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Abstract. In this paper, soft union interior ideals, quasi-ideals and generalized bi-ideals of rings are defined
and their properties are obtained and the interrelations of them are given. Moreover regular, regular duo,
intra-regular and strongly regular rings are characterized in terms of these soft union ideals. This paper is
a following study of [19].

1. Introduction

Probability theory, fuzzy set theory, rough set theory, vague set theory and the interval mathematics
are useful approaches to describe uncertainty. However, each of these theories has its inherent difficulties.
Molodtsov [13] proposed a completely new approach for modeling vagueness and uncertainty, which
is called soft set theory. Since then, many related concepts about soft set operations, have undergone
tremendous studies. Maji et al. [12] presented some definitions on soft sets and Ali et al. [3] introduced
several operations of soft sets and Sezgin and Atagün [14] studied on soft set operations, as well. However,
soft set theory have found its wide-ranging applications in the mean of algebraic structures such as groups [2,
15], semirings [8], rings [1], BCK/BCI-algebras [9–11], BL-algebras [22], near-rings [16] and soft substructures
and union soft substructures [4, 17].

In [19], Sezgin Sezer made a new approach to the classical ring theory via soft set theory with the
concept of soft union rings. Soft union rings, soft union left (right, two-sided) ideals, bi-ideals and soft
union semiprime ideals of rings are defined, their basic properties are obtained and regular, regular duo,
intra-regular and strongly regular rings are characterized by the properties of these soft union ideals in [19].

This paper is a following study of [19]. In this paper, soft union interior ideals, quasi-ideals, generalized
bi-ideals of rings are defined, their basic properties with respect to soft set operations and soft int-uni
product defined in [19] are obtained and the interrelations of them are investigated. Furthermore, regular,
regular duo, intra-regular and strongly regular rings are characterized by the properties of these soft union
ideals.

2. Preliminaries

In this section, we recall some basic notions relevant to rings and soft sets. Throughout this paper, R
denotes a ring. A nonempty subgroup A of R is called a right ideal of R if AR ⊆ A and is called a left ideal of
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R if RA ⊆ A. By two-sided ideal (or simply ideal), we mean a subset of R, which is both a left and right ideal
of R. An additive subgroup (B,+) of R is called a bi-ideal of R if BRB ⊆ B. An additive subgroup (I,+) of
R is called an interior ideal of R if RIR ⊆ X. An additive subgroup (Q,+) of R is called a quasi ideal of R if
QR ∩ RQ ⊆ Q. A subset P of a ring R is called semiprime if ∀a ∈ R, a2

∈ P implies that a ∈ P. A semilattice
is a structure S = (S, .), where “.” is an infix binary operation, called the semilattice operation, such that “.”
is associative, commutative and idempotent. From now on, U refers to an initial universe, E is a set of
parameters, P(U) is the power set of U and A,B,C ⊆ E.

Definition 2.1. ([6, 13]) A soft set fA over U is a set defined by

fA : E→ P(U) such that fA(x) = ∅ if x < A.

Here fA is also called an approximate function. A soft set over U can be represented by the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P(U)}.

It is clear to see that a soft set is a parametrized family of subsets of the set U. Note that the set of all soft
sets over U will be denoted by S(U).

Definition 2.2. [6] Let fA, fB ∈ R(U). Then, fA is called a soft subset of fB and denoted by fA⊆̃ fB, if fA(x) ⊆ fB(x)
for all x ∈ E.

Definition 2.3. [6] Let fA, fB ∈ R(U). Then, union of fA and fB, denoted by fA∪̃ fB, is defined as fA∪̃ fB = fA∪̃B,
where fA∪̃B(x) = fA(x) ∪ fB(x) for all x ∈ E.

Definition 2.4. [6] Let fA, fB ∈ R(U). Then, intersection of fA and fB, denoted by fA∩̃ fB, is defined as fA∩̃ fB = fA∩̃B,
where fA∩̃B(x) = fA(x) ∩ fB(x) for all x ∈ E.

Definition 2.5. [6] Let fA, fB ∈ R(U). Then, ∧-product of fA and fB, denoted by fA∧ fB, is defined as fA∧ fB = fA∧B,
where fA∧B(x, y) = fA(x) ∩ fB(y) for all (x, y) ∈ E × E.

Definition 2.6. [7] Let fA and fB be soft sets over the common universe U and Ψ be a function from A to B. Then,
soft anti image of fA under Ψ, denoted by Ψ?( fA), is a soft set over U by

(Ψ?( fA))(b) =

{ ⋂
{ fA(a) | a ∈ A and Ψ(a) = b}, if Ψ−1(b) , ∅,
∅, otherwise

for all b ∈ B. And soft pre-image (or soft inverse image) of fB under Ψ, denoted by Ψ−1( fB), is a soft set over U by
(Ψ−1( fB))(a) = fB(Ψ(a)) for all a ∈ A.

Definition 2.7. [18] Let fA be a soft set over U and α ⊆ U. Then, lower α-inclusion of fA, denoted by L( fA;α), is
defined as

L( fA : α) = {x ∈ A | fA(x) ⊇ α}.

Definition 2.8. [19] Let fR and 1R be soft sets over the common universe U. Then, soft intersection-union product
fR � 1R is defined by

( fR � 1R)(x) =
⋂

x=

m∑
i=1

aibi

( fR(ai) ∪ 1R(bi))

if x =

m∑
i=1

aibi and aibi , 0 for all 1 ≤ i ≤ m. Otherwise, define

( fR � 1R)(x) = U.
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Here note that if R is a division ring and the multiplicative identity element of R is 1R, then x = x ·1R = 1R ·x,
and so ( fR � 1R)(x) , U for all x ∈ R.

For the sake of brevity, soft intersection-union product is abbreviated by soft int-uni product in what
follows.

Theorem 2.9. [19] Let fR, 1R, hR ∈ R(U). Then,

i) ( fR � 1R) � hR = fR � (1R � hR).

ii) fR � 1R , 1R � fR, generally. However, if R is commutative, then fR � 1R = 1R � fR

iii) fR � (1R∩̃hR) = ( fR � 1R)∩̃( fR � hR) and ( fR∩̃1R) � hR = ( fR � hR)∩̃(1R � hR).

iv) fR � (1R∪̃hR) = ( fR � 1R)∪̃( fR � hR) and ( fR∪̃1R) � hR = ( fR � hR)∪̃(1R � hR).

v) If fR⊆̃1R, then fR � hR⊆̃1R � hR and hR � fR⊆̃hR � 1R.

vi) If tR, lR ∈ S(U) such that tR⊆̃ fR and lR⊆̃1R, then tR � lR⊆̃ fR � 1R.

Definition 2.10. [19] Let X be a subset of S. We denote by SXc the soft characteristic function of the complement X
and define as

SXc (x) =

{
∅, if x ∈ X,
U, if x ∈ S \ X

Theorem 2.11. [19] Let X and Y be nonempty subsets of a ring R. Then, the following properties hold:

i) If Y ⊆ X, then SXc⊆̃SYc .

ii) SXc∩̃SYc = SXc∩Yc , SXc∪̃SYc = SXc∪Yc .

Definition 2.12. [21] A soft set fR over U is called a soft union ring of R, if

i. fR(x + y) ⊆ fR(x) ∪ fR(y)

ii. fR(x) ⊆ fR(−x)

iii. fR(xy) ⊆ fR(x) ∪ fR(y)

for all x, y ∈ R.

Definition 2.13. [21] A soft set fR over U is called a soft union left (right) ideal of R over U if

i. fR(x − y) ⊆ fR(x) ∪ fR(y)

ii. fR(xy) ⊆ fR(y) ( fR(xy) ⊆ fR(x))

for all x, y ∈ R. A soft set over U is called a soft union two-sided ideal (soft union ideal) of R if it is both soft union
left and soft union right ideal of R over U.

Definition 2.14. [19] An SU-ring fR over U is called a soft union bi-ideal of R over U if

fR(xyz) ⊆ fR(x) ∪ fR(z)

for all x, y, z ∈ R.

For the sake of brevity, soft union ring, soft union right (left, two-sided) ideal and soft union bi-ideal are
abbreviated by SU-ring, SU-right (left, two sided) ideal and SU-bi-ideal, respectively.

It is easy to see that if fR(x) = ∅ for all x ∈ R, then fR is an SU-ring (right ideal, left ideal, ideal, bi-ideal)
of R over U. We denote such a kind of SU-ring (right ideal, left ideal, ideal, bi-ideal) by θ̃ [19].
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Lemma 2.15. Let fR be any SU-ring over U. Then, we have the followings:

i) θ̃ � θ̃⊇̃θ̃. (If R is regular, then θ̃ � θ̃ = θ̃).

ii) fR � θ̃⊇̃θ̃ and θ̃ � fR⊇̃θ̃.

iii) fR∪̃θ̃ = fR and fR∩̃θ̃ = θ̃.

Theorem 2.16. [19] Let X be a nonempty subset of a ring R. Then, X is a subring (left, right, two-sided ideal,
bi-ideal) of R if and only if SXc is an SU-ring (left, right, two-sided ideal, bi-ideal) of R.

Proposition 2.17. [19] Let fR be a soft set over U and fR(x − y) ⊆ fR(x) ∪ fR(y) for all x, y ∈ R. Then, we have the
followings:

i) fR is an SU-ring over U if and only if fR � fR⊇̃ fR.

ii) fR is an SU-left (right) ideal of R over U if and only if θ̃ � fR⊇̃ fR ( fR � θ̃⊇̃ fR)

iii) fR is an SU-bi-ideal of R over U if and only if fR � fR⊇̃ fR and fR � θ̃ � fR⊇̃ fR.

Theorem 2.18. [19] For a ring R the following conditions are equivalent:

1) R is regular.

