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Abstract. In the present paper, we introduce and investigate a new class of analytic and bi-univalent
functions f (z) in the open unit disk U. For this purpose, we make use of a linear combination of the
following three functions:

f (z)
z
, f ′(z) and z f ′′(z)

for a function belonging to the normalized univalent function class S. By applying the technique involving
the Faber polynomials, we determine estimates for the general Taylor-Maclaurin coefficient of functions be-
longing to the analytic and bi-univalent function class which we have introduced here. We also demonstrate
the not-too-obvious behaviour of the first two Taylor-Maclaurin coefficients of such functions.

1. Introduction and Definitions

LetA denote the family of functions analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

which are normalized by the condition:

f (0) = f ′(0) − 1 = 0
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and given by the following Taylor-Maclaurin series:

f (z) = z +

∞∑
n=2

anzn. (1)

Also let S be the class of functions f ∈ A of the form given by (1), which are univalent (or schlicht) inU.

A function f ∈ A is said to be bi-univalent inU if both f and f−1 are univalent inU. It is a well-known
fact that every function f ∈ S has an inverse f−1, defined by

f−1
(

f (z)
)

= z (z ∈ U)

and

f
(

f−1(w)
)

= w
(
|w| < r0( f ); r0( f ) =

1
4

)
. (2)

In fact, according to the Koebe One-Quarter Theorem [7], the inverse function f−1 is given by

1(w) = f−1(w) = w − a2w2 +
(
2a2

2 − a3

)
w3
−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · ·

= w +

∞∑
n=2

bn wn. (3)

Let Σ denote the class of bi-univalent functions inU given by the Taylor-Maclaurin series expansion (1).
Examples of functions in the class Σ are

z
1 − z

, − log(1 − z),
1
2

log
(1 + z

1 − z

)
,

and so on. However, the familiar Koebe function is not a member of Σ. Other common examples of
functions in S such as

z −
z2

2
and

z
1 − z2

are also not members of Σ. We know also that, for f ∈ Σ of the form (1), the inverse function f−1 has the
Taylor-Maclaurin series expansion given by (3).

Lewin [13] was the first to investigate the bi-univalent function class Σ and showed that, if the function
f ∈ Σ is given by the Taylor-Maclaurin series expansion (1), then

|a2| < 1.51.

Subsequently, Brannan and Clunie [7] conjectured that

|a2| 5
√

2.

Netanyahu [14], on the other hand, showed that

max
f∈Σ
|a2| =

4
3
.

Brannan and Taha [8] introduced certain subclasses of the function class Σ similar to the familiar sub-
classes of the univalent function class S. Actually, the work of Srivastava et al. [22] essentially revived the
investigation of various subclasses of the bi-univalent function class Σ in recent years. In a considerably
large number of sequels to the aforementioned work of Srivastava et al. [22], several different subclasses of
the bi-univalent function class Σ were introduced and studied analogously by the many authors (see, for
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example, [5], [26] and [27]), but only non-sharp estimates on the initial coefficients |a2| and |a3| in the Taylor-
Maclaurin expansion (1) were obtained in several recent papers. However, the problem to find the general
coefficient bounds on |an| (n ∈ N \ {1, 2, 3}) for the function f ∈ Σ is presumably still an open problem.
In other words, not much is known about the bounds on the general coefficient |an| (n ∈ N \ {1, 2, 3}). In
the existing literature, only a few works determine the general coefficient bounds for |an| (n ∈ N \ {1, 2, 3})
for analytic and bi-univalent functions in Σ (see, for example, [9], [12], [15] and [18]). Some other recent
contributions to the subject of the bi-univalent function class Σ include (for example) [16], [17], [19], [20],
[21], [23] and [24].

