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Abstract. In this paper, we will continue our investigation on the new recently introduced (α, β)-metric

F = β+
aα2+β2

α in [12]; where α is a Riemannian metric; β is an 1-form and a ∈
(

1
4 ,+∞

)
is a real positive scalar.

We will investigate the variational problem in Lagrange spaces endowed with this type of metrics. Also,
we will study the dually local flatness for this type of metric and we will proof that this kind of metric can
be reduced to a locally Minkowskian metric. Finally, we will introduce the 2-Killing equation in Finsler
spaces.

1. Introduction

The purpose of this paper is twofold. On the one hand, we will investigate the locally dually flatness;
the variational problem in Lagrange spaces endowed with the (α, β)-metric

F = β +
aα2 + β2

α
, (1)

whereα is a Riemannian metric; β is an 1-form and a ∈
(

1
4 ,+∞

)
is a real positive scalar; and on the other hand,

we will investigate the 2-Killing equation in Finsler geometry. We introduced this class of (α, β)-metrics in
[12] and we have analyzed the S-curvature and other important properties of this class of metrics in [13].

The variational problem of Lagrange spaces endowed with (α, β)-metrics is very important and worth to
be studied not only in Finsler geometry, but also in physics. Some papers in which the variational problem
is presented, are ([7], [8], [2]).

Another important topic investigated in this paper, is the dually locally flatness for the (α, β)-metric (1).
This notion was introduced in Finsler geometry by Z. Shen in [14] where he extend the previous work of
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S.I. Amari and H. Nagaoka from Riemannian geometry (see [1]). We will investigate for our metric (1)
the dually locally flatness because this notion play an important role to the study of flat Finsler structures.
This we will give us information about the locally flatness of a Finsler spaces endowed with this kind of
metric. In some previous works the dually locally flatness was investigated for some (α, β)-metrics (see [3],
[4]) and this encouraged us to study this notion for our metric (1). Moreover, we will study the 2-Killing
equation in Finsler geometry, which is a new topic and worth to be study. The Finsler spaces endowed with
(α, β)-metrics were investigated in a lot of papers (see [7], [8], [2]).

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M, by TM =
⋃
x∈M

TxM

the tangent bundle of M, and by TM0 = TM \ {0} the slit tangent bundle on M. A Finsler metric on M is a
function F : TM→ [0,∞) which has the following properties:
(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM;
(iii) for each y ∈ TxM, the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1
2
∂2

∂s∂t

[
F2(y + su + tv)

]
|s,t=0, u, v ∈ TxM.

The following notion can be found in [7]:

Definition 2.1. A Lagrange space is a pair Ln =
(
M,L(x, y)

)
formed by a smooth real, n-dimensional manifold M and

a regular differentiable Lagrangian L(x, y), for which the d-tensor field 1i j has constant signature over the manifold
T̃M.

As we know from [17] and [9], Finsler spaces endowed with (α, β)-metrics were applied succefully to the
study of gravitational magnetic fields. Other important results from [7] are presented as follows:
Let Fn =

(
M,F(x, y)

)
be a Finsler space. It has an (α, β)-metric if the fundamental function can be expressed

in the following form: F(x, y) = F̆
(
α(x, y), β(x, y)

)
, where F̆ is a differentiable function of two variables with:

α2(x, y) = ai j(x)yiy j; β(x, y) = bi(x)yi.
a = ai j(x)dxidx j is a pseudo-Riemannian metric on the base manifold M and bi(x)dxi is the electromagnetic
1-form on M. As we know from , if we denote by Ln = (M,L) a Lagrange space; the fundamental tensor
1i j(x, y) of Ln is: 1i j = 1

2
∂2L
∂yi∂y j and this tensor can be written as follows for (α, β)-Lagrangians:

1i j = ρai j + ρ0bib j + ρ−1

(
biY j + b jYi

)
+ ρ−2YiY j

where bi =
∂β
∂yi ;Yi = ai jy j = α ∂α

∂yi .
ρ;ρ0;ρ−1;ρ−2 are invariants of the space Ln.
Here, ρ;ρ0;ρ−1;ρ−2 are given by (see [7]):

ρ =
1

2α
Lα;ρ0 =

1
2

Lββ;

ρ−1 =
1

2α
Lαβ;ρ−2 =

1
2α2

(
Lαα −

1
α

Lα
)
. (2)

where Lα = ∂L
∂α ; Lβ = ∂L

∂β ; Lαα = ∂2L
∂α2 ; Lββ = ∂2L

∂β2 and Lαβ = ∂2L
∂α∂β .