2) fR � 1R = fR∪̃1R for every SU-right ideal fR of R over U and SU-left ideal 1R of R over U.

3. Soft union interior ideals of rings

In this section, soft union interior ideals of rings is defined and their basic properties with respect to soft
operations and soft int-uni product are studied.

Definition 3.1. Let fR be an SU-ring over U. Then, fR is called a soft union interior ideal of R, if

fR(xay) ⊆ fR(a)

for all x, y, a ∈ R.

Corollary 3.2. Let a =

m∑
i=1

xiyizi and fR be an SU-interior ideal over U. Then, fR(a) = fR(
m∑

i=1

xiyizi) ⊆ fR(yi) for all

1 ≤ i ≤ m.

For the sake of brevity, soft union interior ideal is abbreviated by SU-interior ideal in what follows.

Example 3.3. Consider the ring R = Z6 and let U = D2 = {< x, y >: x2 = y2 = e, xy = yx} = {e, x, y, yx} be the
universal set and fR be soft set over U such that

fR(0) = {x}, fR(1) = {e, x, y}, fR(2) = {e, y}, fR(3) = {e, x, yx}, fR(4) = {e, y}, fR(5) = {e, x, y}.

Then, one can easily show that fR is an SU-interior ideal over U.
Now, let U = S3 be the symmetric group. If we construct a soft set 1R over U such that

1R(0) = {(1), (12), (13)}, 1R(1) = {(1)}, 1R(2) = {(1), (12)}, 1R(3) = {(1)}

then,
1R(2 · 2 · 3) = 1R(0) * 1R(2)

hence, 1R is not an SU-interior ideal over U.
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It is easy to see that if fR(x) = ∅ for all x ∈ R, then fR is an SU-interior ideal over U. We denote such a kind
of SU-interior ideal by θ̃. It is obvious that θ̃ = SRc , i.e. θ̃(x) = ∅ for all x ∈ R.

Theorem 3.4. Let fR be a soft over U. Then, fR is an SU-bi-ideal of R over U if and only if fR(x− y) ⊆ fR(x)∪ fR(y),
fR � fR⊇̃ fR and θ̃ � fR � θ̃⊇̃ fR.

Proof. First assume that fR is an SU-interior-ideal of R over U. Since fR is an SU-ring over U, by Theorem
3.4 we have fR(x − y) ⊆ fR(x) ∪ fR(y) and fR � fR⊇̃ fR. Let x ∈ R. In the case, when (θ̃ � fR � θ̃)(a) = u, then it
is obvious that

(θ̃ � fR � θ̃)(a) ⊇ fR(a), thus θ̃ � fR � θ̃⊇̃ fR.

Otherwise, we have

(θ̃ � fR � θ̃)(x) = ((θ̃ � fR) � θ̃)(x)

= {

⋂
x=

m∑
i=1

aibi

(θ̃ � fR)(ai) ∪ θ̃(bi)}

=
⋂

x=

m∑
i=1

aibi

{(
⋂

ai=

mi∑
i=1

aik bik

(θ̃(aik ) ∪ fR(bik ))) ∪ θ̃(bi)}

=
⋂

x=

m′∑
i=1

aibici

fR(bi)

⊆

⋂
x=

m′∑
i=1

aibici

fR(
m′∑
i=1

aibici)

= fR(x)

Thus, θ̃ � fR � θ̃⊇̃ fR. Here, note that if x ,
m∑

i=1

aibi, then (θ̃ � fR)(x) = U, and so (θ̃ � fR � θ̃)(x) = U ⊇ fR(x).

Conversely, assume that θ̃ � fR � θ̃⊇̃ fR. Let x, a, y be any element of R. Then, we have:

fR(xay) ⊆ (θ̃ � fR � θ̃)(xay)

=
⋂

xay=

m∑
i=1

xiyi

{(θ̃ � fR)(xi) ∪ θ̃(yi)}

(1)
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⊆ (θ̃ � fR)(xa) ∪ θ̃(y)

= (θ̃ � fR)(xa) ∪ ∅

=
⋂

xa=

m∑
i=1

niki

{θ̃(ni) ∪ fR(ki)}

⊆ θ̃(x) ∪ fR(a)
= fR(a)

Hence, fR is an SU-interior ideal over U. This completes the proof.

Corollary 3.5. Let fR be a soft set. Then the following conditions are equivalent:

1) fR � θ̃ � fR⊇̃ fR.

2) fR(
m∑

i=1

xiyizi) ⊆ fR(yi) for all 1 ≤ i ≤ m.

Theorem 3.6. A non-empty subset I of a ring R is an interior ideal of R if and only if the soft subset fR defined by

fR(x) =

{
α, if x ∈ R \ I,
β, if x ∈ I

is an SU-interior ideal, where α, β ⊆ U such that α ⊇ β.

Proof. Suppose I is an interior ideal of R and x, y, a, b ∈ R. If a, b ∈ I, then a − b ∈ I. Hence, fR(a − b) =
fR(a) = fR(b) = β and so, fR(a − b) ⊆ fS(a) ∪ fS(b). If a, b < I, then a − b ∈ I or a − b < I. In any case,
fR(a − b) ⊆ fR(a) ∪ fR(b) = α. Now, let a ∈ I, then xay ∈ I. Hence, fR(xay) = fR(a) = β. If a < I, then xay ∈ I or
xay < I. In any case, fR(xay) ⊆ fR(a) = α. Thus, fR is an SU-interior ideal of S.

Conversely assume that fR is an SU-interior ideal of R. Let a, b ∈ I and x, y ∈ R. Then, fR(a − b) ⊆
fR(a) ∪ fR(b) = β. This implies that fR(a − b) = β. Hence, a − b ∈ I. Now, fR(xay) ⊆ fR(a) = β. This implies
that fR(xay) = β. Hence, xay ∈ I and so I is an interior ideal of R.

Theorem 3.7. Let X be a nonempty subset of a ring R. Then, X is an interior ideal of R if and only if SXc is an
SU-interior ideal of R.

Proof. Since

SXc (x) =

{
U, if x ∈ R \ X,
∅, if x ∈ X

and U ⊇ ∅, the rest of the proof follows from Theorem 3.6.

It is obvious that every two-sided ideal of R is an interior ideal of R. Moreover, we have the following:

Proposition 3.8. Let fR be a soft set over U. Then, if fR is an SU-ideal of R over U, fR is an SU-interior ideal of R
over U.

Proof. Let fR be an SU-ideal of R over U and x, y ∈ R. Then,

fR(xyz) = fR((xy)z) ⊆ fR(xy) ⊆ fR(y).

Hence, fR is an SU-interior ideal of R over U.

The following theorem shows that the converse of Proposition 3.8 holds for a regular ring.
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Theorem 3.9. Let fR be a soft set over U, where R is a regular ring. Then, the following conditions are equivalent:

1) fR is an SU-ideal of R over U.

2) fR is an SU-interior ideal of R over U.

Proof. By Proposition 3.8, it suffices to prove that (2) implies (1). Assume that (2) holds. Let a, b be any
elements of R. Then, since R is regular, there exist elements x and y in R such that

a = axa and b = byb.

Then, since fR is an interior ideal of R, we have

fR(ab) = fR((axa)b) = fR((ax)a(b)) ⊆ fR(a),

and

fR(ab) = fR(a(byb)) = fR((a)b(yb)) ⊆ fR(b).

This means that fR is an SU-ideal of R. Thus, (2) implies (1).

Proposition 3.10. Let R be a division ring and fR be a soft set over U. Then, fR is an SU-ideal of R if and only if fR
is an SU-interior ideal of R.

Proof. The necessity is clear by Proposition 3.8. Now let us show the sufficiency. For x, y ∈ R, fR(xy) =
fR(xye) ⊆ fR(y) and fR(xy) = fR(exy) ⊆ fR(x). Thus, fR is an SU-ideal of R.

It is known that a ring R is called left (right) simple if it contains no proper left (right) ideal of R and is called
simple if it contains no proper ideal.

Definition 3.11. [19] A ring R is called soft left (right) union simple if every SU-left (right) ideal of R is a constant
function and is called soft union simple if every SU-ideal of R is a constant function.

Theorem 3.12. [19] For a ring R, the following conditions are equivalent:

1) R is simple.

2) R is soft union simple.

Theorem 3.13. For a regular ring R, the following conditions are equivalent:

1) R is simple.

2) R is soft union simple.

3) Every SU-interior ideal of R is constant function.

Proof. The equivalence of (1) and (2) follows from Theorem 3.12. Assume that (2) holds. Let fR be any
SU-interior ideal of R and a and b be any element of R. Then, since R is simple, it follows that there exist
elements x and y in R such that

a = xby.

Then, since fR is an SU-interior ideal of R, we have

fR(a) = fR(xby) ⊆ fR(b).

One can similarly show that fR(b) ⊆ fR(a). Thus, fR(a) = fR(b). Since a and b be any elements of R, fR is
a constant function and so (2) implies (3). Since every SU-interior ideal of R is an SU-ideal of R by the
regularity of R, (3) implies (2).
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Definition 3.14. [19] A soft set fR over U is called soft union semiprime if for all a ∈ R,

fR(a) ⊆ fR(a2).

Proposition 3.15. Let fR be a soft union semiprime SU-interior ideal of a ring R. Then, fR(an) ⊆ fR(an+1) for all
positive integers n.

Proof. Let n be any positive integer. Then,

fR(an) ⊆ fR(a2n) ⊆ fR(a4n) = fR(a3n−2an+1a) ⊆ fR(an+1).

Proposition 3.16. Let fR and fT be SU-interior ideals over U. Then, fR ∧ fT is an SU-interior ideal of R×T over U.

