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Abstract. By using Hardy-Hilbert’s inequality, some power inequalities for the Berezin number of a self-
adjoint operators in Reproducing Kernel Hilbert Spaces (RKHSs) with applications for convex functions
are given.

1. Introduction
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where the constant factor #ﬂ/p) is the best possible. The equivalent form of (1) is as follows:
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where the constant factor [Sm(z /p)] is the best possible. The equivalent integral analogues of (1) and (2) are
as follows:
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Inequalities (1) and (3) are called the Hardy-Hilbert’s inequality and Hardy-Hilbert’s integral inequality,
respectively (see [12, 21]).

The Hardy-Hilbert inequalities and their applications have been studied by many authors in operator
theory. For more information about the Hardy-Hilbert inequalities and its consequences, see [5, 8, 10, 11,
16, 17] and references therein.

Recall that a reproducing kernel Hilbert space (shorty, RKHS) is the Hilbert space H = H(Q) of complex-
valued functions on some set Q such that:

(a) the evaluation functional f — f (A) is continuos for each A € ();

(b) for any A € Q there exists fy € H such that fi(A) # 0.

Then by the classical Riesz representation theorem for each A € Q there exists a unique function k¢, , € H

such that f(A) = < frke A) for all f € H. The function kg , is called the reproducing kernel of the space H.
It is well known that (see [3, 18])

k@)= ) en(New 2)

n=0

for any orthonormal basis {e, (z)},,5( of the space H (Q) . Let’k\,H, 1= ”]]z:—;” denote the normalized reproducing

kernel of the space H (note that by (b), we surely have k; # 0). For a bounded linear operator A on the
RKHS H, its Berezin symbol A is defined by the formula (see [4])

A(A) = (Akyi,kp0,0) , AeQ).

The Berezin symbol is a function that is bounded by the numerical radius of the operator. On the most

familiar RKHS, the Berezin symbol uniquely determines, that is, g()\) = §(A) for all A implies A = B. (For
applications in the various questions of analysis of Berezin symbols see, for instance, [14, 15]).
Berezin set and Berezin number of operator A are defined by (see Karaev [13])

Ber (A) := Range (g) = {E(A) A€ Q}

and
ber (A) = sup {‘Z(A)| de Q},
respectively.
Recall that W (A) := {(A ff): ” f H 5 = 1} is the numerical range of the operator A and

w(A) = sup {[Af, /)] : |f]l,, =1}
is the numerical radius of A. It is trivial that
Ber (A) c W(A) and ber (A) < w (A) < ||A]|

for any A € B8(H). More information about the numerical radius and numerical range can be found, for
example,in[1,2,6,7,9,19, 20].
It is open question in the literature whether the inequalities

ber (A") < (ber (A))", (n > 2)
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and
(ber (A))" < C(ber (A™)), (n<1) 4)
are hold. The questions are partially solved by Garayev et al. [8]. However, this inequalities are not

known for convex functions. So, in this article, we partially solve (4) for convex functions and some special
operators in RKHS.

2. The Main Results

In the following result, we prove an inequality similar to (1) for convex functions and self-adjoint
operators acting on a RKHS H = H(Q).

Theorem 2.1. Let f,g: ] — [0, c0) be convex functions. If p,q > 1, % + % =1, then

F(B() g(A) + f(B 7(B) (1)

(7T )+ 7 (n)))

W=

SFAIEN) + 3 AN (B ) +
( () )+ fr (B) () +

s

sm (1/p)

for any self-adjoint operators A, B € B (H) with spectrum contained in | and all A,n € Q.

Proof. Let ay,a,, b1, by be positive scalars. Then using (1), we obtain

Cllbl albz ﬂzbl azbz Tt p pl/P q ql/q
5t 3 + 3 3 <Sin(n/p)(a1+a) (b +b2) . ®)

Let x, y € . By taking into consideration that f, g > 0 and placing a; = f (x), a2 = f (y), b1 = g (x), b2 = g (v)
in (5), we have

%f(x)g(x) + 3@ + 3F00 + 1) ©

e S OO @ @+ g )

forall x, y € . Putting x = <A7<\:H, A,’]-(\q.(, A> in (6), we have

AR gt NI A0, T ) + 5 F (AR, T a Do®) + 5 F D ARper ) + 3 F0)

< #n/p) (f ’ (<A’I€(H,/\r’l€7—l,}l>) + f (y))l/p (9'7 ((A’k\’H,Ar/k\W,A» +yg (y))w

forall A € Q) and any y € |. Applying the functional calculus for B to the above inequality (since B is
self-adjoint operator), we have

1f<2f<»\>)g(z?fm»+1f AN (9 By, ey + (f(B)kH,,,kw,,>g<A<A>>+ (f (B) g (BY ks gt

<sm(n/p) <(f”( W)+ @) (7 (AW) + ¢ ®)” kw,q,kﬂ,n>

forall A,n € Q.
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This shows that

SAANAW) + 3 FANNT B () + 3 FTB) (1) gA) + 3 BT (B) (1)

