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Abstract. The g— Bernstein-Schurer summation type operators are modified in order to make them
applicable for approximation of integrable functions. The aim of the paper is twofold. Firstly, to find refined
error estimates, ISZ(%) (f)(x) = f(x)| without using Schwarz’s inequality. Secondly, to obtain a generalized
Voronovskaya type asymptotic formula. The rate of approximation in terms of modulus of smoothness are

also established.

1. Introduction

In the last two decades approximation methods of linear positive operators has been studied using the
notion of quantum calculus. Since, the integer [1], is a generalization of the ordinary integer 7, the linear
positive operators can be modified accordingly. In this direction, firstly, Phillips [19] modified the classical
Bernstein operators in order to propose the generalized Bernstein operators,

1 (1K
Bug(f,2) =) | f(%) bui(q;%), f € Cl0,1],
k=0

where b, 1 (; x) = [Z]qu H’;:_g_l(l — q"x). These operators have been studied by several authors (cf.[16]-[22]).
In the sequel g-analogue of many well known positive linear operators e.g. Baskakov, modified-beta and
Szész operators have been introduced and studied (cf. [2],[6],[12],[13]). Agrawal et al. [1] introduced a
g—analogue of Bernstein-Schurer-Stancu operators:

ard ([k]q +a

SeP(f,q,%) = Z by Of [n]q—+ﬁ),x €[0,1], f € C[0,1],
k=0
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where b7 (x) = [ ] X1 - )"+p ¥ The authors of [1] proved uniform convergence, Voronovskaya type

n+pk
theorem and contraction property for the operators S,(f ,’,ﬁ ) (f, 4, x). However, these operators are not suitable

for a larger class of functions, the class of integrable functions. For this reason we apply the technique of
integral modification (see [15] ) to the operators S( ? )( f,q,%).

Let o ﬂ;/ nJr[Z;fﬁm] fec|o, 1] we define
n+p [k[ml;a
e 0 Yt 0r [ fod, et
oo (1) := L Jyy SO o
f), [0, 1]\ Io.

The formula (1) is called the Kantorovich type integral modification.

Remark 1.1. When a = 8 = 0, the operators S, @h f)(x) reduce to the q— Bernstein-Schurer operators Sy p(f, q, x).

np.g
*(@,B)

The operators 5, ,,

(f)(x) can be expressed by
n+p

[k]+a+qkt
ﬁi?(f)() L. +,,k( )f ( )dqt, xelp

f), [0,1]\ L.

Following definitions of g—calculus are required to present the results.
Let 0 < g < 1and n € IN,(the set of positive integers). Then the g—integer [1],, the g—factorial [n],! and the
g— binomial coefficients [Z]q are given by

1-q" _ n—-1
[n]qz{g_l+q+...+q , q#1
n, g=1

[l = { Mln=fly n=12,..

1, n=20

and

[n],!
H: w0 sk<n
kq 0/ k>n

respectively. The g—rising product (1 — x); is defined by

[y

n—

-0y =] [A-q,
j

Iy
o

where it is assumed that (1 — x)g = 1. The g—Jackson integral is given by

[ fodx=a-naY raa @
0 n=0

provided the sums are absolutely convergent. For the details of g—calculus we refer to the monograph [14]
by Kac and Cheung.
For f € C[0, 1] the Peetre K-functional is defined by

Kz(f,t2)1= mf Ilf gl + Ellg”1l,
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C2[0,1] = {g € C[0,1] : g” € C[0,1]}. The equivalence of Kx(f, t*) and w?(f,t) ([3], pp.11) implies that there
exist absolute constants C1, C, > 0 such that

Cl KZ(f/ tz) < a)z(f/ t) < CZ KZ(f/ tz)/ (3)

where w?*(f,t) = sup{ |A f(x)| x,x+2h €[0,1],0 < h < t} is the second order modulus of smoothness of f

and A2f(x) = Yi_o (-1 f(x + (2 = kh).
Denote L,([0, 1]) the class of measurable functions f in [0, 1] such that

1
f ft)Pdt < o0, 1<p <.
0

Let f € Ly([a,b]),1 < p < co. Then the Hardy-Littlewood majorant (see [23, pp. 244]) O(x; f) of the function
f is defined as

xf)—supé fft)dt (@< &E<b).