Proof. Let (x1, y1), (x2, y2), (x3, y2) ∈ R × T. Then,

fR∨T((x1, y1) − (x2, y2)) = fR∨T(x1 − x2, y1 − y2)
= fR(x1 − x2) ∪ fT(y1 − y2)
⊆ ( fR(x1) ∪ fR(x2)) ∪ ( fT(y1) ∪ fT(y2))
= ( fR(x1) ∪ fT(y1)) ∪ ( fR(x2) ∪ fT(y2))
= fR∨T(x1, y1) ∪ fR∨T(x2, y2),

fR∨T((x1, y1)(x2, y2)) = fR∨T(x1x2, y1y2)
= fR(x1x2) ∪ fT(y1y2)
⊆ ( fR(x1) ∪ fR(x2)) ∪ ( fT(y1) ∪ fT(y2))
= ( fR(x1) ∪ fT(y1)) ∪ ( fR(x2) ∪ fT(y2))
= fR∨T(x1, y1) ∪ fR∨T(x2, y2)

and
fS∨T((x1, y1)(x2, y2)(x3, y3)) = fS∨T(x1x2x3, y1y2y3)

= fR(x1x2x3) ∪ fT(y1y2y3)
⊆ fR(x2) ∪ fT(y2)
= fS∨T(x2, y2)

Therefore, fR ∨ fT is an SU-interior ideal of R × T over U.

Proposition 3.17. If fR and hR are SU-interior ideals of R over U, then so is fR∪̃hR.

Proof. Let x, y, z ∈ R. Then, we have

( fR∪̃hR)(x − y) = fR(x − y) ∪ hR(x − y)
⊆ ( fR(x) ∪ fR(y)) ∪ (hR(x) ∪ hR(y))
= ( fR(x) ∪ hR(x)) ∪ ( fR(y) ∪ hR(y))
= ( fR∪̃hR)(x) ∪ ( fR∪̃hR)(y)

( fR∪̃hR)(xy) = fR(xy) ∪ hR(xy)
⊆ ( fR(x) ∪ fR(y)) ∪ (hR(x) ∪ hR(y))
= ( fR(x) ∪ hR(x)) ∪ ( fR(y) ∪ hR(y))
= ( fR∪̃hR)(x) ∪ ( fR∪̃hR)(y)

and

( fR∪̃hR)(xyz) = fR(xyz) ∪ hR(xyz)
⊆ fR(y) ∪ hR(y)

= ( fR∪̃hR)(y)

Therefore, fR∪̃hR is an SU-interior ideal of R over U.
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Proposition 3.18. Let fR be a soft set over U and α be a subset of U such that α ∈ Im( fR), where Im( fR) = {α ⊆ U :
fR(x) = α, f or x ∈ R}. If fR is an SU-interior ideal over U, then L( fR;α) is an interior ideal of R.

Proof. Since fR(a) = α for some x ∈ R, then ∅ , L( fR;α) ⊆ R. Let a, b ∈ L( fR;α) and x, y ∈ R, then fR(a) ⊆ α
and fR(b) ⊆ α. We need to show that a − b ∈ L( fR;α) and xay ∈ L( fR;α) for all a, b ∈ L( fR;α) and x, y ∈ R.
Since fR is an SU-interior ideal of R over U, it follows that fR(a − b) ⊆ fR(a) ∪ fR(b)α and fR(xay) ⊆ fR(a) ⊆ α
implying that a − b ∈ L( fR;α) and xay ∈ L( fR;α). Thus, the proof is completed.

Definition 3.19. Let fR be an SU-interior ideal over U. Then, the interior idealsL( fR;α) are called lower α-interior
ideals of fR.

Proposition 3.20. Let fR be a soft set over U, L( fR;α) be lower α-interior ideals of fR for each α ⊆ U and Im( fR) be
an ordered set by inclusion. Then, fR is an SU-interior ideal of R over U.

Proof. Let a, b ∈ R and fR(a) = α1 and fR(b) = α2. Suppose that α1 ⊆ α2. It is obvious that a ∈ L( fR;α1)
and b ∈ L( fR;α2). Since α1 ⊆ α2, a, b ∈ L( fR;α1) and since L( fR;α) is an interior ideal of R for all α ⊆ U,
it follows that a − b ∈ L( fR;α1) and xay ∈ L( fR;α1). Hence, fR(a − b) ⊆ α1 = α1 ∪ α2 = fR(a) ∪ fR(b), and
fR(xay) ⊆ α1 = fR(a). Thus, fR is an SU-interior ideal of R over U.

Proposition 3.21. Let fR and fT be soft sets over U and Ψ be a ring isomorphism from R to T. If fR is an SU-interior
ideal of R over U, then Ψ?( fR) is an SU-interior ideal of T over U.

Proof. Let t1, t2, t3 ∈ T. Since Ψ is surjective, then there exist r1, r2, r3 ∈ R such that Ψ(r1) = t1, Ψ(r2) = t2,
Ψ(r3) = t3. Then,

(Ψ?( fR))(t1 − t2)
=
⋂
{ fR(r) : r ∈ R,Ψ(r) = t1 − t2}

=
⋂
{ fR(r) : r ∈ R, r = Ψ−1(t1 − t2)}

=
⋂
{ fR(r) : r ∈ R, r = Ψ−1(Ψ(r1 − r2)) = r1 − r2}

=
⋂
{ fR(r1 − r2) : ri ∈ R,Ψ(ri) = ti, i = 1, 2}

⊆
⋂
{ fR(r1) ∪ fR(r2) : ri ∈ R,Ψ(ri) = ti, i = 1, 2}

= (
⋂
{ fR : (r1)r1 ∈ R,Ψ(r1) = t1}) ∪ (

⋂
{ fR(r2) : r2 ∈ R,Ψ(r2) = t2})

= (Ψ?( fR))(t1) ∪ (Ψ?( fR))(t2)

One can similarly show that (Ψ?( fR))(t1t2) ⊆ (Ψ?( fR))(t1) ∪ (Ψ?( fR))(t2) Also

(Ψ?( fR))(t1t2t3)
=
⋂
{ fR(s) : s ∈ R,Ψ(s) = t1t2t3}

=
⋂
{ fR(s) : s ∈ R, s = Ψ−1(t1t2t3)}

=
⋂
{ fR(s) : s ∈ R, s = Ψ−1(Ψ(s1s2s3)) = s1s2s3}

=
⋂
{ fR(s1s2s3) : si ∈ R,Ψ(si) = ti, i = 1, 2, 3}

⊆ (
⋂
{ fR(s2) : s2 ∈ R,Ψ(s2) = t2})

= (Ψ?( fR))(t2)

Hence, Ψ?( fR) is an SU-interior ideal of R over U.

Proposition 3.22. Let fR and fT be soft sets over U and Ψ be a ring homomorphism from R to T. If fT is an
SU-interior ideal of T over U, then Ψ−1( fT) is an SU-interior ideal of R over U.

Proof. Let r1, r2, r3 ∈ R. Then,

(Ψ−1( fT))(r1 − r2) = fT(Ψ(r1 − r2))
= fT(Ψ(r1)Ψr2))
⊆ fT(Ψ(r1)) ∪ fT(Ψ(r2))
= (Ψ−1( fT))(r1) ∪ (Ψ−1( fT))(r2)
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One can similarly show that (Ψ−1( fT))(r1r2) ⊆ (Ψ−1( fT))(r1) ∪ (Ψ−1( fT))(r2). Also

(Ψ−1( fT))(r1r2r3) = fT(Ψ(r1r2r3))
= fT(Ψ(r1)Ψ(r2)Ψ(r3))
⊆ fT(Ψ(r2))
= (Ψ−1( fT))(r2)

Hence, Ψ−1( fT) is an SU-interior ideal over U.

4. Soft union quasi-ideals of rings

In this section, soft union quasi-ideals are defined and their properties as regards soft set operations,
soft int-uni product and certain kinds of soft union ideals are studied.

Definition 4.1. A soft set over U is called a soft union quasi-ideal of R over U if fR(x − y) ⊆ fR(x) ∪ fR(y) and
( fR � θ̃)∪̃(θ̃ � fR)⊇̃ fR.

For the sake of brevity, soft union quasi-ideal is abbreviated by SU-quasi-ideal in what follows.

Proposition 4.2. Every SU-quasi ideal of R is an SU-ring of R.

Proof. Let fR be any SU-quasi-ideal of R. Then, fR(x − y) ⊆ fR(x) ∪ fR(y) and since fR⊇̃θ̃,

fR � fR⊇̃θ̃ � fR and fR � fR⊇̃ fR � θ̃.

Hence,
fR � fR⊇̃(θ̃ � fR)∪̃( fR � θ̃)⊇̃ fR

That is, fR is an SU-ring over U by Proposition 2.17.

Proposition 4.3. Each one-sided SU-ideal of R is an SU-quasi-ideal of R.

Proof. Let fR be an SU-left ideal of R. Then, fR(x − y) ⊆ fR(x) ∪ fR(y) and since θ̃ � fR⊇̃ fR, we have

(θ̃ � fR)∪̃( fR � θ̃)⊇̃θ̃ � fR⊇̃ fR.

Thus, fR is an SU-quasi-ideal of R.

Proposition 4.4. Every SU-quasi-ideal of R is an SU-bi-ideal of R.

Proof. Let fR be an SU-quasi-ideal of R. Then, fR(x − y) ⊆ fR(x) ∪ fR(y),

fR � fR = ( fR � fR)∪̃( fR � fR)⊇̃( fR � θ̃)∪̃(θ̃ � fR)⊇̃ fR

and
fR � θ̃ � fR⊇̃θ̃ � θ̃ � fR⊇̃θ̃ � fR and fR � θ̃ � fR⊇̃ fR � θ̃ � θ̃⊇̃ fR � θ̃

and so fR � θ̃ � fR⊇̃(θ̃ � fR)∪̃( fR � θ̃)⊇̃ fR, as fR is an SU-quasi-ideal of R. Hence,

fR � θ̃ � fR⊇̃ fR.