The results over simple expressions involving a function f (z) in the normalized univalent function class
S and its derivatives f ′(z) and f ′′(z), such as

f (z)
z
, f ′(z) and z f ′′(z),

play a significant rôle in the theory of univalent functions. In this paper, we propose to study on a subclass
of the bi-univalent function class Σ, which involve a linear combination of the following three expressions:

f (z)
z
, f ′(z) and z f ′′(z)

and use the Faber polynomial coefficient expansion in order to obtain bounds for the general coefficients
|an| (n ∈N \ {1, 2, 3}) of such functions. In particular, we investigate bounds for the first two coefficients

|a2|, |a3| and |a3 − 2a2
2|

for such functions.

We begin by defining the aforementioned analytic and bi-univalent function classAΣ(λ, ν, α) as follows.

Definition. A function f ∈ Σ given by (1) is said to be in the class AΣ(λ, ν, α) if the following condition is
satisfied:

<

(
(1 − λ)(1 − ν)

f (z)
z

+ [ν + λ(1 + ν)] f ′(z) + λν
[
z f ′′(z) − 2

])
> α (4)

(
0 5 α < 1; λ = 0; 0 5 ν 5 1; z ∈ U

)
.

By appropriately specializing the parameters λ and ν, we can get several known subclasses of the
bi-univalent function class Σ. For example, for ν = 0 and λ = 1, we have the class given by

AΣ(λ, 0, α) = D(α, λ),

whose elements satisfy the following condition:

f ∈ Σ and <

(
(1 − λ)

f (z)
z

+ λ f ′(z)
)
> α

(
0 5 α < 1; λ = 1; z ∈ U

)
,

which was studied by Jahangiri and Hamidi [12]. On the other hand, in the special case of (4) when λ = 1,
if we make the following notational changes:

ν
2ν + 1

7→ ρ and
2ν + α
2ν + 1

7→ α,

we arrive at the bi-univalent function classN (α,ρ)
Σ

(0 5 α < 1; ρ = 0) given by

f ∈ Σ and <
{
f ′(z) + ρz f ′′(z)

}
> α

(
0 5 α < 1; ρ = 0; z ∈ U

)
,
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which was studied by Srivastava et al. [18] (see also [6]). Finally, for λ = 1 and ν = 0, we have the class
given by

AΣ(1, 0, α) = D(α, 1) = HΣ(α),

that is, by

f ∈ Σ and <
{
f ′(z)

}
> α (0 5 α < 1; z ∈ U),

which was introduced and investigated in the pioneer work on the subject by Srivastava et al. [22] who
derived the following initial coefficient bounds for the functions inHΣ(α).

Theorem 1. (see, for details, [22]) Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in
the bi-univalent function classHΣ(α) (0 5 α < 1). Then

|a2| 5

√
2(1 − α)

3

and

|a3| 5
(1 − α)(5 − 3α)

3
.

Here, in our present investigation, we make use of the Faber polynomial expansions of functions f ∈ A
of the form (1). Just as in the equation (3), the coefficients of its inverse map 1 = f−1 may be expressed as
follows (see [3] and [4]; see also [12] and [18]):

1(w) = f−1(w) = w +

∞∑
n=2

1
n

K−n
n−1 (a2, a3, · · · , an) wn, (5)

where

K−n
n−1 =

(−n)!
(−2n + 1)!(n − 1)!

an−1
2 +

(−n)!
(2(−n + 1))!(n − 3)!

an−3
2 a3

+
(−n)!

(−2n + 3)!(n − 4)!
an−4

2 a4

+
(−n)!

(2(−n + 2))!(n − 5)!
an−5

2

[
a5 + (−n + 2)a2

3

]
+

(−n)!
(−2n + 5)!(n − 6)!

an−6
2 [a6 + (−2n + 5)a3a4] +

∑
j=7

an− j
2 V j, (6)

where such expressions as (for example) (−n)! are to be interpreted symbolically by

(−n)! ≡ Γ(1 − n) := (−n)(−n − 1)(−n − 2) · · ·
(
n ∈N0 :=N ∪ {0}

)
(7)

and V j (7 5 j 5 n) is a homogeneous polynomial in the variables a2, a3, · · · , an (see, for details, [3] and [4]).
In particular, the first three terms of K−n

n−1 are given below:

K−2
1 = −2a2,

K−3
2 = 3

(
2a2

2 − a3

)
and

K−4
3 = −4

(
5a3

2 − 5a2a3 + a4

)
.
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In general, an expansion of Kp
n is given by (see, for details, [3])

Kp
n = pan +

p(p − 1)
2

D2
n +

p!
(p − 3)!3!