In order to find the error |L(f,x) — f(x)|, the estimate of the first order absolute moment, L(le; — xe|)(x)
(L being a linear positive operator) is very important. It is customary to use the Schwarz’s inequality,
L(f - 9)(x) < (L(f?)(x))2(L(g%)(x))"/? for this purpose. However, application of Schwarz’s inequality yields
an upper bound than that of L(le; — xep[)(x) and also involves unknown constants. Theorem 4.1 is an
improvement over such estimates as we find the exact expression of L(|le; — xep|)(x) in case the operator L

is S;(;’ﬁ ). Thus, error estimates in Theorems 4.1 and 4.4 are sharp than similar results for operators studied
in [1],[6] and [11] since the unknown constants are not involved. Moreover, we have the most general
condition on the sequence (g,) in theorem 3.1 that include the case g, — 1, 4;; — 0 that is most common case
studied for other operators (see [1],[4],[5],[6],[8], [11], [17] and [18]).

From now on, we use the simple notation [r] instead of [1]; as long as g is fixed. In case p = oo, L,[0, 1] will
be the class C[0, 1].

2. Preliminaries

The central moments are calculated using the expressions of S( 2 (ei,q, x) for the monomials e;(t) = t,i =
0,12,..

Lemma 2.1. There holds

g@ 1+ -9 5@
n(pg)(em)(x) Zcm rq( )(T"'ﬁq) ﬁ)(er,q,X),

@)
where Cer i= 0( ) [1+i+m—r] "

Proof. We have g° = ([k] + a)(1 + (g — 1)) + (1 + (1 — g)a)t. This means
[k] + o + qkt)m R (m)(l +(1- q)a)m_r ~ r([k] + oz)r s
( [+ B ‘; AEY A+ @@= Grg) 7
Therefore,

*a - « 1 1- m=r 1 3
590 e,)() = Z(T)SS,,ﬁ(er,q,x)(*[rf]—ﬂZ’”‘) [fava-vorera
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By the definition g—integral (2)

g a, 1+(1- " 2 e
n(p g)(em)(x) Z ( )S( ﬁ)( e q,x )(EE]——F;)Q) (1-9) Z 7 +@g- 1)q])rq](m 7)
r=0 =0

. 1 1 _ m—r o
= Z(r)s(aﬂ)( e, q,X )(Eg]—+[j)0() 1- q)z Z (1) q- 1)! q](1+1+m r)

i=0 j=0

_ v (1) ) L+@-ga\" " (), 1
_Z(”)S (7’1)( [n] +p ) Z“(1)(q 1)[1+i+m—r]'

i=0

Corollary 2.2.

Sna)(eo)(x) = 1,

(1+[2]a) + 2q[n +plgx
[21([n] + B)

S (en)(x) =
And
g@p) _ 1+Q@1- Q)a)((l + (1 —q)a) +2q9(1 +2g9)([n + plx + a))
Sup (e2)(x) = GBI+ 7
(131! + 21319 — 1) + [21(g - 1?)(In + pli([n + p] — D® + (1 + 2a)x} + 2?)
+ .
[3]!([n] + B)>

Proof. Using Lemma 2.1, we easily find Sngg)(e,-)(x) fori=0,1,2. O

Lemma 2.3. There exists absolute constant C > 0 such that

St ((e1 = xeo)") ()| < C

—xep)", q, x)|.

+(a,f)
n,p,q

n+p 8 m
*(aﬁ)((ﬁ _ X€0)m (X) Z b (X)f ([k]q +a+yqg t x) dqt

n+p m j k"]
_ \ o (m [k]q+ac_ )( q ) 1
L Zb"f"(x)(j)([n]wﬁ NA\TIEY) T i)

0 j=0

Proof. From the definition we have 5

The proof easily follows from (4) and Cor. 1 of Lemma 2 of [1]. O
Corollary 2.4. We have

(@) [n n+pl [Pl
Sppy ((e1 — xe0)?) X)| Tl 7 ((pz(x)+ Tl +p]),

@*(x) = x(1 —x),x € [0,1]. And

gHa. m 1
n(p 5)((61 — xep)™)(x) = [W] ,meINU{0}.

where | x| is the integer part of x > 0.

1338
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Lemma 2.5. Let S:,(‘; 5)( £)(x) be defined by (1) and ¢?(x) = x(1 — x). Then, there exists a real number § in (0, 1) such

that for all q in (0, §)

[n+p]
( n] + p)?