— 197
< Sty |07 (A@) + 5 ®)" (¢ (A) + 9" ®) "

From the convexity of f and g, we obtain that
£ (Bhrin ki) < (f BV st Kreg) (or £ (B() < F (B) ()
and
) (<Ban kH n>) < (B) kﬂ N kH n> ( oryg (E(ﬂ)) < !f(g) (77)) :
Thus,
SAANIAW) + 3 AW B () + 3B (1) g(A) + 3 BT (B) (1)
> f(A(A))g(A(/\ ) + f(A(A) )7 (B () + f (B(m) g(A)) + f BYg(B) ().
The convexity of f and g and the power functions x” (r > 1) follow that
F(AW) < fr@) (),
7' (AW) < g7 (A) (1)
Hence
(7 (A) + 2 ®)" (57 () + 97 B)) "
<(FAW+®)" (FT@HN + 7 ®)"

5714

(8)

©)

Since the operators f/F;TA/) (A)+ fP(B) and gWA/) (A) + g7 (B) commute, we get from the arithmetic-geometric

mean inequality that
(FAW -+ ®)" (@AW +g @)
< SFD W+ ®)+ 2 (TAOW -+ B).

Combining the above (9) and (10) we have

[( £ (AW) + 7®) " (¢ (A) + 97 (B))l/qI(n)
< S (F@DW + FB)+ - (A W)+ 75 ().

So, we have desired result from (7), (8) and (10). O

Corollary 2.2. Let f : | = [0, 00) be a convex function. Then we have

[fber (ADF <[ - = [ber (72 )

for any self-adjoint operators A € B (H) with spectrum contained in J.

(10)
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Proof. In particular, for B=A, g = f, u = nand p = g in Theorem 2.1, we obtain
7 —~ 2 1 —
AW <= 7| AW

and hence

AW <[Zr- 2] AW

for all A € Q. Since []‘(E(A))]2 >0and fETA/) (A) =0, we get
—~ 2 12 3 — 12 3
A(A — T — — 2 AN =|l—m— —|b 2 A
[Faw)] <[7” 14]3‘28“ /@) [77T 14] er (£ ()
for all A € Q. This implies that

12 3

L er )T <| = o= |ber (72 ()

for any self-adjoint operators A € B (H) with spectrum contained in J. [0

Theorem 2.3. Let f : ] — [0, 00) be a convex function and A : H(Q)—H (Q) be self-adjoint operator on a RKHS
H(Q) with spectrum contained in |. Then we have

[f(ber (DY < Cher (f7 (A)).
Proof. By using (3), we obtain for p = 2 that

p
(35 + (53] <) 05

Let x, y € J. Since f(x) > 0 for all x € |, by placing a; = f(x),a, = f(y) in (11), we obtain

P P !
(% + @) i (J% * fiy)) ) (Sin &/p)) () + /). (12

By putting x = A’I;HA,’k\y,M in (12), we get
Y P g , , g

Ay, ’
[f(< H; H,A>)+f(3y)] N

f (<A’k\(H,/\r’I€’H,A>) fly) ’
3 i

P — ~
< (sin - /P)) (FP (A s 1)) + £/()

forallA €e Qand any y € J.
Applying the functional calculus to the self-adjoint operator B, we get

[f ((Akpi0,Tep,0)) . (f (B)’IEH,WEH,;)];] N

2 3

F (A, T ) <f<B>?w,ﬁH,p>]p
3 ’ 1

P —_ — —_ —
< (m) (PP Ay kpon ) + (F Bt e )



U. Yamanci et al. / Filomat 31:18 (2017), 5711-5717

and hence
FAW) FBWY  (FAW)  FBWY
[ 2 T3 ]+( 3 T2 ]

T 4 e 5 7D
<5ty (@ + 7B @)

for all self-adjoint operator B and A, y € Q. Since f is convex function, f (B (n) < }(—(\Ej (n)
(orf ({Blegus kp1,0)) < {f (B) kg0 kp4,))- So,

(f(éf ), f(E(u»]” N (f(Z W) | fEw) ]”

2 3 3 4
" TN P e T p
< [f(Azu» .\ f(B; (y)] . (f(A;A)) . f(Bi (y)) _

From the properties of convex function f and power function x” (r > 1), we obtain

(Sm = /p))(f”@' () + 7B ()

e P — —
< (Sin a /p)) (7T )+ 7B ().

Together with (13), (14) and (15), we have

FAQ)  fBW)Y (fAQ)  fBW)Y
[ 2 T3 ]+( 3 "1 ]

T P —~
< (m) (fr @) () + fr (B) ().

Now by replacing A = B, A = u above the inequality

[(g)” + (%)p] [Fam] <2 (Sm = )p fri@ @)

and therefore

a2 i |6+ (5] 7w

for all A € Q. Since [ f (Z ()\))]p > 0and fm) (A) > 0, this inequality implies that

et =2 (3 + (B ] s o

for all self-adjoint operator A and A € Q. This proves the theorem. [
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