Thus, fR is an SU-bi-ideal of R by Proposition 2.17.

The following theorem shows that the converse of Proposition 4.4 holds for a regular ring. First, we have
the following lemma:
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Lemma 4.5. Let fR and hR be soft SU-rings (left, (right) ideals, bi-ideals, interior ideals, quasi-ideals) of R over U,
where R is a division ring. Then,

( fR � hR)(x − y) ⊆ ( fR � hR)(x) ∪ ( fR � hR)(y)

for all x, y ∈ R.

Proof. Let fR and hR be soft sets over U and x, y ∈ R. Then,

( fR � hR)(x) ∪ ( fR � hR)(y) =
⋂

x=

m∑
i=1

aibi

( fR(ai) ∪ hR(bi)) ∪
⋂

y=

n∑
i=1

cidi

( fR(ci) ∪ hR(di))

=
⋂

x=

m∑
i=1

aibi

⋂
y=

n∑
i=1

cidi

( fR(ai) ∪ fR(ci) ∪ hR(bi) ∪ hR(di))

⊇

⋂
x+y=

k∑
i=1

xiyi

( fR(xi) ∪ hR(yi))

= ( fR � hR)(x + y)

and

( fR � hR)(−x) =
⋂

−x=

m∑
i=1

aibi

( fR(ai) ∪ hR(bi))

=
⋂

x=

m∑
i=1

(−ai)bi

( fR(ai) ∪ hR(bi))

=
⋂

x=

m∑
i=1

(−ai)bi

( fR(−ai) ∪ hR(bi))

= ( fR � hR)(x)

Thus, the proof is completed.

Theorem 4.6. Let fR be a soft set over U, where R is a regular ring. Then, the following conditions are equivalent:

1) fR is an SU-quasi-ideal of R over U.

2) fR is an SU-bi-ideal of R over U.

Proof. By Proposition 4.4, it suffices to prove that (2) implies (1). Assume that (2) holds. Let fR be an
SU-bi-ideal of R. Then, θ̃ � fR (resp. fR � θ̃) is an SU-left (resp. right) ideal of R. In fact, (θ̃ � fR)(x − y) ⊆
(θ̃ � fR)(x) ∪ (θ̃ � fR)(y) by Lemma 4.5 and θ̃ � (θ̃ � fR)⊇̃θ̃ � fR. It follows by Theorem 2.18 that

( fR � θ̃)∪̃(θ̃ � fR) = ( fR � θ̃) � (θ̃ � fR) = fR � (θ̃ � θ̃) � fR = fR � θ̃ � fR⊇̃ fR

since fR is an SU-bi-ideal of R. Thus, fR is an SU-quasi-ideal of R and (2) implies (1).
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Theorem 4.7. A non-empty subset Q of a ring R is a quasi-ideal of R if and only if the soft subset fR defined by

fR(x) =

{
α, if x ∈ R \Q,
β, if x ∈ Q

is an SU-quasi-ideal, where α, β ⊆ U such that α ⊇ β.

Proof. It is similar to Theorem 3.6.

Theorem 4.8. Let X be a nonempty subset of a ring R. Then, X is a quasi-ideal of R if and only if SXc is an
SU-quasi-ideal of R over U.

Proof. It follows from Theorem 4.7.

Theorem 4.9. Let fR and 1R be any SU-quasi-ideal of R over U. Then, the soft int-uni product fR � 1R is an
SU-bi-ideal of R over U.

Proof. Let fR be an SU-quasi-ideal of R. Then, fR is an SU-bi-ideal by Proposition 4.4. Hence, fR � θ̃ � fR⊇̃ fR.
Moreover,

( fR � 1R)(x − y)⊇̃( fR � 1R)(x) ∪ ( fR � 1R)(y)

and
( fR � 1R) � ( fR � 1R) = ( fR � 1R � fR) � 1R⊇̃( fR � θ̃ � fR) � 1R⊇̃ fR � 1R

and

( fR � 1R) � θ̃ � ( fR � 1R) = ( fR � (1R � θ̃) � fR) � 1R⊇̃( fR � (θ̃ � θ̃) � fR) � 1R⊇̃( fR � θ̃ � fR) � 1R⊇̃ fR � 1R.

Thus, it follows that fR � 1R is an SU-bi-ideal of R over U.

Corollary 4.10. Let R be a regular ring and fR, 1R be any SU-quasi-ideals of R over U. Then, fR � 1R is an
SU-quasi-ideal of R over U.

Proof. Follows from Theorem 4.6 and Theorem 4.9.

Proposition 4.11. Let fR be any SU-right ideal of R and 1R be any SU-left ideal of R. Then, fR∪̃1R is an SU-quasi-
ideal of R.

Proof. Let fR be any SU-right ideal of R and 1R be any SU-left ideal of R. Then, one can easily show that
( fR∪̃1R)(x − y)⊇̃ fR(x) ∪ 1R(y) as in the proof of Proposition 3.17. Moreover,

(( fR∪̃1R) � θ̃)∪̃(θ̃ � ( fR∪̃1R))⊇̃( fR � θ̃)∪̃(θ̃ � 1R)⊇̃ fR∪̃1R.

Proposition 4.12. Let R be a regular ring, fR be any SU-right ideal of R and 1R be any SU-left ideal of R. Then,
fR � 1R is an SU-quasi-ideal of R.

Proof. Let R be a regular ring and fR be an SU-right ideal of R and 1R be an SU-left ideal of R. It follows by
Proposition 4.11 that fR∪̃1R is an SU-quasi-ideal of R. Since R is regular,

fR � 1R = fR∪̃1R

by Theorem 2.18. Thus, fR � 1R is an SU-quasi-ideal of R.

Proposition 4.13. Let fR and 1R be any SU-quasi-ideals of R. Then, fR∪̃1R is an SU-quasi-ideal of R.
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Proof. Let fR and 1R be any SU-quasi-ideals of R. Then, one can easily show that ( fR∪̃1R)(x− y)⊇̃ fR(x)∪1R(y)
as in the proof of Proposition 3.17. Also,

(( fR∪̃1R) � θ̃)∪̃(θ̃ � ( fR∪̃1R))⊇̃( fR � θ̃)∪̃(θ̃ � fR)⊇̃ fR

and
(( fR∪̃1R) � θ̃)∪̃(θ̃ � ( fR∪̃1R))⊇̃(1R � θ̃)∪̃(θ̃ � 1R)⊇̃1R.

Thus,
(( fR∪̃1R) � θ̃)∪̃(θ̃ � ( fR∪̃1R))⊇̃ fR∪̃1R.

Proposition 4.14. Let fR be a soft set over U and α be a subset of U such that α ∈ Im( fR). If fR is an SU-quasi-ideal
of R over U, then L( fR;α) is a quasi-ideal of R.

Proof. Since fR(x) = α for some x ∈ R, then ∅ , L( fR;α) ⊆ R. Let a ∈ (R · L( fR;α) ∪ L( fR;α) · R). Then, there
exist x, y ∈ L( fR;α) and s, r ∈ R such that

a = sx = yr.

Thus, fR(x) ⊆ α and fR(y) ⊆ α. Hence, fR(x− y) ⊆ fR(x)∪ fR(y) ⊆ α, implying that x− y ∈ L( fR;α). Moreover,

(θ̃ � fR)(a) = {

⋂
a=

m∑
i=1

cidi

{θ̃(ci) ∪ fR(di)}

⊆ θ̃(s) ∪ fR(x)
= fR(x)
⊆ α

and

( fR � θ̃)(a) = {

⋂
a=

m∑
i=1

kiti

{ fR(ki) � θ̃(ti)}

⊆ fR(y) ∪ θ̃(r)
= fR(y)
⊆ α

Since fR is an SU-quasi-ideal of R, we have

fR(a) ⊆ (θ̃ � fR)(a) ∪ ( fR � θ̃)(a) ⊆ α,

thus a ∈ L( fR;α). This shows that L( fR;α) is a quasi-ideal of R.

Definition 4.15. Let fR be an SU-quasi-ideal of R over U. Then, the quasi-ideals L( fR;α) are called lower α-quasi-
ideals of fR.

Proposition 4.16. Let fR be any SU-quasi-ideal of a commutative ring R and a be any element of A. Then,

fR(an) ⊆ fR(an+1)

for every positive integer n.
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Proof. For any positive integer n, we have

( fR � θ̃)(an+1) =
⋂

an+1=

m∑
i=1

xiyi

( fR(xi) ∪ θ̃(yi))

⊆ fR(an) ∪ θ̃(a)
= fR(an).

Similarly,

(θ̃ � fR)(an+1) ⊆ fR(an).

Thus, since fR is an SU-quasi-ideal of R

fR(an+1) ⊆ (( fR � θ̃)∪̃(θ̃ � fR))(an+1)

= ( fR � θ̃)(an+1) ∪ (θ̃ � fR))(an+1)
⊆ fR(an) ∪ fR(an)
= fR(an)

This completes the proof.

5. Soft union generalized bi-ideals of rings

In this section, soft union generalized bi-ideals are defined and their properties as regards soft set
operations and soft int-uni product are studied.

Definition 5.1. A soft set over U is called a soft union generalized bi-ideal of R over U if fR(x − y) ⊆ fR(x) ∪ fR(y)
and fR(xyz) ⊆ fR(x) ∪ fR(z) for all x, y, z ∈ R.

For the sake of brevity, soft union generalized bi-ideal is abbreviated by SU-generalized bi-ideal in what
follows.