Proof. The proof is similar to Lemma 5 of [7]. [

Sno (e — xeo)?) ()| <

S (x).

Lemma 2.6. [23]If1 < p < oo, f € L,[0,a], then O(x; f) € L,[0,a] and

P
10l 100 = 2 5= 1001

3. Convergence

Following theorem provides a criterion for the uniform convergence of sequence Sn(i 5)( f) to the function f.

Theorem 3.1. Let f € C[0, 1] and (g) be a sequence in (0,1). Then S:l(z:s)( f)(x) converges to f(x) uniformly if and
onlyifq, 11,45 0.

Proof. From the conditions g, T 1, i | 0 on the sequence (g,) we have that lim,_,.[n1] = co. This means

lim,, e Sn(g sz (em)(x) = 0 uniformly for m = 0,1,2. An application of Korovkin’s theorem then leads to the
implication Sn(;:g)( )(x) = f(x) uniformly.

For the converse we use the contradiction argument. Suppose g, T qo for some gg # 1. Then, we have that
go < 1 and lim,_,0[n1] = Th1s means

ol (1 —q0)(1 + (1 + go)a) + 2qox
hm Sn( A X) = .
RS 00 = A q0p)
Since go < 1, limy, e n(f,f; (e1)(x) # x. Therefore, from Korovkin’s theorem it follows that Snig)( f)(x) does
not converge to f(x). This completes the proof. [

Theorem 3.2 (Vorvonskaya Type Formula). Let f € C?[0,1] and (gn) be a sequence in (0,1) such that q, — ¢,
gy — . Then

lim ([, + B) (S50 (Nx) = F@)

1
- E[l + [2]ea + @NE - 21B) x|f/ () + 5o 5 3] '

+( = 2B +a+ab)[3], + NE(3+5 + 46 + 4a[3],) )x

[0+ @ + al(a + 4€ + 4at)

+ (= 4BNL[3], + N(N = 1)6 (1 + € +46%) + BBl )| £ (),

1
+0 —),
(5
_ 1-utr _ 1-u+(1-0p
where N = ——, and B = ————.

Proof. We have

£ = 09 = (=00 + 50~ 02700 + et 0t~ 2,
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S*(,a,ﬁ)

where &(t, x) € C2[0,1] and lim;_,, (¢, x) = 0. An application of S, p on both sides yields

lim ([nly, +B) (S (NG ~ f()) = ,}im (911, X)f' () + 9201, 0)f ' (x)
+ lim ([nl,, + B)Sny” (e(t, 2)(t — %)%, 41, x),

n—)OO

where gi(n,x) = § lim, e ([1] + ﬁ)S:,(;’ﬁ)((el - xeg),qn, x),i=1,2.
Now

g1(n,%) = lim (], + B)S,15" (e1 = xeo, 4u, %)
. ((1 +[21;,0) +2q[n + ply, x
= lim

= ([n]g, + ﬁ)x)

n—oo [2]%
B {1 +[2]¢a + 2N¢ - [Z]gB)x}
B [2], '

S*([‘J’rﬁ)

From linearity of the operator S,,,"" and Cor. 2.2 we have

g2(n,x) = lim ([nl,, + B)5 ( SnoP (€2, G, %) = 2683557 e1, qu, %) + 22557 (60, 4, )
1 1+a(2+4€2)+a (1+€+4€2)
E{ B[3],!

[—23(1 +a+al)[3]e + NE(3+50+ 407 + 4a[3])]
+ X

B[3],!
{ —4BNC[3]; + (-1 + N)NC(1+ € +4€2) + B (1 + 20 + 202 + 53)] 2}
+ X" .

B[3],!

Since &(t, x) is continuous, for arbitrary € > 0 there exists a 6 > 0 such that |(t, x)| < € if |t — x| < 0. Therefore,
le(t, )(t = x)*| < €6® + M(t — x)>, M = sup, (g le(t, x)|. Using Lemma 2.3 we obtain

npq ”P‘i

< Ced?[——]+c Lz
= A\ +g) T T\ +p)

St (=) )

S0 (e(t, x)(¢t — x)? (x)’ <e?ls

B (¢ - x)? (x)’ +M

Therefore,

lim ([n],, + B)Srh (e(t, 1)(t — x)%)(x) = lim Cye0? +c2(

[]+ﬁ)

In view of arbitrariness of € and the fact that lim,_, m = m 3 the proof is completed. [

Remark 3.3. If the sequence (g,) is such that g, — 1 and q; — u, then we obtain

Tim ([n] + ) (S197 () = f()) = 51+ 20+ (-1 =26 +  + 2pp)f () + 2" ().