Shimada and Sabău in [16], have proved that the system of covectors
{
bi,Yi

}
is independent. The following

formulae holds (see [7]):

yi =
1
2
∂L
∂yi = ρ1bi + ρYi;ρ1 =

1
2

Lβ;
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∂ρ1

∂yi = ρ0bi + ρ−1Yi;
∂ρ

∂yi = ρ−1bi + ρ−2Yi

∂ρ0

∂yi = r−1bi + r−2Yi;
∂ρ−1

∂yi = r−2bi + r−3Yi (3)

∂ρ−2

∂yi = r−3bi + r−4Yi

with r−1 = 1
2 Lβββ; r−2 = 1

2αLβββ; r−3 = 1
2α2

(
Lααβ − 1

αLαβ
)

and r−4 = 1
2α3

(
Lααα − 3

αLαα + 3
α2 Lα

)
.

The Cartan tensor in such of space can be computed as follows(see [7]):

2Ci jk = σ
(i, j,k)

{
ρ−1ai jbk + ρ−2ai jYk +

1
3

r−1bib jbk + r−2bib jYk + r−3biY jYk +
1
3

r−4YiY jYk

}
(4)

where σ(i, j,k) is the cyclic sum in the indices i, j, k.
The variational problem for Finsler spaces endowed with (α, β)-metrics is an important topic in Finsler
geometry. For such spaces, the Euler-Lagrange equations Ei(L) = ∂L

∂xi −
d
dt

(
∂L
∂yi

)
=0, can be give in the

following way:

Ei(L) = Ei(α2) + 2
ρ1

ρ
Ei(β) + 2

dα
dt
∂α

∂yi (5)

Remark 2.2. From paper [6], we know the following:
The function F = αφ(s) is a Finsler function if and only if three conditions are satisfied:
I) φ(s) > 0,
II) φ(s) − sφ′(s) > 0,
III) [φ(s) − sφ′(s)] + (b2

− s2)φ′′(s) > 0.
In our case, one obtains for φ(s) = s2 + s + a:

I) φ(s) > 0⇔ a ∈ ( 1
4 ,+∞),

II) φ(s) − sφ′(s) > 0⇔ s ∈ (−
√

a,+
√

a),
III) [φ(s) − sφ′(s)] + (b2

− s2)φ′′(s) > 0⇔ 3s2 < a + 2b2 for |s| < b <
√

a.

The above conditions for general (α, β)-metrics can be also found in [6]. The following result is very
important:

Theorem 2.3. ([7]) In the natural parametrization, t = s; the Euler-Lagrange equations of the Lagrangian L(α, β),
are given by:

Ei(α2) + 2
ρ1

ρ
Fi j(x)y j = 0; yi =

dxi

ds
(6)

Remark 2.4. If we use the following equations Ei(β) = Fi j(x) dx j

ds ;

Fi j =
∂b j

∂xi −
∂bi

∂x j = b j|i − bi| j,

then (5) can be rewritted in the following way:

Ei(α2) + 2
ρ1

ρ

(
b j|i − bi| j

)
= 0; yi =

dxi

ds
(7)

Some interesting results in the theory of Lagrange spaces are also presented in [5]. Let’s recall now some
notions regarding 2-Killing vector fields on Riemannian manifolds from paper [11].
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Definition 2.5. Let (M, 1) a Riemannian manifold. A vector field X ∈ χ(M) is called 2-Killing, if LXLX1 = 0, where
L is the Lie derivative.

In this paper we will extend this notion for the case of Finsler spaces. First we will recall the notion of
Killing vectors in Finsler spaces. We will follow the results from [15]. We will consider the coordinate
transformation:

xi
= xi + εVi; yi

= yi + ε
∂Vi

∂x j y j

Under this change of coordinates, a Finsler structure became (see [15]):

F(x, y) = F(x, y) + εVi ∂F
∂xi + εy j ∂Vi

∂x j

∂F
∂yi .

where F(x, y) must be equal with F(x, y). Using this remark, the authors of paper [15], concluded that the
Killing equation in Finsler space is:

KV(F) = Vi ∂F
∂xi + y j ∂Vi

∂x j

∂F
∂yi = 0 (8)