D3
n + · · · +

p!
(p − n)!n!

Dn
n (p ∈ Z), (8)

where

Z := {0,±1,±2, · · · } and Dp
n = Dp

n (a2, a3, · · · )

and, alternatively, by (see, for details, [25]; see also [1])

Dm
n (a1, a2, · · · , an) =

∑
µ1,··· ,µn = 0

(
m!

µ1! · · ·µn!

)
aµ1

1 · · · a
µn
n , (9)

where a1 = 1 and the sum is taken over all nonnegative integers µ1, · · · , µn satisfying the following condi-
tions:

µ1 + µ2 + · · · + µn = m

µ1 + 2µ2 + · · · + nµn = n.

It is clear that (see, for example, [2])

Dn
n(a1, a2, · · · , an) = an

1 .

2. Main Results and Their Consequences

Our first main result (Theorem 2 below) gives an upper bound for the general Taylor-Maclaurin coeffi-
cient |an| of functions in the classAΣ(λ, ν, α).

Theorem 2. For 0 5 α < 1, λ = 0, 0 5 ν 5 1 and z ∈ U, let the function f given by (1) as well as the inverse
function 1 = f−1 be in the classAΣ(λ, ν, α). If

f (z) = z + anzn + · · · (n ∈N \ {1}),

so that the inverse function 1 = f−1 is given by

1(w) = w + bnwn + · · · = w − anwn + · · · ,

then

|an| 5
2(1 − α)

(n2 + 1)λν + (n − 1)(λ + ν) + 1
(n ∈N \ {1}).

Proof. We first let the function f given by (1) be in the classAΣ(λ, ν, α). Then we have

(1 − λ)(1 − ν)
f (z)
z

+ [ν + λ(1 + ν)] f ′(z) + λν
[
z f ′′(z) − 2

]
= 1 +

∞∑
n=2

[(n2 + 1)λν + (n − 1)(λ + ν) + 1]anzn−1 (10)

and, for its inverse map 1 = f−1, it is seen that

(1 − λ)(1 − ν)
1(w)

w
+ [ν + λ(1 + ν)]1′(w) + λν

[
w1′′(w) − 2

]
= 1 +

∞∑
n=2

[(n2 + 1)λν + (n − 1)(λ + ν) + 1]bnwn−1. (11)
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On the other hand, since
f ∈ AΣ(λ, ν, α) and 1 = f−1

∈ AΣ(λ, ν, α),

by hypothesis, there exist two functions

p(z) = 1 +

∞∑
n=1

cnzn
∈ A and q(w) = 1 +

∞∑
n=1

dnwn
∈ A

with
<

(
p(z)

)
> 0 and <

(
q(w)

)
> 0

inU, such that

(1 − λ)(1 − ν)
f (z)
z

+ [ν + λ(1 + ν)] f ′(z) + λν
[
z f ′′(z) − 2

]
= α + (1 − α)p(z)

= 1 + (1 − α)
∞∑

n=1

K1
n (c1, c2, · · · , cn) zn (12)

and, similarly,

(1 − λ)(1 − ν)
1(w)

w
+ [ν + λ(1 + ν)]1′(w) + λν

[
w1′′(w) − 2

]
= α + (1 − α)q(w)

= 1 + (1 − α)
∞∑

n=1

K1
n (d1, d2, · · · , dn) wn. (13)

Thus, by applying the Carathéodory Lemma (see [10]), we find that

|cn| 5 2 and |dn| 5 2 (n ∈N).