A particular case is obtained by a special type of sequence (q,) that satisfy q, — 1 and g, — 0, that is

lim ([n] + ) (S D) - f(x)) —(1+2a—1+28)x)f (x) + x 267 ().
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4. Point wise Approximation

Theorem 4.1. Let f € C[0,1],h > 0 and the polynomial In(x) = Z;\LO[ jl! (%)] xI. Then,

S (N - F0)| < (1+h [2a( —x)Hn+p<x>

__*
[2]([n] + B)

2
+2(xg )+ pl (—[21 ([n?+ 5

2n+p ”" PP e, )
n+p—

- x) Hn+p—1(x)

[21([n] + B)
[n+plG+g) _1+2a
( Xl + P 1) * DRI+ 5)])601 (..
Proof. Since
lf(t) = f)l < (1+ |t;lx|)a)1(f,h), 5

*(a,p)

the positivity of 5,,,2"(f)(x), and inequality (5) together imply that

g ap)
Qa, y (| - |/ 7 )
S0 () - f) < [ w50 qx]-an(f,h)- ©

for every f € C[0,1],x € [0,1] and for every i > 0. We need to calculate the exact moment of first order

S:,(,Z’ﬁ )(le1 — xeol, g, x). The inequality {ft pSx< [k;]ll;“ means

n+p [k[+]ll;u
149 Y W@t [ e = xeaidy

k=0 o]

n+p X n+p %;ﬂ%a
~([n] + ﬁ)Z by ()q”* e xldgt + ([n] + B) ) by ()g ™ f £ = x|yt
In[+p k=0 x
= 1 ([Kl+a [k+1]+a
_([n +‘8)Zb k(x)q ( ([n]+ﬁ+ [7’[]+ﬁ )
3 Kl+a [k+1]+a) 2gx° 3
( Tl] n ﬂ [7’1] +ﬁ ) [2] =T1+T,+T;3, say. (7)

Now [k + 1] = [k] + ¢* so we have that

n+p k k 2
K+a\ ¢ (K+a) (4
URRIMAC )[21( ( ]+ﬁ) +2[n]+ﬁ([nl+ﬁ)+(lnl+ﬁ) )

n+p

3
[2]([n] nypA Z b, ()2 ([k][k ~1]+ qk[k](%q) 4 (a N %) &+ az)

= Z E;, say. (8)
i=1
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For E; we calculate as

n+p

2[n + plln + p — 2]x

2 K
= e e 1=y a0 ©)
In a similar way, we obtain
B+ qln +plx 20c +1 o 2a
2R T s T By

Here we have used the identity Zn+p bq L(O[k] = [n + plx. Therefore,

2[n + plln +p = 212G T p—2(x) + G + Q1 + plx + 2a + 1 + 202T 14 (x)

Ty = 21([n] + ) ' "
Next
n+p
T=—x Y g (20K +a) + )b ()
k=0
n+p n+p n+p
=20 Y gk ) - 2xa Y g ) - x Y L)
k=0 k=0 k=0
= =2[n + pI*q Thep-1(x) = 2xaTTp(x) — . v
And
+ ﬁ) q 2Hn+p(x)' (12)

(2]
Combining expressions (10)-(12), we obtain
(v, B) _ _ -1 -
Sny' (lex wwm@—[ ﬁﬂ( T x%hw@HQ&q)M+M(m( T xﬁLw4@)

2[n+plln+p—-1]
[2]([n] + B)

The proof now follows from (6) and (13). O

[n+pl(3+4q) 1) 1+ 2« ] 13)
[2

—1\2 —
(g )“’””‘2(")*( 2+ p) 20+ p)

Remark 4.2. If we apply Schwarz’s inequality in (5) for the operators Sn( and choose h* = IS*(Yﬁ )((e1 — xe0)?, g, %)
together with Cor.2.4 then following less precise error estimate is found:

5P [+ p] [p]?
(6 = £ < Zwl[ \/ Qe (0 )]

The need to incorporate non differentiable function lead to the estimates in terms of second order modulus
of smoothness w(f, h).