Also, for an (α, β)-metric, the authors of paper [15], remarked that the Killing equation for the Finsler spaces
endowed with this kind of metrics, is given as follows:

0 = KV(α)φ(s) + αKV(φ(s))

⇒ 0 =

(
φ(s) − s

∂φ(s)
∂s

)
KV(α) +

∂φ(s)
∂s

KV(β) (9)

with
KV(α) =

1
2α

(
Vi| j − V j|i

)
yiy j

KV(β) =

(
Vi ∂b j

∂xi + bi
∂Vi

∂x j

)
y j

where ”|” denotes the covariant derivative with respect to Riemannian metric α. As we presented in
previous section, in Introduction, the dually locally flatness on Finsler spaces is an important topic and
worth to be studied because give us important informations about the flatness of the space. An important
result obtained in [18], is the following one:

Theorem 2.6. ([18]) Let F = αφ(s), s =
β
α be an (α, β)-metric on an n-dimensional manifold Mn, (n ≥ 3), where

α =
√

ai jyiy j is a Riemannian metric and β = bi(x)yi , 0 is an 1-form on M. Suppose that F is not Riemannian and
φ′(s) , 0; φ′(0) , 0; β , 0. Then F is a locally dually flat on M if and only if α, β and φ = φ(s), satisfy:

• 1.slo = 1
3 (βθl − θbl),

• 2.r00 = 2
3θβ +

[
θ + 2

3 (b2θ − θlbl)
]
α2 + 1

3 (3k2 − 2 − 3k3b2)θβ2,

• 3.Gl
α = 1

3
[
2θ + (3k1 − 2)θβ

]
yl + 1

3 (θl
− τbl)α2 + 1

2 k3τβ2bl,

• 4.τ
[
s(k2 − k3s2)(φφ′ − sφ′2 − sφφ′′) − (φ′2 + φφ′′) + k1φ(φ − sφ′)

]
= 0,

where τ = τ(x) is a scalar function; θ = θi(x)yi is an 1-form on M, θl = almθm,

k1 = Π(0); k2 =
Π′(0)
Q(0)

; k3 =
1

6Q(0)2

[
3Q′′(0)Π′(0) − 6Π(0)2

−Q(0)Π′′′(0)
]
, (10)

and Q =
φ′

φ−sφ′ ; Π =
φ′2+φφ′′

φ(φ−sφ′) .
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3. Main Results

In the following lines, we will give our first main result. Using our metric (1), in which φ(s) = s2 + s + a,
with s =

β
α , we will compute Q(s),Π(s) and k1, k2, k3 given in (10) for our metric. After tedious computations,

one obtains:
Q(s) =

2s + 1
a − s2 ; Q(0) =

1
a

; Q′(0) =
2
a
.

Π(s) =
6s2 + 6s + 2a + 1

(s2 + s + a)(a − s2)
; Π′(0) =

6
a2 −

1 + 2a
a3 .

k1 = Π(0) =
1 + 2a

a2 (11)

k2 =
Π′(0)
Q(0)

=
4a − 1

a2 (12)

k3 =
1

6Q(0)2

[
3Q′′(0)Π′(0) − 6Π(0)2

−Q(0)Π′′′(0)
]

=
2(1 − 4a)

a3 (13)

Now, using Theorem 2.6 and the above relations (11)-(13), we will formulate the following:

Theorem 3.1. Let Mn, (n ≥ 3) an n-dimensional manifold and let F = β +
aα2+β2

α ; where α is a Riemannian metric;
β is an 1-form and a ∈

(
1
4 ,+∞

)
is a real positive scalar; given in (1). Supposing that F is not Riemannian, then F is

locally dually flat on M, if and only if α, β and φ(s) = s2 + s + a, satisfy:

• 1.slo = 1
3 (βθl − θbl),

• 2.r00 = 2
3θβ +

[
θ + 2

3 (b2θ − θlbl)
]
α2 +

[(
4a−1

a2

) (
1 + 2b2

a

)
−

2
3

]
τβ2,

• 3.Gl
α = 1

3

[
2θ +

(
−2a2+6a+3

a2

)
τβ

]
yl + 1

3 (θl
− τbl)α2

−
4a−1

a3 τβ2bl,

• 4.τ
[

4a−1
a2 s

(
1 + 2s2

a

)
(a − 3s3

− 3s2) − (6s2 + 6s + 2a + 1) + 1+2a
a3 (s2 + s + a)(a − s2)

]
= 0,

where τ = τ(x) is a scalar function; θ = θi(x)yi is an 1-form on M, θl = almθm.