If we now compare the corresponding coefficients in Eqs. (10) and (12) for any n ∈N \ {1}, we get

[(n2 + 1)λν + (n − 1)(λ + ν) + 1]an = (1 − α)K1
n−1 (c1, c2, · · · , cn−1) . (14)

Similarly, from Eqs. (11) and (13), we can find that

[(n2 + 1)λν + (n − 1)(λ + ν) + 1]bn = (1 − α)K1
n−1 (d1, d2, · · · , dn−1) . (15)

Now, for the function f (z) given by

f (z) = z + anzn + · · · (n ∈N \ {1}),

so that the inverse function 1 = f−1 is given by

1(w) = w + bnwn + · · · = w − anwn + · · · ,

we have bn = −an. Consequently, we obtain

[(n2 + 1)λν + (n − 1)(λ + ν) + 1]an = (1 − α)cn−1

and

−[(n2 + 1)λν + (n − 1)(λ + ν) + 1]an = (1 − α)dn−1.
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Upon taking the moduli of either of the above equalities and using the Carathéodory Lemma once again,
we get

|an| =
(1 − α)|cn−1|

(n2 + 1)λν + (n − 1)(λ + ν) + 1
5

2(1 − α)
[(n2 + 1)λν + (n − 1)(λ + ν) + 1]

or, equivalently,

|an| =
(1 − α)|dn−1|

(n2 + 1)λν + (n − 1)(λ + ν) + 1
5

2(1 − α)
(n2 + 1)λν + (n − 1)(λ + ν) + 1

,

which is the required result. This completes the proof of Theorem 2.

Theorem 3 below gives the unpredictable behavior of the first two Taylor-Maclaurin coefficients of
functions f ∈ AΣ(λ, ν, α).

Theorem 3. For 0 5 α < 1, λ = 0, 0 5 ν 5 1 and z ∈ U, let the function f given by (1) as well as the inverse
function 1 = f−1 be in the classAΣ(λ, ν, α). Then

|a2| 5



√
2(1 − α)

1 + 2(λ + ν) + 10λν

(
0 5 α <

1 + 2(λ + ν)(1 − 5λν) + λν(8 − 25λν) − (λ2 + ν2)
2[1 + 2(λ + ν) + 10λν]

)
2(1 − α)

1 + λ + ν + 5λν

(
1 + 2(λ + ν)(1 − 5λν) + λν(8 − 25λν) − (λ2 + ν2)

2[1 + 2(λ + ν) + 10λν]
5 α < 1

)
,

|a3| 5
2(1 − α)

1 + 2(λ + ν) + 10λν

and

∣∣∣a3 − 2a2
2

∣∣∣ 5 2(1 − α)
1 + 2(λ + ν) + 10λν

.

Proof. In the case when n = 2, Eqs. (14) and (15) yield

[1 + (λ + ν) + 5λν]a2 = (1 − α)c1, (16)

[1 + 2(λ + ν) + 10λν]a3 = (1 − α)c2, (17)

−[1 + (λ + ν) + 5λν]a2 = (1 − α)d1 (18)

and

[1 + 2(λ + ν) + 10λν](2a2
2 − a3) = (1 − α)d2. (19)

Now, if we take the moduli in (16) and (18) and apply the Carathéodory Lemma, we find that

|a2| =
(1 − α) |c1|

1 + λ + ν(1 + 5λ)
=

(1 − α) |d1|

1 + λ + ν(1 + 5λ)
5

2(1 − α)
1 + λ + ν(1 + 5λ)

. (20)
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Upon adding the two equations (17) and (19) and solving for |a2|, if we apply the Carathéodory Lemma
once again, we obtain

2a2
2[1 + 2(λ + ν) + 10λν] = (1 − α)(c2 + d2) (21)

or, equivalently,

∣∣∣a2
2

∣∣∣ =
(1 − α)|c2 + d2|

2[1 + 2(λ + ν) + 10λν]
.

Therefore, we have

|a2| 5

√
2(1 − α)

1 + 2(λ + ν) + 10λν
.