It is clear that every SU-bi-ideal of R is an SU-generalized bi-ideal of R, but the converse of this statement
does not hold in general. The following theorem shows that the converse of this holds for a regular ring.

Proposition 5.2. Every SU-generalized bi-ideal of a regular ring is an SU-bi-ideal of R.

Proof. Let fR be an SU-generalized bi-ideal of R and let a and b be any element of R. Then, since R is regular,
there exists an element x ∈ R such that b = bxb. Thus, we have

fR(ab) = fR(a(bxb)) = fR(a(bx)b) ⊆ fR(a) ∪ fR(b).

This implies that fR is an SU-ring of R and so fR is an SU-bi-ideal of R.

Theorem 5.3. Let fR be a soft set over U. Then, fR is an SU-generalized bi-ideal of R over U if and only if
fR(x − y) ⊆ fR(x) ∪ fR(y) and fR � θ̃ � fR⊇̃ fR.
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Proof. First assume that fR is an SU-generalized bi-ideal of R over U. Then, fR(x − y) ⊆ fR(x) ∪ fR(y). Now,
let x ∈ R. In the case, when ( fR � θ̃ � fR)(x) = U, then it is clear that fR � θ̃ � fR⊇̃ fR. Otherwise, we have

( fR � θ̃ � fR)(x) = [( fR � θ̃) � fR](x)

=
⋂

x=

m∑
i=1

aibi

[( fR � θ̃)(ai) ∪ fR(bi)]

=
⋂

x=

m∑
i=1

aibi

[(
⋂

ai=

mi∑
i=1

aik bik

( fR(aik ) ∪ θ̃(bik ) ∪ fR(bi)]

=
⋂

x=

m′∑
i=1

aibici

( fR(ai) ∪ fR(ci))

⊇

⋂
x=

m′∑
i=1

aibici

fR(
m′∑
i=1

aibici)

= fR(x)

Hence, fR � θ̃ � fR⊇̃ fR. Here, note that if x ,
m∑

i=1

aibi, then ( fR � θ̃)(x) = U, and so, ( fR � θ̃ � fR)(x) = U ⊇ fR(x).

For the converse, assume that fR(x − y) ⊆ fR(x) ∪ fR(y) and fR � θ̃ � fR⊇̃ fR. Let x, y, z ∈ R. Then, since
fR � θ̃ � fR⊇̃ fR, we have

fR(xyz) ⊆ ( fR � θ̃ � fR)(xyz)

= ( fR � (θ̃ � fR))(xyz)

=
⋂

xyz=

m∑
i=1

xiyi

fR(xi) ∪ (θ̃ � fR)(yi)

⊆ fR(x) ∪ (θ̃ � fR)(yz)

= fR(x) ∪ (
⋂

yz=

m∑
i=1

piqi

θ̃(pi) ∪ fR(qi))

⊆ fR(x) ∪ (θ̃(y) ∪ fR(z))
= fR(x) ∪ (∅ ∪ fR(z))
= fR(x) ∪ fR(z)

Thus, fR is an SU- generalized bi-ideal of R over U. This completes the proof.

Corollary 5.4. Let fR be a soft set. Then the following conditions are equivalent:

1) fR � θ̃ � fR⊇̃ fR.
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2) fR(
m∑

i=1

xiyizi) ⊆ fR(xi) ∪ fR(zi) for all 1 ≤ i ≤ m.

Theorem 5.5. A non-empty subset G of a ring R is a generalized bi-ideal of R if and only if the soft subset fR defined
by

fR(x) =

{
α, if x ∈ R \ G,
β, if x ∈ G

is an SU-generalized bi-ideal, where α, β ⊆ U such that α ⊇ β.

Theorem 5.6. Let X be a nonempty subset of a ring R. Then, X is a generalized bi-ideal of R if and only if SXc is an
SU-generalized bi-ideal of R over U.

It is known that every left (right, two sided) ideal of a ring R is a bi-ideal of R. Moreover, we have the
following:

Theorem 5.7. Every SU-left (right, two sided) ideal of a ring R over U is an SU-generalized bi-ideal of R over U.

Proof. Let fR be an SU-left (right, two sided) ideal of R over U and x, y, z ∈ R. Then,

fR(xyz) ⊆ fR((xy)z) ⊆ fR(z) ⊆ fR(x) ∪ fR(z)

Thus, fR is an SU-generalized bi-ideal of R.

Theorem 5.8. Let fR be any soft subset of a ring R and 1R be any SU-bi-ideal of R over U. Then, the soft int-uni
products fR � 1R and 1R � fR are SU-generalized bi-ideals of R over U.

Proof. The proof is given for fR � 1R. One can easily show that ( fR � 1R)(x − y)⊆̃( fR � 1R)(x) ∪ ( fR � 1R)(y) for
all x, y ∈ R as shown in the proof of Lemma 4.5. Moreover,

( fR � 1R) � θ̃ � ( fR � 1R) = fR � (1R � (θ̃ � fR) � 1R)

⊇̃ fR � (1R � θ̃ � 1R)

⊇̃ fR � 1R

It follows that fR � 1R is an SU-generalized bi-ideal of R over U. It can be seen in a similar way that 1R � fR
is an SU-generalized bi-ideal of R over U. This completes the proof.

Proposition 5.9. Let fR and fT be SU-generalized bi-ideals over U. Then, fR ∨ fT is an SU-generalized bi-ideal of
R × T over U.

Proposition 5.10. If fR and hR are two SU-generalized bi-ideals of R over U, then so is fR∪̃hR of R over U.

Proposition 5.11. Let fR be a soft set over U and α be a subset of U such that α ∈ Im( fR). If fR is an SU-generalized
bi-ideal of R over U, then L( fR;α) is a generalized bi-ideal of R.

Definition 5.12. If fR is an SU-generalized bi-ideal of R over U, then generalized bi-ideals L( fR;α) are called lower
α generalized bi-ideals of fR.

Proposition 5.13. Let fR be a soft set over U, L( fR;α) be lower α generalized bi-ideals of fR for each α ⊆ U and
Im( fR) be an ordered set by inclusion. Then, fR is an SU-generalized bi-ideal of R over U.

Proposition 5.14. Let fR and fT be soft sets over U and Ψ be a ring isomorphism from R to T. If fR is an
SU-generalized bi-ideal of R over U, then so is Ψ( fR) of T over U.

Proposition 5.15. Let fR and fT be soft sets over U and Ψ be a ring homomorphism from R to T. If fT is an
SU-generalized bi-ideal of T over U, then so is Ψ−1( fT) of R over U.
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6. Regular rings

In this section, regular ring is characterized in terms of SU-interior ideals, SU-quasi-ideals and SU-
generalized-bi-ideals.

Proposition 6.1. [5] For a ring R, the following conditions are equivalent:

1) R is regular.

2) RL = R ∩ L for every right ideal R and left ideal L of R.

3) ARA = A for every quasi-ideal A of R.

Theorem 6.2. For a ring R, the following conditions are equivalent:

1) R is regular.

2) fR = fR � θ̃ � fR for every SU-generalized bi-ideal fR of R over U.

3) fR = fR � θ̃ � fR for every SU-bi-ideal fR of R over U.

4) fR = fR � θ̃ � fR for every SU-quasi-ideal fR of R over U.

Proof. First assume that (1) holds. Let fR be any SU-generalized bi-ideal fR of R over U and R be any element
of R. Then, since R is regular, there exists an element x ∈ R such that s = sxs. Thus, we have;

( fR � θ̃ � fR)(s) = [( fR � θ̃) � fR](s)

=
⋂

s=

m∑
i=1

aibi

[( fR � θ̃)(ai) ∪ fR(bi)]

⊆ ( fR � θ̃)(sx) ∪ fR(s)

=
⋂

sx=

m∑
i=1

niki

{( fR(ni) ∪ θ̃(ki)} ∪ fR(s)

⊆ ( fR(s) ∪ θ̃(x)) ∪ fR(s)
= fR(s)

and so, we have fR� θ̃� fR⊆̃ fR. Since fR is an SU-generalized bi-ideal of R, fR� θ̃� fR⊇̃ fR. Thus, fR� θ̃� fR = fR
which means that (1) implies (2).

(2) implies (3) and (3) implies (4) is obvious. Assume that (4) holds. In order to show that R is regular,
we need to illustrate that ARA = A for every quasi-ideal A of R. Let A be any quasi-ideal of R. Then, since

ARA ⊆ A(RR) ∪ (RR)A ⊆ AR ∪ RA ⊆ A,

ARA ⊆ A. Therefore, it is enough to show that A ⊆ ARA. Conversely, let a ∈ A and a < ARA. Then, by
Theorem 5.6, the soft characteristic function SAc of A is an SU-quasi-ideal of S. Thus, (SAc )(a) = ∅. Since
a < ASA, this means that there do not exist x, z ∈ A and y ∈ R such that a = xyz. Since θ̃ is an SU-quasi ideal
of S, we have,

(SAc � θ̃ � SAc )(a) = U

But this is a contradiction. Hence A = ARA. It follows by Proposition 3.13 that R is regular, so (4) implies
(1).
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Theorem 6.3. For a ring R the following conditions are equivalent:

1) R is regular.

2) fR∪̃1R = fR � 1R � fR for every SU-quasi-ideal fR of R and SU-ideal 1R of R over U.

3) fR∪̃1R = fR � 1R � fR for every SU-quasi-ideal fR of R and SU-interior ideal 1R of R over U.

4) fR∪̃1R = fR � 1R � fR for every SU-bi-ideal fR of R and SU-ideal 1R of R over U.

5) fR∪̃1R = fR � 1R � fR for every SU-bi-ideal fR of R and SU-interior ideal 1R of R over U.

6) fR∪̃1R = fR � 1R � fR for every SU-generalized bi-ideal fR of R and SU-ideal 1R of R over U.

