and y;-strongly-n;-monotone mappings, respectively. Suppose @; : LV — LP be single-valued mappings satisfying
@i(u +v) = i(u) + pi(v) and Ker(p;) = {0}, and let @; be 0;-Lipschitz continuous, M; : LF X LV — 2V be (H;, ©i)-
ni-monotone mappings, respectively, such that (3.7)-(3.8) holds. Furthermore, let F1 : LP X LP — L¥ be a C;-Lipschitz
continuous in the first arqument and Fp : LV X LV — L? be a Cp-Lipschitz continuous in the second arqument. In
addition, if
Q-2+ (-1 >0, (1-240+(p—1)p3) >0,

and

0< \/1 - 2(]1 + (p - 1)5% + %{plelm(ﬁl + Cl) + 61ﬁ1} +s51 <1,

0< \/1 — 205+ (p - 1)BE + %{pzem(ﬁz +0) + 0o +52 < 1,

where (p — 1) is constant of smoothness, then SGVLI (3.1)-(3.2) has a solution.

4. Iterative Algorithm and Convergence Criteria

Lemma 3.1 is important from the numerical point of view. It allows us to suggest the following iterative
algorithm for finding the approximate solution of SGVLI (3.1)-(3.2):

Iterative Algorithm 4.1. For arbitrary point (xo, yo) € X X X, compute the sequences {x,}, {y,.} by the iterative
scheme:

Xn+1 = (1 - an)xn + an{xn - gl(xn)

Hy,m

i (@1 0) = p1(@1 0 N1)(g15) = Faea ) 1 > 0

and
Hy,m2

720 = Tty {Hz(gz(yn)) = pa(@2 0 No)(g2(yn) - Fz(xn,yn))}; p2>0
where M!: XXX — Xare (Hi, @i)-ni-monotone mappings, respectively, fori € {1,2},n =0,1,2,... and

Hin — -1, tH2n — -1,
Mo = HLFproro MIC )5 T 0, = (Ha + 292 0 MGG, y)) ™5

Y, yn € X and ay, be the sequence of real numbers with a, € [0,1] and Y, a, = +o0.
n=0

Now, we prove the following theorem, which ensures the convergence of the sequences generated by the
Iterative Algorithm 4.1 for SGVLI (3.1)-(3.2).

Theorem 4.2. For i € {1,2}, let X be a real 2-uniformly smooth Banach space, N; : X — X be ri-Lipschitz con-
tinuous, g; : X — X be B;-Lipschitz continuous and q;-strongly monotone, 1n; : X X X — X be t;-Lipschitz
continuous, H; : X — X be a 6;-Lipschitz continuous and y;-strongly-n;-monotone mappings, repectively. Suppose
Fy : XXX — Xbea C}-Lipschitz continuous with respect to second argument, F : XXX — Xbea C}-Lipschitz contin-
uous with respect to first arqument and let ¢; : X — X be single-valued mappings satisfying @;(u+v) = @i(u)+@i(v)
and Ker(p;) = {0} such that @; be O;-Lipschitz continuous, M! : X X X — 2X be (Hi, @i)-ni-monotone mappings

such that M? =N M; as n — oo, respectively. Also @i, N;, Fi, gi and H; are single-valued mappings such that

{H1(g1)() = p1(@1 © N1)(91() = F1(, yw))} is Ar-cocoercive and {Ha(g2)() = pa(@2 © N2)(92() — Falu, )} is Aa-
cocoercive. In addition, if
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1 p1p212016211712A2C1C)
1-2q1 +cp?>0; A ;= + ;
g1+ cf; >0, gay2A2 > 125 (/\1 pRvy v > 0;

T9010,7112A,C,
0< 1—mh+¢f+ﬂ(l+pw221212212)<L
Y1\ J2Y2A2 — T2

where ¢ is constant of smoothness of Banach space X. Then the iterative sequences {x,}, {y,} generated by Iterative
Algorithm 4.1 converges strongly to a solution (x,y) € X X X of SGVLI (3.1)-(3.2).

