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The DMP Inverse for Rectangular Matrices
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Abstract. The definition of the DMP inverse of a square matrix with complex elements is extended to
rectangular matrices by showing that for any A and W, m by n and n by m, respectively, there exists a unique
matrix X, such that

XAX = X, XA = WAd,wWA and (WA)k+1X = (WA)k+1A†,

where Ad,w denotes the W-weighted Drazin inverse of A and k = Ind(AW), the index of AW.

1. Introduction

Let Cm×n denotes the set of complex m × n matrices and Cm×n
r , the subset of all rank r matrices in Cm×n.

The symbols A∗, R(A) and N(A) respectively stand for the conjugate transpose, the column space and null
space of a matrix A ∈ Cm×n. As usual, Im denotes the identity matrix of order m. Moreover, PL,M denotes
the projector onto L along M, where L and M are two complementary subspaces of Cn. For a given matrix
A ∈ Cn×n, this notation will be reduced to PA when L = R(A) and M is the subspace orthogonal to L.

The Moore-Penrose inverse of a matrix A ∈ Cm×n is the unique matrix A† satisfying the four equations:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A,

as described by Penrose [9]. A matrix X that satisfies the equality AXA = A is called a g-inverse of A and if
X satisfies XAX = X, it is called an outer inverse of A.

For each square matrix A ∈ Cn×n, the index of A, written as Ind(A), is the smallest non-negative integer
k for which rank(Ak) = rank(Ak+1). The Drazin inverse of a square matrix A, denoted by AD, is the unique
matrix satisfying the following equations:

AkXA = A, XAX = X and AX = XA,

where k = Ind(A). In particular, if the Ind(A) ≤ 1, the Drazin inverse is called the group inverse A#. In [5],
Cline and Greville extended the Drazin inverse of square matrix to rectangular matrix. If A ∈ Cm×n and

W ∈ Cn×m, then X =
(
(AW)D

)2
A ∈ Cm×n is the unique solution to the equations:

(AW)k+1XW = (AW)k, XWAWX = X, AWX = XWA, k = Ind(AW). (1.1)
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The matrix X is called the W-weighted Drazin inverse of A and is written as Ad,w.
Recently, Malik and Thome [6] defined a new generalized inverse, namely the DMP inverse, of a square

matrix A ∈ Cn×n of an arbitrary index. The DMP inverse of A ∈ Cn×n, denoted by AD,† is defined to be the
matrix AD,† = ADAA†, which is the unique solution of the following equations:

XAX = X, XA = ADA, AkX = AkA†, k = Ind(A).

Specially, if Ind(A) = 1, the DMP inverse is reduced to the core inverse AΘ (see [1]), which is the unique
matrix satisfying AX = PA and R(X) ⊆ R(A).

The Moore-Penrose inverse, the Drazin inverse and the DMP inverse of a matrix always exist, while
the group inverse as well as the core inverse of a square matrix A exist if and only if Ind(A) = 1. We refer
the readers to [1, 2, 11] for basic results on these generalized inverses. All of these generalized inverses are
known to be used in important applications. For example, the Moore-Penrose inverse is used to solve the
least-squares problems, the group inverse has applications in Markov chain theory, the Drazin inverse has
applications in singular differential equations and iterative methods, and the core inverse has applications
in partial order theory (see for example [2–4, 7, 8, 10, 11]).

Motivated by the extension of Drazin inverse to W-weighted Drazin inverse, we extend the DMP inverse
of square matrix to rectangular matrix in this paper. First, a canonical form for the new generalized inverse
is established. Second, the equivalence of the algebraic definition (Definition 2.1) and the geometrical
approach (Theorem 3.2) has been stated. We finally give some of the properties that this new generalized
inverse possesses.

2. The W-weighted DMP Inverse of A

In this section, we give the definition of W-weighted DMP inverse of rectangular matrix A ∈ Cm×n and
present the canonical form of it by using the singular value decompositions of A and W ∈ Cn×m.

Theorem 2.1. Let A ∈ Cm×n and W ∈ Cn×m, then the matrix X = WAd,wWAA† is the unique solution to the
equations

XAX = X, XA = WAd,wWA and (WA)k+1X = (WA)k+1A†, (2.1)

where k = Ind(AW).