7) fR∪̃1R = fR � 1R � fR for every SU-generalized bi-ideal fR of R and SU-interior ideal 1R of R over U.

Proof. First assume that (1) holds. Let fR be any SU-generalized bi-ideal and 1R be any SU-interior ideal of
R over U. Then,

fR � 1R � fR⊇̃ fR � θ̃ � fR⊇̃ fR

and
fR � 1R � fR⊇̃θ̃ � 1R � θ̃⊇̃1R

so fR � 1R � fR⊇̃ fR∪̃1R. To show that fR∪̃1R⊇̃ fR � 1R � fR holds, let s be any element of R. Since R is regular,
there exists an element x in R such that

s = sxs (s = sx(sxs))

Since 1R is an SU-interior ideal of R, we have

( fR � 1R � fR)(s) = [ fR � (1R � fR)](s)

=
⋂

s=

m∑
i=1

niti

[ fR(ni) ∪ (1R � fR)(ti)]

⊆ fR(s) ∪ (1R � fR)(xsxs)

= fR(s) ∪ {
⋂

xsxs=

m∑
i=1

yizi

[1R(yi) ∪ fR(zi)]}

= fR(s) ∪ (1R(xsx) ∪ fR(s))
⊆ fR(s) ∪ 1R(s) ∪ fR(s)
⊆ fR(s) ∪ 1R(s)

= ( fR∪̃1R)(s)

so we have fR∪̃1R⊆̃ fR � 1R � fR. Thus we obtain that fR∪̃1R = fR � 1R � fR, hence (1) implies (7).
It is clear that (7) implies (5), (5) implies (3), and that (3) implies (2). Also, (7) implies (6), (6) implies (4)

and (4) implies (2) is obvious.
Assume that (2) holds. In order to show that R is regular, it is enough to show that fR = fR � θ̃ � fR for

all SU-quasi-ideal fR of R over U by Theorem 6.2. Since θ̃ is an SU-ideal of R, we have

fR = fR∪̃θ̃ = fR � θ̃ � fR.

Thus, R is regular and (2) implies (1). This completes the proof.

Theorem 6.4. For a ring R the following conditions are equivalent:
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1) R is regular.

2) fR∪̃1R ⊇ fR � 1R for every SU-quasi-ideal fR of R and SU-left ideal 1R of R over U.

3) fR∪̃1R ⊇ fR � 1Rfor every SU-bi-ideal fR of R and SU-left ideal 1R of R over U.

4) fR∪̃1R ⊇ fR � 1R for every SU-generalized bi-ideal fR of R and SU-left ideal 1R of R over U.

Proof. First assume that (1) holds. Let fR be any SU-generalized bi-ideal and 1R be any SU-left ideal of R
over U. Let s be any element of R. Then, since R is regular, there exists an element x in R such that s = sxs.
Thus, we have

( fR � 1R)(s) =
⋂

s=

m∑
i=1

aibi

( fR(ai) ∪ 1R(bi))

⊆ fR(s) ∪ 1R(xs)
⊆ ( fR(s) ∪ 1R(s))

= ( fR∪̃1R)(s)

Thus, fR � 1R⊆̃ fR∪̃1R. Hence, we obtain that (1) implies (4).
It is clear that (4) implies (3), (3) implies (2). Assume that (2) holds. Since fR∪̃1R⊇̃ fR � 1R always holds

for every SU-right ideal of R is an SU-quasi-ideal of R, we have fR∪̃1R = fR � 1R for every SU-right ideal fR
and SU-left ideal 1R of R. Thus, it follows by Theorem 2.18 that R is regular and (2) implies (1).

Theorem 6.5. For a ring R the following conditions are equivalent:

1) R is regular.

2) hR∪̃ fR∪̃1R⊇̃hR � fR � 1R for every SU-right ideal hR, every SU-quasi-ideal fR and every SU-left ideal 1R of R.

3) hR∪̃ fR∪̃1R⊇̃hR � fR � 1R for every SU-right ideal hR, every SU-bi-ideal fR and every SU-left ideal 1R of R.

4) hR∪̃ fR∪̃1R⊇̃hR � fR � 1R for every SU-right ideal hR, every SU-generalized bi-ideal fR and every SU left-ideal 1R
of R.

Proof. Assume that (1) holds. Let hR, fR and 1R be any SU-right ideal, SU-generalized bi-ideal and SU-left
ideal of R, respectively. Let a be any element of R. Since R is regular, there exists an element x in R such
that a = axa. Hence, we have:

(hR � fR � 1R)(a) = [hR � ( fR � 1R)](a)

=
⋂

a=

m∑
i=1

yizi

[hR(yi) ∪ ( fR � 1R)(zi)]

⊆ hR(ax) ∪ ( fR � 1R)(a)

= hR(ax) ∪ {
⋂

a=

m∑
i=1

piqi

[ fR(pi) ∪ 1R(qi)]}

⊆ hR(a) ∪ ( fR(a) ∪ 1R(xa))
⊆ hR(a) ∪ ( fR(a) ∪ 1R(a))

= (hR∪̃ fR∪̃1R)(a)
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so we have hR � fR � 1R⊆̃hR∪̃ fR∪̃1R. Thus, (1) implies (2).
It is clear that (4) implies (3), (3) implies (2). Assume that (2) holds. Let hR and 1R be any SU-right ideal

and SU-left ideal of R, respectively. It is obvious that

hR � 1R⊇̃hR∪̃1R.

Since θ̃ itself is an SU-quasi-ideal of R, by assumption we have:

hR∪̃1R = hR∪̃θ̃∪̃1R⊇̃hR � θ̃ � 1R⊇̃hR � 1R.

It follows that hR∪̃1R⊇̃hR � 1R for every SU-right ideal hR and SU-left ideal 1R of R. It follows by Theorem
2.18 that R is regular. Hence, (2) implies (1). This completes the proof.

Proposition 6.6. [19] A ring R is regular if and only if every SU-left (right, two-sided) ideal of R is idempotent.

Proposition 6.7. Let R be a regular ring and fR be an SU-quasi-ideal of R. Then,

(θ̃ � fR)∪̃( fR � θ̃) = fR.

Proof. Let fR be any SU-quasi-ideal of R. Then, (θ̃ � fR)∪̃( fR � θ̃)⊇̃ fR. Thus, it suffices to show that
fR⊇̃(θ̃ � fR)∪̃( fR � θ̃). One can easily show that fR∪̃(θ̃ � fR) is an SU-left ideal of R. In fact,

θ̃ � ( fR∪̃(θ̃ � fR)) = (θ̃ � fR)∪̃(θ̃ � (θ̃ � fR)) = (θ̃ � fR)∪̃((θ̃ � θ̃) � fR) = (θ̃ � fR)∪̃(θ̃ � fR) = θ̃ � fR ⊆ fR∪̃(θ̃ � fR).

And ( fR∪̃(θ̃ � fR))(x − y) ⊆ ( fR∪̃(θ̃ � fR))(x) ∪ ( fR∪̃(θ̃ � fR))(y). Since R is regular, every SU-left (right) ideal
of R is idempotent by Proposition 6.6. Thus, we have

fR⊇̃ fR∪̃(θ̃ � fR) = [ fR∪̃(θ̃ � fR)] � [ fR∪̃(θ̃ � fR)]

= {[( fR∪̃(θ̃ � fR)] � fR}∪̃{[( fR∪̃(θ̃ � fR)] � (θ̃ � fR)}

= {(( fR � fR)∪̃((θ̃ � fR) � fR)}∪̃{(( fR � (θ̃ � fR))∪̃((θ̃ � fR) � (θ̃ � fR)}

= {(( fR � fR)∪̃(θ̃ � ( fR � fR))}∪̃{(( fR � (θ̃ � fR))∪̃((θ̃ � fR)2
}

⊇̃ ((θ̃ � fR)∪̃(θ̃ � fR))∪̃((θ̃ � (θ̃ � fR))∪̃(θ̃ � fR)2)(since fR � fR⊇̃ fR)

⊇̃ (θ̃ � fR)∪̃(θ̃ � fR)∪̃(θ̃ � fR)∪̃(θ̃ � fR)2(since(θ̃ � (θ̃ � fR))⊇̃θ̃ � fR)

⊇̃ θ̃ � fR

that is to say fR⊇̃θ̃ � fR. Similarly, one can show that fR⊇̃ fR � θ̃. Thus, fR⊇̃(θ̃ � fR)∪̃( fR � θ̃) and so,

(θ̃ � fR)∪̃( fR � θ̃) = fR.

Theorem 6.8. Let fR be a soft set and R be a regular ring. Then, the following conditions are equivalent:

1) fR is an SU-quasi-ideal of R.

2) fR may be presented in the form fR = 1R � hR, where 1R is an SU-right ideal and hR is an SU-left ideal of R.

Proof. Assume that (1) holds. Since R is regular, it follows by Theorem 6.2 that fR = fR � θ̃ � fR, where fR is
an SU-quasi-ideal of R. Thus,

fR = fR � θ̃ � fR = fR � (θ̃ � θ̃) � fR = ( fR � θ̃) � (θ̃ � fR)

Since fR � θ̃ is an SU-right ideal of R and θ̃ � fR is an SU-right ideal of R, (1) implies (2).
Conversely, assume that fR = 1R � hR, where 1R is an SU-right ideal and hR is an SU-left ideal of R. Then,

by Proposition 4.11, 1R � hR is an SU-quasi-ideal of R.
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Proposition 6.9. Let R be a regular ring and fR be an SU-quasi-ideal of R. Then, ( fR)2 = ( fR)3.