We now subtract Eq. (19) from Eq. (17) and solve for |a2| as follows:

[1 + 2(λ + ν) + 10λν](−2a2
2 + 2a3) = (1 − α)(c2 − d2),

which, when solved for |a3|, yields

a3 = a2
2 +

(1 − α)(c2 − d2)
2[1 + 2(λ + ν) + 10λν]

. (22)

Substituting from Eq. (16) into Eq. (22), we get

a3 =
(1 − α)2c2

1

[1 + λ + ν(1 + 5λ)]2 +
(1 − α)(c2 − d2)

2[1 + 2(λ + ν) + 10λν]
,

so that, by using the Carathéodory Lemma, we find that

|a3| 5
4(1 − α)2

[1 + λ + ν(1 + 5λ)]2 +
2(1 − α)

1 + 2(λ + ν) + 10λν
.

On the other hand, if we substitute from Eq. (21) into Eq. (22), we obtain

a3 =
(1 − α)c2

1 + 2(λ + ν) + 10λν
,

so that

|a3| 5
2(1 − α)

1 + 2(λ + ν) + 10λν
. (23)

Consequently, since

min
{

4(1 − α)2

[1 + λ + ν(1 + 5λ)]2 +
2(1 − α)

1 + 2(λ + ν) + 10λν
,

2(1 − α)
1 + 2(λ + ν) + 10λν

}
=

2(1 − α)
1 + 2(λ + ν) + 10λν

, (24)

we readily find that

|a3| 5
2(1 − α)

1 + 2(λ + ν) + 10λν
.

Finally, from Eq. (19), we have

|a3 − 2a2
2| =

(1 − α)|d2|

1 + 2(λ + ν) + 10λν
5

2(1 − α)
1 + 2(λ + ν) + 10λν

,

which completes the proof of Theorem 3.
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Upon setting ν = 0 and λ = 1 in Theorem 2 and Theorem 3, we deduce the Corollary 1 and Corollary 2,
respectively.

Corollary 1. (see [12]) For 0 5 α < 1 and λ = 1, let the function f ∈ D(α, λ) be given by (1). Also let
1 = f−1

∈ D(α, λ). If
f (z) = z + anzn + · · · (n ∈N \ {1}),

so that the inverse function 1 = f−1 is given by

1(w) = w + bnwn + · · · = w − anwn + · · · ,

then

|an| 5
2(1 − α)

1 + λ(n − 1)
(n ∈N \ {1}).

Corollary 2. (see [12]) For 0 5 α < 1 and λ = 1, let the function f ∈ D(α, λ) be given by (1). Also let
1 = f−1

∈ D(α, λ). Then

|a2| 5



√
2(1 − α)
1 + 2λ

(
0 5 α <

1 + 2λ − λ2

2(1 + 2λ)

)
2(1 − α)

1 + λ

(
1 + 2λ − λ2

2(1 + 2λ)
5 α < 1

)
,

|a3| 5
2(1 − α)
1 + 2λ

and ∣∣∣a3 − 2a2
2

∣∣∣ 5 2(1 − α)
1 + 2λ

.

For ν = 0 and λ = 1, we have Corollary 3 below, which shows that the coefficient estimates given in
Theorem 3 are better than those given earlier by Srivastava et al. [22] and Frasin and Aouf [11].

Corollary 3. For 0 5 α < 1, let f ∈ AΣ(1, 0, α) and 1 ∈ AΣ(1, 0, α). Then

|a2| 5



√
2(1 − α)

3

(
0 5 α <

1
3

)
1 − α

(1
3
5 α < 1

)
and

|a3| 5
2(1 − α)

3
.

Many other corollaries and consequences of our main results can be deduced similarly.

3. Concluding Remarks and Observations

The main objective in this paper has been to derive some Taylor-Maclaurin coefficient estimates for
functions belonging to a new class of analytic and bi-univalent functions f (z) in the open unit disk U,
which we have introduced here by means of a linear combination of the following three functions:

f (z)
z
, f ′(z) and z f ′′(z).

Indeed, by using some techniques involving the Faber polynomials, we have successfully determined the
bound for the general Taylor-Maclaurin coefficient. We have also found estimates for the first two Taylor-
Maclaurin coefficients for functions belonging to this class. The results presented in this paper have been
shown to generalize and improve some recent work of Srivastava et al. [22].
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