Proof. Using the above relations (11)-(13) computed for our metric (1) and replacing them in Theorem 2.6,
we get easily the asertion of the theorem.

Remark 3.2. Using Theorem 2.6, in paper [19], is presented the following corollary:

Corollary 3.3. ([19]) Let F = αφ(s), s =
β
α , be an (α, β)-metric on a manifold M of dimension n ≥ 3 with the same

assumptions as in Theorem 2.6. Let φ, satisfy:

s(k2 − k3s2)(φφ′ − sφ′ − sφφ′′) − (φ′2 + φφ′′) + k1φ(φ − sφ′) , 0. (14)

Then, F is locally dually flat on M if and only if:

sl0 =
1
3

(βθl − θbl),

r00 =
2
3

[
θβ − (θlbl)α2

]
,

Gl
α =

1
3

[
2θyl + θlα2

]
where ki, (1 ≤ i ≤ 3) are the same with those of Theorem 2.6.
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Another important result from paper [19], is the following lemma:

Lemma 3.4. ([19]) Let F = αφ(s), s =
β
α be a non-Riemannian (α, β)-metric on a manifold and b =

∥∥∥βx

∥∥∥
α
. Suppose

that φ , c1

√
1 + c2s2 + c3s for ny constant c1 > 0; c2 and c3. Then F is of isotropic S-curvature, S=(n+1)cF, if and

only if one of the following holds:

(a) β satisfies:
ri j = ε(b2ai j − bib j), s j = 0,

where ε = ε(x) is a scalar function, and φ = φ(s) satisfies:

Φ = −2(n + 1)k
φ∆2

b2 − s2 ,

where k is a constant. In this case, S = (n + 1)cF, with c = kε.
(b) β satisfies:

ri j = 0; s j = 0

In this case, S = 0, regardless of choices of a particular φ.

Next, using the above results, we are ready to proof the following theorem:

Theorem 3.5. Let F = β+
aα2+β2

α our metric (1) with φ(s) = s2 +s+a; where α is a Riemannian metric; β is an 1-form
and a ∈

(
1
4 ,+∞

)
is a real positive scalar, on the manifold M with n ≥ 3, on the same assumptions as in Theorem 2.6.

Let φ, satisfy:

s
(

4a − 1
a2

(
1 +

2s2

a

))
(a − s2) + (s2 + s + a)

(1 + 2a
a2 (a − s2) − 6

)
+ 4a − 1 , 0

Then F is locally dually flat on M and of isotropic S-curvature S = (n + 1)cF, if and only if:

sl0 =
1
3

(βθl − θbl),

r00 =
2
3
θβ +

[
θ +

2
3

(b2θ − θlbl)
]
α2,

Gl
α =

1
3

[
2θ +

(
−2a2 + 6a + 3

a2

)
τβ

]
yl

where θ = θi(x)yi is an 1-form on M.

Proof. We will use the same approach as in paper [19], but for our metric (1). In this case, φ(s) = s2 + s + a;
φ′(s) = 2s + 1; φ′(0) , 0.
From (14), we know the condition:

s(k2 − k3s2)(φφ′ − sφ′ − sφφ′′) − (φ′2 + φφ′′) + k1φ(φ − sφ′) , 0.

This condition, for our metric (1), can be written in the following way:

s
(

4a − 1
a2

(
1 +

2s2

a

))
(a − s2) + (s2 + s + a)

(1 + 2a
a2 (a − s2) − 6

)
+ 4a − 1 , 0.

Now, from Theorem 3.1, we know:

r00 =
2
3
θβ +

[
θ +

2
3

(b2θ − θlbl)
]
α2 +

[(4a − 1
a2

) (
1 +

2b2

a

)
−

2
3

]
τβ2, (15)
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Gl
α =

1
3

[
2θ +

(
−2a2 + 6a + 3

a2

)
τβ

]
yl +

1
3

(θl
− τbl)α2

−
4a − 1

a3 τβ2bl, (16)

By s0 = 0; from previous Lemma 3.4, one obtains: θ =
(blθl)

b2 β. Replacing this expresion in (15), we get:

r00 =
2
3

blθl

b2 β
2 +

[
τ +

2
3

(b2τ − θlbl)
]
α2
−

[
4a − 1

a2

(
1 +

2b2

a

)
−

2
3

]
τβ2 = 0.