Theorem 4.3. Let f € C[0,1]. For the sequence of operators (1), there exists a positive absolute constant C such that

@) [ + ] ) ( W)
npq(f)(x) f(x)|<cw2( ([]+ﬁ)26() ff ([7’1]+ﬁ) ’

where 6,(x) = Tk
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Proof. We choose g € C?[0,1] so as to write

S (F)(0) = f)| <

7,%) - 90|+ |f() - ()
q,%) = g(x)| -

SO (f - g,q,X)|
<2||f —gll +

Next, we define an auxiliary operator

TP (@) = Snal (H(0) - f2) + f(),

(1+[2]a)+2q[n+plyx

where z = —per

. Inview of Cor.2.2, we get

T, (eo)(x) = 1,

TP (@) (x) = Srat (f)(x) =z + x = x.

Since g € C?[0,1], so we can write

m»=ww+c—@¢wwﬂf(—um%mdw
Therefore,

T (9)(0) - )] =

ﬂﬁ%ﬁ(—mfwmﬁ@)
S;(,[;’ﬁ) (fx( —u)g" (u)du, q,x) + jx‘(z— u)g” (u) du

< S5 ((er — 22,4, )9 Nl + (2 = 0211g" lo-

<

By straight forward calculations, it can be shown that

o2 = ((1 + [2]a) + 2q0n + plyx )2

[2]([n] + B)
(@ 120a) + (240 + ply — (2001 + ) x )
- [2]([n] + B)
[n+p] ( 2 [Pl )
=T\ " )
Therefore,
T (g)() - 9| < C mp%)wmm

Hence,

S (D) = F)] <20f = gl +
sc@v—mu+

T (9)() - 9| + £ - f)

ﬁ 2 ’” } _
([ ]+ﬁ)26n(x)”g lleo +O)(f, |z .'X'|)
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Taking the infimum for g over C?[0, 1] and using

(2p - )1 +20)
S T
we find that
@p) [n +p] ) ((ZP—ﬁ)(HZa))
15700 - 0] 6 1 ) o IESE).

From (3), the proof follows. [

In following theorem we establish a global rate of approximation for the operators S;(f;’ﬁ ) which is free from
the constant in front of the right hand side.

Theorem 4.4. Let f € C[0,1]. Then,

SP(P0) ~ F00] < TIS57 @ — xen), g, Dl (1)

¥ 3( #8157 (er = xe0), 4,9l + 15157 (o1 = xe0, g, 9l 2 (1)

Proof. We choose the function Zj, f defined by

h
th(x)zif (1—H)fh(x+t)dt xe[0,1],

where fj, is the extension of f in the interval [k, 1 + ] defined as
P_(x), -h<x<0
fux)={ f(x), 0<x<1, .
Pi(x), 1<x<1+h,

P_(x) and P, (x) are linear polynomials of the best approximation on [/, 0] and [1, k] respectively. This
function is called the Zhuk’s function and has some of following properties

@) IIf = Znfllo < Fwn(fih),

®) IZufYlleo < & [201(£:1) + Jan(f: 1),
© IZ0f)"lle < 55 @(f3 1),

(@) IZiPlls < lIflls + 3aa(f; ).

For the proof see Lemma 2.4 in [10]. We have from ||S @ ﬁ)(f “00 <1

S50~ 100, <2078~ .+ 557 @t 0.0 - zurc0], "

It is known that (Z;, f) exists and is absolutely continuous on [0, 1] (see [10]). From this we can write

Zuf(t) = Zuf(x) + (t = DZ0fY () + f (t = )2 f) () dit.

An application of S;(f;"g ) on both sides together with the linearity of S;(f;’ﬁ ) and S;(,Z”g '(e0,9,%) = 1 we obtain

that
*(aﬁ) (f (t_u)(th // du q’ )

*(aﬁ) (e1 — eox, q, x)H

SwPZuf0,0 - 2uf @) = @y @55 @ - g, 0|+

0o

[Zwl(f Iy + a)z(f h)]

o3 @ FISS (e~ xeo, g Dl (15)
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Here we have used (b) and (c) properties of Z;, f(x). Finally, combining inequalities (14) and (15) together
with property (a) completes the proof. [J

5. L,— Approximation
Theorem 5.1. If f € L,[0,1],1 < p < oo and (q,) be a sequence in (0,1] such that q, T 1, then

x%ﬂwhm=

Proof. From Luzin’s theorem, for any positive integer n € IN there exists a function g, € C[0, 1] such that

1
If(x) = gn (Ol 10,11 < e

From Theorem 3.1, it follows that there exists a positive integer N with the property

*(a, 1
18255 @0, = u()llcon) < 5~ forall > N.