“.1)

Proof. Let (x, y) € X X X be the solution of SGVLI (3.1)-(3.2). By Lemma 3.1, we have
x = (1= a)x +anfx = g1 @) + [y 1y {1 @1 ) = palpr o No) (g1 () = Fux, )}
Now from Iterative Algorithm 4.1 and above condition, we have

||(1 — )X, + an{xn - g1(x) + ]Hl,l,’(r_’fx”)/qjl {Hl(gl(xn))

[l — x|
—pr(p1 © N1)(91(e) = F1 (o, y) )} = (1 = con)x = v = g1 (x)

I o [ H1 @) = pr(gr o No)(g1(0) - P, )

IA

(1—ay)

%=

+ap|x, —x — (gl(x") B g1(x))||

|| o L @1 (0) = P11 © N1)(g1(00) = Fi (i )}
- 1\[2;(7,1;(,,),@1 {Hl(_l]l(x)) - pi(pro Nl)(!]l(x) - Fi(x, y))}H

+a,

Mo (H1(@10) = pa(pr © N1 (g1 () = Fa(x, )}
et o (i @109) = pr(epr o No)(g16) = Fax, ) | (42)
Using Lemma 2.18, we have the following estimate:

i (1100 = P11 © N9 = Fr s )} = T {0166 = pr(gor 0 N1 (919 = Fa )|

IA

%”Hl(gl(xn)) — Hi(g1(x)) — p1(¢p1 © Nl)(gl(x”) — P, yn))

+P1((P1 o N1)(gl(x)) - Fi(x, y))”
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IA

%”Hl(gl(xn)) - pi(p1 o Nl)(gl(xn) — Fi(x,, yn))

_{Hl(gl(x)) —pi(pr 0 Nl)(gl(x) - Fi(x, yn))}

—prp1 o N1)(@1(0) = Fa(x, ) + palgpr o No)(1(2) - Fax, )|

IA

%”Hl(gl(xn)) —pi(p1 o Nl)(gl(xn) — Fi(x,, yn))

~{H1(31(0) — p1(pr o N)(g1x) = Fix, ) )|
+T;—‘1“||(<p1 o N1)(g1(6) = Fi(x, 1)) - (1 © N)(g1) — Fi v, )| (43)
Since {H1g1(-) —pi(p1 0 Nl)(gl(-) - Fi(+, yn))} is Aj-cocoercive, then

191 60)) = pa(gpr © NuY{gn o) = F Gt 1)

~{Fi(g1(0) = pr(1 © N1)(g1 @) = F1 e, )| 1 = 1

[\

[Hi(g1Gn)) = pr(@r © Ni)(91(x) = Fr(x, y)

—{Hl(gl(x)) —pi(p1 0 Nl)(gl (x) = Fi(x, yn))},xn - x]

\%

A [F(@1060) = pr(@1 © Na)(g1 () = i, )

‘2
Thus,
[F1(9160)) = 11 o Nu)(g1000) = Fae, 1)) = {H1(g1(0) = prp1 © No)(916) = Fax, )}

~{H1(g1(0)) = p1(@1 © No)(91(x) = Fa(a, )}

1
<% I, — x| (4.4)

Since ¢ is a 01-Lipschitz continuous, N is an r1-Lipschitz continuous and F; is a }-Lipschitz continuous
with respect to second argument, then we have

IA

@1 0 N1 = Fie ) = (@1 e N)(g19) ~ Fae, )| < 01| Na(01@) = Fa ) = Na(n @) = Fat, )

IA

9171”131(95/ yn) — F1(x, y)”

IA

011184 11Yn = Yl (4.5)