Differentiating this relation with respect to ym and taking account that r00 = 0 by Lemma 3.4; one obtains:

4
3

blθl

b2 βbm + 2
[
τ +

2
3

(b2τ − θlbl)
]
α2
−

[
4a − 1

a2

(
1 +

2b2

a

)
−

2
3

]
τβbm = 0.

Multiplying with bm, one obtains:

2
[

4a − 1
a2

(
1 +

2b2

a2

)
−

2
3

]
τβ = 0.

By assumption, [
4a − 1

a2

(
1 +

2b2

a2

)
−

2
3

]
τβ , 0.

So, we can deduce that τ = 0. Taking into above relations (15) and (16), we get the desired result.

3.1. The variational problem for Finsler spaces endowed with the (α, β)-metric (1)

Starting from (1), in this section, we will consider a Finsler space endowed with the fundamental function

L = F2 =
(
β +

aα2+β2

α

)2
, where α is a Riemannian metric; β is an 1-form and a ∈

(
1
4 ,+∞

)
is a real positive

scalar. We will investigate the variational problem for this Finler space endowed with this (α, β)-metric.
First, after tedious computations, one obtains:

Lα =
2(βα + aα2 + β2)(aα2

− β2)
α3 ; Lβ =

2(βα + aα2 + β2)(α + 2β)
α2

Lαβ =
2(−4β3

− 3β2α + aα3)
α3 ; Lββ =

2(α2 + 6βα + 6β2 + 2aα2)
α2 ; Lαα =

2(a2α4 + 3β4 + 2β3α)
α4

Lααα =
−12β3(α + 2β)

α5 ; Lαββ =
−(12(α + 2β))β

α3 ; Lβββ =
12(α + 2β)

α2 ; Lααβ =
12(α + 2β)β2

α4 (17)

Next, we will compute for our metric (1):

ρ =
1

2α
Lα =

(βα + aα2 + β2)(aα2
− β2)

α4 ;ρ0 =
1
2

Lββ =
α2 + 6βα + 6β2 + 2aα2

α2 ;

ρ−1 =
1

2α
Lαβ =

aα3
− 3αβ2

− 4β3

α4 (18)

ρ1 =
1
2

Lβ =
(αβ + aα2 + β2)(α + 2β)

α2

ρ−2 =
1

2α2

(
Lαα −

1
α

Lα
)

=
β(4β3 + 3αβ2

− aα3)
α6
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Next, we compute:

r−1 =
1
2

Lβββ =
6(α + 2β)

α2 ; r−2 =
1

2α
Lαββ = −

6(α + 2β)β
α4

r−3 =
1

2α2

(
Lααβ −

1
α

Lαβ
)

; r−4 =
1

2α3

(
Lααα −

3
α

Lαα +
3
α2 Lα

)
=

3β(−8β3
− 5αβ2 + aα3)
α8 (19)

Next we will follow the same treatment as in [7], but this time for the metric (1). Using equations (3), we
will get the following results:

yi =
(αβ + aα2 + β2)(α + 2β)

α2 bi +
(αβ + aα2 + β2)(aα2

− β2)
α4

∂ρ1

∂yi =
α2 + 6αβ + 6β2 + 2aα2

α2 bi +
aα3
− 3αβ2

− 4β3

α4 Yi

∂ρ

∂yi =
α3
− 3αβ2

− 4β3

α4 bi +
β(4β3 + 3αβ2

− aα3)
α6 Yi

∂ρ0

∂yi =
6(α + 2β)

α2 bi −
6β(α + 2β)

α4 Yi (20)

∂ρ−2

∂yi =
4β3
− 6βα2

− 9α2β − 9αβ2
− aα3

α6 bi +
3β(−8β3

− 5αβ2 + aα3)
α8 Yi

∂ρ−1

∂yi =
−6β(α + 2β)

α4 bi +
4β3
− 6βα2

− 9αβ2
− aα3

α6 Yi

Now, we are ready to give the following result:

Theorem 3.6. The Cartan tensor for the (α, β)-metric (1), has the following form:

2Ci jk = σ
(i, j,k)

(aα3
− 3αβ2

− 4β3

α4 ai jbk +
β(4β3 + 3αβ2

− aα3)
α6 ai jYk +

2(α + 2β)
α2 bib jbk−

6(α + 2β)β
α4 bib jYk +

4β3
− 6βα2

− 9αβ2
− aα3

α6 biY jYk +
β(aα3

− 8β3
− 5αβ2)

α8 YiY jYk

)
(21)

where σ(i, j,k) is the cyclic sum of the indices.