Proof. Let R be a regular ring and fR be an SU-quasi-ideal of R. Then, by Corollary 4.10, ( fR)2 is an
SU-quasi-ideal of R and by Theorem 6.2,

( fR)2 = ( fR)2
� θ̃ � ( fR)2 = fR � fR � θ̃ � fR � fR = fR � ( fR � θ̃ � fR) � fR = fR � fR � fR = ( fR)3

7. Regular duo rings

In this section, a left (right) duo ring is characterized in terms of SU-ideals. A ring R is called left (right)
duo if every left (right) ideal of R is a two-sided ideal of R. A ring R is duo if it is both left and right duo.

Definition 7.1. A ring R is called soft left (right) duo if every SU-left (right) ideal of R is an SU-ideal of R and is
called soft duo, if it is both soft left and soft right duo.

Theorem 7.2. [19] For a regular ring R, the following conditions are equivalent:

1) R is duo.

2) R is soft duo.

Theorem 7.3. [20] For a ring R, the following conditions are equivalent:

1) R is a regular duo ring.

2) A ∩ B = AB for every left ideal A and every right ideal B of R.

3) Q2 = Q for every quasi-ideal of R. (That is, every quasi-ideal is idempotent.)

4) EQE = E ∩Q for every ideal E and every quasi-ideal Q of R.

Theorem 7.4. For a ring R, the following conditions are equivalent:

1) R is a regular duo ring.

2) R is a regular soft duo ring.

3) fR � 1R = fR∪̃1R for all SU-bi-ideals fR and 1R of R.

4) fR � 1R = fR∪̃1R for all SU-bi-ideal fR and for all SU-quasi-ideal 1R of R.

5) fR � 1R = fR∪̃1R for all SU-bi-ideal fR and and for all SU-right ideal 1R of R

6) fR � 1R = fR∪̃1R for all SU-quasi-ideal fR and for all SU-bi-ideal 1R of R.

7) fR � 1R = fR∪̃1R for all SU-quasi-ideals fR and 1R of R.

8) fR � 1R = fR∪̃1R for all SU-quasi-ideal fR and for all SU-right ideal 1R of R.

9) fR � 1R = fR∪̃1R for all SU-left ideal fR and for all SU-bi-ideal 1R of R.

10) fR � 1R = fR∪̃1R for all SU-left ideal fR and for all SU-right ideal 1R of R.

11) fR �1R = fR∪̃1R and hS � kS = hS∪̃kS for all SU-right ideals fR and 1R of R and for all SU-left ideal hS and kS of R.

12) Every SU-quasi-ideal of R is idempotent.
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Proof. The equivalence of (1) and (2) follows from Theorem 7.3. Assume that (2) holds. Let fR and 1R be
any SU-bi-ideals of R. Then, fR is an SU-right ideal of R and 1R is an SU-left ideal of R. Since R is regular,

fR � 1R = fR∪̃1R

Thus, (2) implies (3). It is clear that (3) implies (4), (4) implies (5), (5) implies (8), (8) implies (11), (11) implies
(3), (3) implies (6), (6) implies (7), (7) implies (8) and (6) implies (9), (9) implies (10), (10) implies (11).

Assume that (11) holds. Let A and B be any left ideal and right ideal of R, respectively. Let a be any
element of A ∩ B and a < AB. Then, a ∈ A and a ∈ B and there do not exist x ∈ A and y ∈ B such that a = xy.
Since SAc and SBc is an SU-left ideal and SU-right ideal of S, respectively, we have

SAc (a) = SBc (a) = ∅.

and
(SAc � SBc )(a) = U

But this is a contradiction, so a ∈ AB. Thus, A ∩ B ⊆ AB. For the converse inclusion, let a be any element of
AB and a < A ∩ B. Then, there exist y ∈ A and z ∈ B such that a = yz. Thus,

(SAc∪̃SBc )(a) = U

and

(SAc � SBc )(a) =
⋂

a=

k∑
i=1

mini

(SAc (mi) ∪ SBc (ni)) ⊆ (SAc (y) ∪ SBc (z)) = ∅.

Hence, (SAc �SBc )(a) = ∅. But this is a contradiction. This implies that a ∈ A∩ B and that AB ⊆ A∩ B. Thus,
we have AB = A∩ B. It follows by Theorem 7.3 that R is a regular duo ring. Thus (11) implies (1). It is clear
that (7) implies (12) by taking 1R = fR.

Conversely, assume that (12) holds. Let Q be any quasi-ideal of S and a be any element of Q and a < QQ.
Then, SQc is an SU-quasi-ideal of S. Thus, we have SQc (a) = ∅ and since there do not exist y, z ∈ Q such that
a = yz,

(SQc � SQc )(a) = U

But this is a contradiction. Hence, we have a ∈ Q2 and Q ⊆ Q2. Since the converse inclusion always holds,
Q = Q2. It follows by Theorem 7.3 that R is a regular duo ring and that (12) implies (1). This completes the
proof.

Theorem 7.5. For a ring R, the following conditions are equivalent:

1) R is a regular duo ring.

2) fR � 1R � fR = fR∪̃1R for every SU-ideal fR and every SU-bi-ideal 1R of R.

3) fR � 1R � fR = fR∪̃1R for every SU-ideal fR and every SU-quasi-ideal 1R of R.

Proof. First assume that (1) holds. Let fR and 1R be any SU-bi-ideal and any SU-ideal of R, respectively.
Then, we have

fR � 1R � fR⊇̃( fR � θ̃) � θ̃ = fR � (θ̃ � θ̃)⊇̃ fR � θ̃⊇̃ fR

On the other hand, since R is regular and duo, fR is an SU-ideal of R. Hence, we have

fR � 1R � fR⊇̃(θ̃ � 1R) � θ̃⊇̃1R � θ̃⊇̃1R

and so
fR � 1R � fR⊇̃ fR∪̃1R
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In order to show the converse inclusion, let a be any element of R. Then, since R is regular, there exists an
element x in R such that

a = axa = (axa)xa

Thus, we have

( fR � 1R � fR)(a) = [ fR � (1R � fR)](a)

=
⋂

a=

n∑
i=1

xiyi

[ fR(xi) ∪ (1R � fR)(yi)]

⊆ fR(ax) ∪ (1R � fR)(axa)

= fR(ax) ∪ {
⋂

axa=

n∑
i=1

piqi

[1R(pi) � fR(qi)]}

⊆ fR(ax) ∪ (1R(a) ∪ fR(xa))
⊆ fR(a) ∪ (1R(a) ∪ fR(a))
= fR(a) ∪ 1R(a)

= ( fR∪̃1R)(a)

and so fR � 1R � fR⊆̃ fR∪̃1R Thus, we obtain that

fR � 1R � fR = fR∪̃1R.

Hence, (1) implies (2). It is clear that (2) implies (3).
Assume that (3) holds. Let E and Q any two-sided ideal and quasi-ideal of S, respectively and a be any

element of E ∩ Q and a < EQE. Then, a ∈ E and a ∈ Q and there do not exist x, z ∈ E and y ∈ Q such that
a = xyz. Since SEc and SQc is an SU-ideal and SU-quasi-ideal of S, respectively, we have

SEc (a) = SQc (a) = ∅.

and
(SEc � SQc � SEc )(a) = U

But, this is a contradiction and so a ∈ EQE. Thus, E ∩ Q ⊆ EQE. For the converse inclusion, let a be any
element of EQE and a < E ∩Q. Then, there exist x, z ∈ E and y ∈ Q such that a = xyz. Thus,

(SEc∪̃SQc )(a) = U

and
(SEc � SQc � SEc )(a) = ∅

But this is a contradiction and so a ∈ E ∩ Q. Thus, EQE ⊆ E ∩ Q and so EQE = E ∩ Q. It follows from
Theorem 7.3 that R is regular duo. Hence, (3) implies (1). This completes the proof.

8. Intra-regular rings

In this section, an intra-regular ring is characterized in terms of SU-interior ideals, SU-quasi-ideals and
SU-generalized-bi-ideals. A ring R is called intra-regular [20] if for every element a of R there exist elements
xi and yi in R such that

a =

n∑
i=1

xia2yi =

n∑
i=1

(xia)(ayi).
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Proposition 8.1. 4.4 For a soft set fR of an intra-regular ring R, the following conditions are equivalent:

1) fR is an SU-ideal of R.

2) fR is an SU-interior ideal of R.

Proof. (1) implies (2) is clear. Assume that (2) holds. Let a and b be any elements of R. Then, since R

is intra-regular, there exist elements xi, yi,ui and vi in R such that a =

n∑
i=1

xia2yi and b =

n∑
i=1

uib2vi for all

1 ≤ i ≤ n. Since fR is an SU-interior ideal of R, we have

fR(ab) = fR((
n∑

i=1

xia2yi)b) = fR(
n∑

i=1

xia2yib) ⊆
⋂

1≤i≤n

fR(xia2yib) =
⋂

1≤i≤n

fR((xia)ay(ib)) ⊆
⋂

1≤i≤n

fR(a) = fR(a)

and

fR(ab) = fR(a(
n∑

i=1

uib2vi)) = fR(
n∑

i=1

auib2vi) ⊆
⋂

1≤i≤n

fR(auib2vi) =
⋂

1≤i≤n

fR((auib)b(vi)) ⊆
⋂

1≤i≤n

fR(b) = fR(b)

Hence, fR is an SU-ideal of R and (2) implies (1).

Theorem 8.2. For a ring R, the following conditions are equivalent:

1) R is intra-regular.

2) fR(a) = fR(a2) for all SU-interior ideal of R and for all a ∈ R.