Since g; is a g1-strongly monotone and f;-Lipschitz continuous, we have

xu=x~(1(5)-g1 )| < 1 - 201 + B3 Ibvu—). (46)
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Using (4.3)-(4.6) in (4.2), we get

s =Xl < (1= ap)llxn — x| + @ \J1 = 2q1 + B3 llx, — |

11016111
+a {y =l =l - yll} + tn f
_ _ _ 2 71 _
- {(1 an) + an(Jl 291 + B2 + o~ )} e, — x|
a,T1010111C;
+————— Y — Yl + anfa

where
= [ (@16 = pr(r 0 N)(or @) - Fr )}

~ it o {1 (@100) = pr(@r o ND)(1 ) - Fi(x, )}

and f, — 0as n — co. Thus, we have

11
lPnsr — x|l < {(1—an)+an(w/1—2ql+c§+m)}nxn—xu

apT1p10111C)
+—llyn — vl

Since g, : X — X is a qp-strongly monotone, then we have

I92(yn) = 22l 1y = Y1l = [92(y) = 22(0), ¥ = y] = q2llyu — yIP-

Thus,
W=yl < ~lg2(0) = 2
q2
- 1| o {H2(0200) = pa(p2 0 N2)(92(1) = Faleen, )
@) - papa o No)(92(9) - Extx, ) |
< —1| e (F2(2000)) = 22 © N2)(92(90) = Fa(a, )}

T @) = pa2 0 No)(92) - B, )|
||]Hi("2y {Ha(g2(9)) = pa(p2 0 N2)(92(v) - Fal, )}

]AIZ(UZy) o {H2(92(}/)) — pa(p2 0 Nz)(gz(y) — F(x, y))}“

Using Lemma 2.18, we have the following estimate:

6066

(4.7)

(4.8)

e, {H2@20000) = pa(p2 0 N2)(920) = Fau, y)} = Tt o {H(9200) = pa(gp2 0 N)(92(0) = Fat, )|
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IA

%”Hz(gz(yn)) — pa(p2 © N2)(92(¥) = Fal(tu, yn)

~{H2(2()) = p2(p2 © N2)(92(y) — Fa(x, !/))}”

IA

%”Hz(gz(yn)) — pa(p2 © N2)(92() = Fa(xns 1)

~{Hag2() = pat @ 0 Na)(gy) ~ Faln, )|

#5220 Na)(52(0) ~ Fatis ) = (2 0 o)) ~ Fate, )| ®9)

Since {Hz(gz(~)) = p2(p2 0 Nz)(gz(-) - Fy(xy, ))} is Ay-cocoercive, then

F2(g2)) = p2(p2 © No)(92(9) = Falta, 1)) = {Ha(g2(9) = palipa 0 Na)(92(y) = ol )} s = i

\%

[H2(92(50)) = pa(p2 © N2)(92(y) = Fa(xs, yw)

~{Ha(g2(1) = a2 © No)(92(y) = o, 1)}, v = 9]

v

/\2”H2(!72(]/n)) = p2(p2 0 Nz)(gz(]/n) = Fa(xy, ]/n))

{20 - patep2 0 N2)(920) ~ Faton )|
Thus,

[Fa20205) = pa(@2 0 N2Y(g29) = Faltta, ) = {Ha(g2(w)) = palipa © Na)(g2) = Fatevn, )|

< %2 Yo — y” (4.10)

Since @, is a 0>-Lipschitz continuous, N> is an r»-Lipschitz continuous and F (-, -) is a {}-Lipschitz continuous
with respect to first argument, then we have

2 © N2) (9200 = Fateen, 1) = (@2 0 No)(92(9) ~ Pt )|

< Gz“Nz(gz(]/) ~ Fa(x, ) ~ No(92(y) ~ Fal, )|
< Oy ”FZ (xn, y) — Fa(x, ]/)”
< 0,10, lxn — x| (&11)