We have
“(a,B) _
1S, (@) = FEOIL, @)
<SSP F = Gos G )y 10) + 1S Gots G 2) = Gnllcpo] + 1FC) = Gl 1)- (16)

In order to complete the proof we need to show that ||S*(“ G )|| < C and C is independent of f,x and n.
Applying Jensen’s inequality, we obtain

[n+p+1]+a [n+p+1ﬁ])+n n+p k] Lo+ q 1Y
*(a 16) qn l’l
Tilp T+
[n+p+1]+zr Vl+P p
OF [kKl+a+q
Zb‘“()( (—”)d t) d, x
k n qn
T+ [+
[n+p+1]+a n+p
OE 0
f Zb () dg, x |f“L (o)
il
From the positivity of bq” (¥) and the identity Zn+p bq”k(x) =1 we get
*(0( ﬁ) 1’l + p + l]
o, , < .
Since we know that limg_,; || - ”Lp,q = |- IIz,, and g, is arbitrary in (0, 1] it follows that
*(01 .3)
Snpa, () )HL (o) ~ ‘f”L/J(IO) (17)

Moreover, Therefore, ||S aﬁ )”L o] = < 1forall f € L,[0,1]. Finally combining

(a B)
Sn HL ,([0,11\Io) “f”L »([0,11\Io)
these estimates and using in (16) we obtain

* ) 1
1S5 (@) = f@l o0 < - = 0, as n — co.

The proof is completed. [
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Theorem 5.2. Let 1 < p <oo.If f, f, f” € L,([0, 1]), then

1S:57(f, %) = f@llL, oy < C )(n flle,qo1 + 1Ml @01))

(—
[”]q ,B
wh€1€ C - C(p, q, (X,‘B) iSﬁeeﬁom n.

Proof. Using the representation
FO - Q) = (=000 + 3¢ = 2P

and linearity of S, ( ) (f), we can write

it () = f@) = Syt = x,q,0f (x) + = s B (- x)2F7(E),,%)
= A1 + Ay, say.

e 1+ [2]a+ 2q[n +plx
A1l = 1f O 51 ey ’
|t 120+ (2q0n + p] - [21(0n] + p)) x
=@l 210, + P
-+ 121a) + (1 - g7 = L+ )1 - ¢" + (1 - )p)) o]
= |f )|

[21(1 = g)([n]y + B)

The coefficient of x

=291 -g"") -1+ -q"+ (1 ~-9)p)
=(1+qg-2¢"")"+ (-1 + @ -1
<A+q-2¢""N+@-1)+ (¢ -1p

2+ (- )P
0.

IN

Also we have

291 -qg"")-A+q)1-q"+(1-g)p)l <2
Therefore,

A1l o7 < ([ (](Xfﬂ)

Ly([01]

From [9] we get

1
A1l o1 < Cp, 9, a, ,3) (”f”L o) + I1f” ML, qo.1p )

1346
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Next,

71+P [k]q+a+q t k
v [kl + o+ gt .,
|A2|<quk(x)f f d (in]—ﬂi_u]f (u) du| dgt
q
1’l+p

[k]g + a + gt : .,
st (x)f[ TS —x] |loG; £7)] dyt

nmbwfws”meﬁmw

Here O(x; f”’) is the Hardy-Littlewood majorant of f”(x).
Using Lemma 2.4 and 2.6 we obtain that

’ 1 44
lA2llL, qo1) < Cp, g, @, ,3)( )IIG(x; F Lo < Cp, q,a,B) (m) £ NIz, o,1p-
q

1
[nl; +p

Finally, we have for p > 1

’

“(a 1
m&ﬂﬁw—ﬂmmmmgchaﬁgﬂwhmm+u L)

For p = 1 the calculations are straight forward and similar to the case p > 1, however we do not need the
maximal function. [

Remark 5.3. The error estimates and Vornovskaya type asymptotic results for the g—analogue of Bernstein—Schurer—
Stancu operators [1], Durrmeyer operators [11],[12] and Baskakov-Durrmeyer operators [6] can be refined and
generalized by the methods in Theorem 4.1 and Theorem 3.2.

Acknowledgement. The authors are thankful to the anonymous referees for their valuable comments and
suggestions that led to significant improvements in the paper.
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