Proof. First assume that (1) holds. Let fR be any SU-interior ideal of R and a any element of R. Since R is

intra-regular, there exist elements xi and yi in R such that a =

n∑
i=1

xia2yi. Thus, for all 1 ≤ i ≤ n,

fR(a) = fR(
n∑

i=1

xia2yi) ⊆
⋂

1≤i≤n

fR(xia2yi) ⊆
⋂

1≤i≤n

fR(xia2) ⊆
⋂

1≤i≤n

fR(a2) =
⋂

1≤i≤n

fR(aa) ⊆
⋂

1≤i≤n

fR(a) = fR(a)

so, we have fR(a) = fR(a2). Hence, (1) implies (3). Now assume that (3) holds. It is known that I[a2] is an
interior-ideal of R. Thus, the soft characteristic function S(I[a2])c is an SU-interior ideal of R. Since a2

∈ I[a2],
we have;

S(I[a2])c (a) = S(I[a2])c (a2) = ∅

Thus, a ∈ I[a2] = m{a2
} + n{a4

} + Sa2S. Here, R is intra-regular. Thus, (3) implies (1). This completes the
proof.

Theorem 8.3. Let R be an intra-regular ring. Then, for every SU-interior ideal fR of R,

fR(ab) = fR(ba)

for all a, b ∈ R.

Proof. Let fR be an SU-ideal of an intra-regular ring R. Then, by Theorem 8.2, we have;

fR(ab) = fR((ab)2) = fR(a(ba)b) ⊆ fR(ba) = fR((ba)2) = fR(b(ab)a) ⊆ fR(ab)

so, we have fR(ab) = fR(ba). This completes the proof.

Theorem 8.4. [20] A ring R is regular and intra-regular if and only if every quasi-ideal of R is idempotent.
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Theorem 8.5. For a ring R, the following conditions are equivalent:

1) R is both regular and intra-regular.

2) fR � fR = fR for every SU-quasi-ideal fR of R. (That is, every SU-quasi-ideal of R is idempotent).

3) fR � fR = fR for every SU-bi-ideal fR of R. (That is, every SU-bi-ideal of R is idempotent).

4) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-quasi-ideals fR and 1R of R.

5) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-quasi-ideal fR and SU-bi-ideal 1R of R.

6) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-quasi-ideal fR and for every SU-generalized bi-ideal 1R of R.

7) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-bi-ideal fR and for every SU-quasi-ideal 1R of R.

8) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-bi-ideals fR and 1R of R.

9) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-bi-ideal fR and for every SU-generalized bi-ideal 1R of R.

10) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-generalized-bi-ideal fR and for every SU-quasi-ideal 1R of R.

11) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-generalized-bi-ideal fR and for every SU-bi-ideal 1R of R.

12) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-generalized bi-ideals fR and 1R of R.

Proof. First assume that (1) holds. In order to show that (12) holds, let fR and 1R be SU-generalized bi-ideals

of R and a ∈ R. Since R is intra-regular, there exist elements yi and zi in R such that a =

n∑
i=1

yia2zi for every

element a of R. Thus,

a = axa = axaxa = ax(
n∑

i=1

yiaazi)xa =

n∑
i=1

(axyia)(azixa)

Then, for all 1 ≤ i ≤ n, we have

( fR � 1R)(a) =
⋂

a=

m∑
i=1

bici

( fR(bi) ∪ 1R(ci))

⊆ fR(a(xyi)a) ∪ 1R(a(zix)a)
⊆ fR(a) ∪ 1R(a)

= ( fR∪̃1R)(a)

and so we have fR∪̃1R⊇̃ fR � 1R. This shows that (1) implies (12).
It is obvious that (12) implies (11), (11) implies (10), (10) implies (4), (4) implies (2) and (12) implies (9),

(9) implies (8), (8) implies (7), (7) implies (4), (12) implies (6), (6) implies (5), (5) implies (4) and (8) implies
(3) and (3) implies (2).

Assume that (2) holds. Let Q be quasi-ideal of S and a be any element of Q. Then, QQ ⊆ Q always
holds. We show that Q ⊆ QQ. Conversely, let x ∈ Q and x < QQ. Then, there do not exist y, z ∈ Q such that
x = yz. Since Q is a quasi-ideal of S, the soft characteristic function SQc is an SU-quasi-ideal of S. So we
have, SQc )(x) = ∅ and

(SQc � SQc )(x) =
⋂
x=yz

(SQc (y) ∪ SQc (z)) = U

But, this contradicts with our hypothesis. So, a ∈ QQ. Thus, Q ⊆ QQ and so Q = QQ = Q2. It follows that
Q is both regular and intra-regular, so (2) implies (1) by Theorem 8.4.
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Theorem 8.6. [19] For a ring R the following conditions are equivalent:

1) R is intra-regular.

2) 1R∪̃ fR⊇̃1R � fR for every SU-right ideal fR of R and SU-left ideal 1R of R over U.

Theorem 8.7. For a ring R the following conditions are equivalent:

1) R is both regular and intra-regular.

2) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-right ideal fR and for every SU-left ideal 1R of R.

3) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-right ideal fR and for every SU-quasi-ideal 1R of R.

4) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-right ideal fR and for every SU-bi-ideal 1R of R.

5) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-right ideal fR and for every SU-generalized bi-ideal 1R of R.

6) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-left ideal fR and for every SU-quasi-ideal 1R of R.

7) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-left ideal fR and for every SU-bi-ideal 1R of R.

8) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-left ideal fR and for every SU-generalized bi-ideal 1R of R.

9) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-quasi-ideals fR and 1R of R.

10) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-quasi-ideal fR and for every SU-bi-ideal 1R of R.

11) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-quasi-ideal fR and for every SU-generalized bi-ideal 1R of R.

12) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-bi-ideals fR and 1R of R.

13) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-bi-ideal fR and for every SU-generalized bi-ideal 1R of R.

14) fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) for every SU-generalized bi-ideals fR and 1R of R.

Proof. Assume that (1) holds. Let fR and 1R be any SU-generalized bi-ideals of R. Then, it follows by
Theorem 8.6 that fR∪̃1R⊇̃ fR � 1R. Moreover, we have

fR∪̃1R = 1R∪̃ fR⊇̃1R � fR.

Thus, we have fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR) and so (1) implies (14). It is obvious that (14) implies (13), (13)
implies (12), (12) implies (9), (9) implies (6) and (6) implies (2) and (14) implies (11), (11) implies (10), (10)
implies (9) and (14) implies (8), (8) implies (7), (7) implies (6) and (14) implies (5), (5) implies (4), (4) implies
(3) and (3) implies (2).

Assume that (2) holds. Let fR and 1R be any SU-right ideal and SU-left ideal of R, respectively. Then,

fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR)⊇̃1R � fR

It follows by Theorem 8.6 that R is intra-regular. On the other hand,

fR∪̃1R⊇̃( fR � 1R)∪̃(1R � fR)⊇̃ fR � 1R.

Since fR � 1R⊇̃ fR∪̃1R always holds, we have fR � 1R = fR∪̃1R. Thus, it follows by Theorem 2.18 that R is
regular. Thus, (2) implies (1).
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9. Strongly regular rings

In this section, a strongly regular ring is characterized in terms of SU-ideals. An element a of R is called
a strongly regular if there exists an element x ∈ R such that

a = xa2 = a2x.

for all a ∈ R. Such a ring is regular and duo.

Theorem 9.1. For a ring R the following conditions are equivalent:

1) R is strongly regular.

2) Every quasi-ideal of R is semiprime.

3) Every bi-ideal of R is semiprime.

4) Every generalized bi-ideal of R is semiprime.

5) Every SU-quasi-ideal of R is soft union semiprime.

6) Every SU-bi-ideal of R is soft union semiprime.

7) Every SU-generalized bi-ideal of R is soft union semiprime.

8) fR(a) = fR(a2) for every SU-quasi-ideal fR of R and for all a ∈ R.

9) fR(a) = fR(a2) for every SU-bi-ideal fR of R and for all a ∈ R.

10) fR(a) = fR(a2) for every SU-generalized bi-ideal fR of R and for all a ∈ R.

Proof. First assume that (1) holds. Let fR be any SU-generalized bi-ideal of R. Since R is strongly regular,
there exists an element x ∈ R such that a = a2xa2. Thus, we have

fR(a) = fR(a2xa2) ⊆ fR(a2) ∪ fR(a2) = fR(a2) = fR(aa) = fR(a(a2xa2) =

fR(a(a2xa)a) ⊆ fR(a) ∪ fR(a) = fR(a)

and so, fR(a) = fR(a2). Thus (1) implies (10).
It is clear that (10) implies (9), (9) implies (8), (8) implies (5) and (10) implies (7), (7) implies (6), (6)

implies (5) and that (10) implies (4), (4) implies (3) and (3) implies (2).
Assume that (5) holds. Let Q be any quasi-ideal of S and a2

∈ Q and a < Q. Since the soft characteristic
function SQc is an SU-quasi-ideal of S, it is soft union semiprime by hypothesis. Thus,

SQc (a) = U ⊆ SQc (a2) = ∅

But, this is a contradiction. Hence, a ∈ Q and so Q is semiprime. Thus (5) implies (2).
Finally assume that (2) holds. Let a be any element of R. Then, since the principal ideal Q[a2] generated

by a2 is quasi-ideal and so by assumption semiprime and since a2
∈ Q[a2],

S(Q[a2])c (a) = S(Q[a2])c (a2) = ∅

implying that
a ∈ Q[a2] = m{a2

} + n{a4
} + (a2S ∩ Sa2).

Hence, R is strongly regular. Thus (2) implies (1).
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10. Conclusion

In this paper, the concepts of soft union interior ideals, soft union quasi-ideals and soft union generalized
bi-ideals of rings have been introduced and studied. Moreover, regular, regular duo, intra-regular and
strongly regular rings have been characterized by the properties of these soft union ideals. Based on these
results, some further work can be done on the properties of soft union rings, which may be useful to
characterize the classical rings, especially in the mean of regularity.
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