Using (4.9)-(4.11) in (4.8), we have

1( 1 120202720, }
n - < — - n— hn ’
Iy — vl qz{yzAz Yo — Yl + I, — xl +
where
hy = | ¥ (ley )WZ{HZ(!ZZ(.‘/)) —pa(p20 Nz)(gz(y) - Fa(x, y))} ]]\ij o @2{Hz(gz(y)) — pa(p20 Nz)(gz(y) - Fa(x, y))}”
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and h, - 0asn — oo.
Thus, we have

—szz)\szrng) [lx, — x| + (—yzAz ) h

n - S
1y =y ( q2Y2A2 — T2 q2Y2A2 — T2

Thus, from (4.7), we have

2, 1
o=l < {0-a) va(T-2n o+ )

+an/\zTﬂzplszlerlrzC;C; }”x i any2A2T1p10111C)
Y1(q2y2A2 — T2) ! Y1(2y2A2 = T2)

1 TaA2p1p261021112CC
< N-af1- J1-2q1+¢ 2—3(—+
{ ( n Loy (927272 — T2)
p1T1Y2A20111C)
X lxy = x|l + an| ———— |
Y1(g2y242 — 12)
< {1 —a,(1- kl)}”xn — x|l + andy,

where

kp = {/1-2q1 + Cﬁ% + E(l + P1p2010211126 Gy T2 k2
yi\A (g2y2M2 — 12)
and k; < 1 because of the assumption (4.1).

Hence we can write p
n

(1-ky)

s = 2l < (1 = (1 = k)il — 21l + an(1 = k) (4.12)

a dnk y o = ay(1 — ki), then we can express (4.12) in the form
- M

an+1 = (1 —cy)a, + c,b,. Hence by Lemma 2.19, we geta, — 0O asn — oo. Asaresultx, — xasn — oo which
infact implies that v, — vy as n — co. Hence the sequences {x,}, {y.} converges strongly to the solution
(x,y) € Xx X of SGVLI (3.1)-(3.2). O

We suppose that a, = ||x, — x|, b, =

When X = L”(R), 2 < p < oo, we have the following corollary.

Corollary 4.3. Fori € {1,2}, let N; : LV — L7 be r;-Lipschitz continuous, g; : L — L? be p;-Lipschitz continuous
and g;-strongly monotone, n; : LV X LF — L be t;-Lipschitz continuous, H; : LV — LF be a 0;-Lipschitz continuous
and y;-strongly-n;-monotone mappings, respectively. Suppose Fy : LF X LV — LF be a C}-Lipschitz continuous with
respect to second argument, F : LF X LF — L be a C}-Lipschitz continuous with respect to first argument and let
@i : LF — LF be single-valued mappings satisfying @i(u + v) = @;(u) + @i(v) and Ker(p;) = {0} such that ¢; be

0;-Lipschitz continuous, M} : LF X LV — 2Y be (H;, ¢;)-ni-monotone mappings such that M R M;asn — oo,
respectively. Also ¢;, N;, Fi, gi and H; are single-valued mappings such that {H1 (91)() = p1(p1 0N1)(g1(') —Fi(,, yn))}
is A1-cocoercive and {H2(gz)(-) — pa(@2 0 Nz)(gz(-) — Fa(xy, ))} is Ap-cocoercive. In addition, if

1 p1p2120162r112A2C1C)

1-2q1+(p-1)B>0; A>1; [— + > 0;
1+ (= Dpy fayaiz =t (/\1 q2y2A2 = T2 )

1 p1p21201621112A2C1C

0< 1-2q1+(@p—1 2+ﬂ(—+ )<1,
\/ 1+ (=D Y1\ g2Y2A2 = T2
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where (p — 1) is constant of smoothness. Then the iterative sequences {x,}, {y,} generated by Iterative Algorithm 4.1
converges strongly to a solution (x,y) € LF X LV of SGVLI (3.1)-(3.2).

Remark 4.4. Using the technique in this paper one can extend the results of various authors, see for example
[3,6,7-9,18,19,21,25-27,30-34] and the related references cited therein in this direction.
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