Proof. From the definition of Ad,w, we have

WAd,wWAA†AWAd,wWAA† = WAd,wWAA†,

WAd,wWAA†A = WAd,wWA

and
(WA)k+1WAd,wWAA† = W(AW)k+1Ad,wWAA† = (WA)k+1A†,

i.e., WAd,wWAA† satisfies the three equations in (2.1).
To show uniqueness, suppose both X1 and X2 are two solutions to (2.1). Then using repeated applications

of the three equations in (2.1) and (1.1), we have

X1 = X1AX1 = WAd,wWAX1 = (WAd,w)2(WA)2X1

= · · · = (WAd,w)k+1(WA)k+1X1 = (WAd,w)k+1(WA)k+1A†

= (WAd,w)k+1(WA)k+1X2 = WAd,wWAX2 = X2AX2 = X2.

We have just finished the proof.
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It should be noted in Theorem 2.1 that AD,† = ADAA† = WAd,wWAA† when A is square and W = In. In
view of the correspondence between the defining equations for AD,†, and those in Theorem 2.1, we define
the DMP inverse of a rectangular matrix in the following manner:

Definition 2.2. For any matrices A and W, m by n and n by m, respectively, the matrix X = WAd,wWAA† is called
the W-weighted DMP inverse of A, and is written as X = AD,†

w .

Remark 2.3. Obviously, when A ∈ Cm×m and W = Im, then AD,†
w reduces to AD,†. When A ∈ Cm×m, W = Im and

Ind(A) = 1, then AD,†
w reduces to the core inverse of A. Moreover, when A is a nonsingular square matrix and W = Im,

then AD,†
w = A−1.

We now give the canonical form for the W-weighted DMP inverse of A by using the singular value
decompositions of A and W. Let A ∈ Cm×n

r , W ∈ Cn×m
s respectively have the following singular value

decompositions:

A = U
(

Σ1 0
0 0

)
V∗ and W = Ṽ

(
Σ̃1 0
0 0

)
Ũ∗, (2.2)

where U = (U1,U2), Ũ = (Ũ1, Ũ2) ∈ Cm×m and V = (V1,V2), Ṽ = (Ṽ1, Ṽ2) ∈ Cn×n are unitary matrices,
U1 ∈ Cm×r, Ũ1 ∈ Cm×s, V1 ∈ Cn×r, Ṽ1 ∈ Cn×s, Σ1 = dia1(σ1, · · · , σr), Σ̃1 = dia1(σ̃1, · · · , σ̃s), σ1 ≥ · · · ≥ σr > 0 and
σ̃1 ≥ · · · ≥ σ̃s > 0. After a series of complicated calculation, we can get the following theorem.

Theorem 2.4. Let A ∈ Cm×n and W ∈ Cn×m have the singular value decompositions (2.2). Then

AD,†
w = Ṽ

(
Σ̃1S11ΛΣ̃1S11 0

0 0

)
U∗,

where S11 = Ũ∗1U1 and Λ = (Σ1T11)d,Σ̃1S11
with T11 = V∗1Ṽ1. Here (Σ1T11)d,Σ̃1S11

denotes the Σ̃1S11-weighted Drazin
inverse of matrix Σ1T11.

Proof. Denote S = Ũ∗U, T = V∗Ṽ, and assume that S and T have the following block forms

S =

(
S11 S12
S21 S22

)
and T =

(
T11 T12
T21 T22

)
,

where S11 ∈ Cs×r, T11 ∈ Cr×s, then S∗S = Im and T∗T = In, i.e., S and T are unitary matrices. Then, we have

A = U
(

Σ1 0
0 0

)
V∗ = U

(
Σ1 0
0 0

)
V∗ṼṼ∗ = U

(
Σ1T11 Σ1T12

0 0

)
Ṽ∗

and

W = Ṽ
(

Σ̃1 0
0 0

)
Ũ∗ = Ṽ

(
Σ̃1 0
0 0

)
Ũ∗UU∗ = Ṽ

(
Σ̃1S11 Σ̃1S12

0 0

)
U∗.