Proof. From (4), we know the general form of the Cartan tensor for an (α, β)-metric. Replacing (15) and (16)
in (4), we get the Cartan tensor for the metric (1).

Theorem 3.7. The Euler-Lagrange equations for the metric (1), can be expressed in the following way:

Ei(α2) + 2
α + 2β

(aα2 − β2)α2 (b j|i − bi| j) = 0, yi =
dxi

ds

Proof. The proof is direct, using (5) and (15).

Now, using (8), (9) and Definition 2.5, we will study the 2-Killing equation for an (α, β)-metric. In this
regard, we can give now the following:
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Theorem 3.8. The 2−Killing equation for an general (α, β)-metric, F = αφ(s), where s =
β
α , has the following form:

KV

(
∂φ(s)
∂s

) (
KV(β) − KV(α)

)
+
∂φ(s)
∂s

(
KV(KV(β)) − sKV(KV(α))

)
+

φ(s)KV(KV(α)) + KV(α)KV(φ(s)) − KV(s)KV(α)
∂φ(s)
∂s

= 0

(22)

with
KV(α) =

1
2α

(
Vi| j − V j|i

)
yiy j

KV(β) =

(
Vi ∂b j

∂xi + bi
∂Vi

∂x j

)
y j

where ”|” denotes the covariant derivative with respect to Riemannian metric α.

Proof. We will start with the 2-Killing equation addapted this time for Finsler spaces endowed with (α, β)-metrics:

KV(KV(αφ(s))) = 0.

After computation, we get:

KV(KV(αφ(s))) = KV

(
KV(α)

(
φ(s) − s

∂φ(s)
∂s

)
+
∂φ(s)
∂s

KV(β)
)

=

KV(KV(α))
(
φ(s) − s

∂φ(s)
∂s

)
+ KV(α)

(
KV(φ(s)) − KV(s

∂φ(s)
∂s

) − sKV

(
∂φ(s)
∂s

))
+

KV

(
∂φ(s)
∂s

KV(β) +
∂φ(s)
∂s

)
KV

(
KV(β)

)
and after we group the terms, we get the desired result.

In the following lines, we will recall some notions from [10].

Proposition 3.9. ([10]) We have the relations:

∂iα =
1
α

yi; ∂i∂ jα =
1
α
γi j(x) −

1
α3 ;

∂iβ = Ai(x); ∂i∂ jβ = 0

The moments of the Lagrangian L(α(x, y), β(x, y)) (see [10]), is given by:

pi =
1
2

(
Lα∂iα + Lβ∂iβ

)
Proposition 3.10. ([10]) The moments of the Lagrangian L(x, y), are given by: pi = ρyi+ρ1Ai, whereρ = 1

2αLα; ρ1 =
1
2 Lβ. The derivatives of the principal invariants of the Lagrange space are given by:

∂iρ = ρ−2yi + ρ−1Ai; ∂iρ1 = ρ−1yi + ρ0Ai

Now, we are able to give the following result for our metric (1):

Proposition 3.11. The moments of the Lagrangian L(x, y) for the metric (1), are given by:

pi =
(αβ + aα2 + β2)(aα2

− β2)
α4 yi +

(αβ + aα2 + β2)(α + 2β)
α2 Ai
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Proof. The proof is direct, using (15) and Proposition 3.10.

Proposition 3.12. The derivatives of the principal invariants of the Lagrange space endowed with metric (1), are
given by:

∂iρ =
β(4β3 + 3αβ2

− aα3)
α6 yi +

aα3
− 3αβ2

− 4β3

α4 Ai

∂iρ1 =
aα3
− 3αβ2

− 4β3

α4 yi +
α2 + 6αβ + 6β2 + 2aα2

α4 Ai

Proof. The proof is obvious and follow easily, using (18) and the above Proposition 3.10.

Remark 3.13. In this paper we used the Maple 13 program at computations.

4. Conclusion

In this paper we have continued the investigations on the new introduced (α, β)-metric (1) and we
succeed to investigate the dually locally flatness and the Cartan tensor for this type of metrics. Also we
investigated the 2-Killing equation for Finsler spaces, which represent an important step for the study of
Finsler spaces.
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