Let X = U
(

X1 X2
X3 X4

)
Ṽ∗ be the W-weighted Drazin inverse of A, where X1 ∈ Cr×s. From AWX =

XWA, XWAWX = X and (AW)k+1XW = (AW)k, we can get the following equalities after some tedious
manipulation

X1 = X1Σ̃1S11Σ1T11Σ̃1S11X1, X1Σ̃1S11Σ1T11 = Σ1T11Σ̃1S11X1,

X2 = X1Σ̃1S11X1Σ̃1S11Σ1T12, X3 = 0, X4 = 0,

(Σ1T11Σ̃1S11)k+1X1Σ̃1S11 = (Σ1T11Σ̃1S11)k

and
(Σ1T11Σ̃1S11)k+1X1Σ̃1S12 = (Σ1T11Σ̃1S11)k−1Σ1T11Σ̃1S12.
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These equations show that the W-weighted Drazin inverse of A is the matrix

Ad,w = U
(

Λ ΛΣ̃1S11ΛΣ̃1S11Σ1T12
0 0

)
Ṽ∗,

where Λ = (Σ1T11)d,Σ̃1S11
.

Furthermore, it is easy to check that

A† = Ṽ
(

T∗11Σ
−1
1 0

T∗12Σ
−1
1 0

)
U∗.

Thus, we have

AD,†
w = WAd,wWAA† = Ṽ

(
Σ̃1S11ΛΣ̃1S11 0

0 0

)
U∗.

The proof of this theorem is now complete.

3. Properties of the W-weighted DMP Inverse

In this section, we study the properties of the W-weighted DMP inverse.

Theorem 3.1. Let A ∈ Cm×n and W ∈ Cn×m. Then the following statements hold:

(i). AAD,†
w is a projector onto R(AWAd,w) along N(Ad,wA†).

(ii). AD,†
w A is a projector onto R((WA)l) along N((WA)l), where l = Ind(WA).

Proof. (1). Since AD,†
w is an outer inverse of A, it follows that AAD,†

w is a projector. It follows from

AAD,†
w = AWAd,wWAA† and AWAd,w = (AWAd,wWAA†)AWAd,w

that R(AAD,†
w ) ⊆ R(AWAd,w) and rank(AAD,†

w ) =rank(AWAd,w), which implies that R(AAD,†
w ) = R(AWAd,w).

Similarly, we can get N(AAD,†
w ) = N(Ad,wA†).

(2). We can immediately prove the result (ii) in this theorem by using the fact that

WAd,wWA = PR((WA)l),N((WA)l) (see [5]) and AD,†
w A = WAd,wWA.

The proof is complete.

In Definition 2.1 the W-weighted DMP inverse has been introduced from an algebraic approach. Next
result presents a characterization of the W-weighted DMP inverse from a geometrical point of view.

Theorem 3.2. Let A ∈ Cm×n and W ∈ Cn×m. Then AD,†
w is the unique matrix X that satisfies

AX = PR(AWAd,w),N(Ad,wA†), R(X) ⊆ R((WA)l), (3.1)

where l = Ind(WA).

Proof. According to Theorem 3.1, it follows that AD,†
w is the solution to (3.1). It remains to prove that the

system (3.1) has only one solution.
Suppose that both X1 and X2 are solutions to (3.1). Then

A(X1 − X2) = 0, R(X1) ⊆ R((WA)l) and R(X2) ⊆ R((WA)l).

Consequently,
R(X1 − X2) ⊆ N(WA) and R(X1 − X2) ⊆ R((WA)l).

Therefore, we have R(X1 − X2) ⊆ R((WA)l) ∩N((WA)l) = {0} since WA has index l. Thus, X1 = X2.
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Obviously, AD,†
w is the only matrix that satisfies (2.1) and (3.1). Hence, both algebraic and geometrical

approaches are equivalent. The W-weighted DMP inverse also has the following properties.

Theorem 3.3. Let A ∈ Cm×n and W ∈ Cn×m. Then

(a). AD,†
w = WAd,wWPA;

(b). AD,†
w is an outer inverse of A.

Proof. The proof follows from the definitions and properties of the Moore-Penrose inverse and W-weighted
Drazin inverse.

The following example shows that in general the W-weighted DMP inverse, the Moore-Penrose inverse
and the W-weighted Drazin inverse are different.

Example. If A =

 1 1
0 0
0 0

 and W =

(
1 0 0
0 0 0

)
, then simple computations give

A† =

(
0.5 0 0
0.5 0 0

)
, Ad,w =

 1 0
0 0
0 0

 and AD,†
w =

(
1 0 0
0 0 0

)
.

Hence, the W-weighted DMP inverses provide a new class of generalized inverses for rectangular
matrices because in general the W-weighted DMP inverse of a matrix is different from each of its Moore-
Penrose inverse and W-weighted Drazin inverse.
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