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Abstract. In this paper we will investigate the problem of finding the open-locating-dominating number
for some classes of planar graphs - convex polytopes. We considered Dn, Tn, Bn, Cn, En and Rn classes of
convex polytopes known from the literature. The exact values of open-locating-dominating number for Dn

and Rn polytopes are presented, along with the upper bounds for Tn, Bn, Cn, and En polytopes.

1. Introduction

Let G = (V,E) be an arbitrary graph and for any v ∈ V let us denote N(v) and N[v] the open and
closed neighborhoods of v. The open locating dominating set S of graph G = (V,E) is a set of vertices that
dominates G and for any x, y ∈ V holds N(x) ∩ S , N(y) ∩ S. Set S will be denoted an OLD-set of G. The
cardinality of minimal such set S will be denoted as γold(G).

The motivation for introduction of OLD−set and similar sets arose from security and protecting concerns.
Different types of networks of facilities, or computer networks or network of routers could be theoretically
represented by graphs. The aim is to define and determine the locations in such networks in order to
identify and locate any ”intruder” or fault in some location in the network. Consider that in any location of
the network, which means in any vertex of the corresponding graph there is some detecting device which
can detect an intruder in this and in all neighboring locations.

The locating dominating set is a set L ⊂ V, where a detection device in location x ∈ L can determine
if intruder is in that location or in N(x), but could not determine in which element of N(x). It follows, as
introduced in [15–17], L ⊂ V is locating dominating set of G if L dominates G (i.e.

⋃
x∈L N(x) = V) and for any

x, y ∈ V \ L holds N(x) ∩ S , N(y) ∩ S.
If a detection device can determine whether there is an intruder in the closed neighborhood of N[x],

but could not locate in which location, then we are interested in the identifying code. As introduced in [9],
identifying code I is a vertex subset of V which dominates G, and for any x, y ∈ V holds N[x]∩S , N[y]∩S.

Finally, if a detection device can detect an intruder in N(x) without ability to detect it in x we are
considering open neighborhood locating dominating set, as defined above. The problem of OLD sets was
independently introduced by [5] on k-cubes Qk and generally on graphs in [11, 12].
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In [10] is presented a bibliography, currently with more than 350 entries, for work on distinguishing
sets.

If two vertices x, y ∈ V(G) such that N(x) = N(y) exist, it follows that N(x) ∩ S = N(y) ∩ S for any S ⊂ V
and G could not have an OLD set. This is proposed in

Proposition 1.1. [11]. A graph G has an OLD set if and only if G has no isolated vertex and N(x) , N(y) for all
pairs x, y of distinct vertices.

For a tree there is more detailed characterization presented in the following proposition.

Proposition 1.2. [3, 12]. For a tree T of order n ≥ 3, T has an OLD set if and only if T does not contain a strong
support vertex, where a strong support vertex is a vertex which has two or more vertices of degree one as the neighbors.

Some other connection between values γold(G) and order of G are given in [3].

Proposition 1.3. Assume k ≥ 2, and suppose k + 1 ≤ n ≤ 2k
− 1, then there exists a connected graph G of order n

with γold(G) = k.

In the special case where graph G is a tree there are following results.

Theorem 1.4. [12] If tree T of order n ≥ 5 has an OLD set, then dn/2e + 1 ≤ γold(T) ≤ n − 1.

Theorem 1.5. [13] For n ≥ 5 and dn/2e + 1 ≤ j ≤ n − 1 there is a tree Tn; j of order n with γold(Tn; j) = j.

Naturally, finding OLD(G) is hard, and corresponding optimization problem is NP-hard which was
proved in [11].

In paper [3], authors characterize graphs G of order n with OLD(G) = 2, 3, or n and graphs with minimum
degree δ(G) ≥ 2 that are C4-free with γold(G) = n − 1.

In the case of finite graphs G, there are some theoretical results concerning bounds for values of γold(G)
in some cases.

Theorem 1.6. [3] Let G be a connected graph with minimum degree δ(G) ≥ 3 and C4-free. Then γold(G) ≤ n−ρ(G),
where ρ(G) is the maximum number of vertices which are pairwise at distance at least 3.

Theorem 1.7. [3, 11] For a graph G of order n and maximum degree ∆(G), if G has an OLD set, then γold(G) ≥ 2n
1+∆ .

Theorem 1.8. [4] If G is a cubic graph of order n, then γold(G) ≤ 3n
4 .

There are results for OLD sets and values of γold(G) for some classes of infinite graphs but since convex
polytopes, the class of graphs considered in this paper, are finite they are out of scope.

In this paper we will consider finding OLD sets with minimal cardinality and γold(G) values, as well
as bounds for some classes of nontrivial planar graphs. In the literature these classes are for the first time
considered in [2] where they were denoted as Rn and Qn. Some other classes are also considered, denoted
Bn and Cn introduced in [8], Dn introduced in [6] while Tn were introduced in [7]. All these classes are
called convex polytopes and for all of them in the mentioned papers were given their metric dimensions. As
introduced in [14], the problem of binary locating domination is related to that of open locating domination.
In [14] the exact values of the binary locating-dominating number for convex polytopes Dn, and R′′n are
determined as well as the tight bounds for Rn, Qn and Un.
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Figure 1: The graph of convex polytope Dn

2. The exact values

2.1. Convex polytope Dn

The graph of convex polytope Dn, in Figure 1, was introduced in [1]. It consists of 2n 5-sided faces and
a pair of n-sided faces. Mathematically, it has vertex set V(Dn) = {ai, bi, ci, di | i = 0, 1, . . . ,n − 1} and edge
set E(Dn) = {(ai, ai+1), (di, di+1), (ai, bi), (bi, ci), (ci, di), (bi+1, ci) | i = 0, 1, . . . ,n − 1}. Note that indices are taken
modulo n.

Theorem 2.1. γold(Dn) = 2n.

Proof. It is easy to see that Dn is a regular graph of degree 3, with 4n vertices. Then, by Theorem 1.7 it holds
γold(Dn) ≥

⌈
2·4·n
1+3

⌉
= 2n.

Let S = {ai, di}|i = 0, ...,n − 1}. It is easy to see that all intersections S
⋂

N(ai) = {ai−1, ai+1}; S
⋂

N(bi) = {ai};
S
⋂

N(ci) = {di} and S
⋂

N(di) = {di−1, di+1} are non-empty and distinct. Since S is a open-locating-dominating
set of Dn and |S| = 2n therefore, γold(Dn) ≤ 2n. Having in mind previous fact that γold(Dn) ≥ 2n, it is proven
that γold(Dn) is equal to 2n.

2.2. Convex polytope Rn

Mathematically, the graph of convex polytope Rn have vertex set V = {ai, bi, ci|i = 0, . . . ,n − 1} and edge
set E = {(ai, ai+1), (ai, bi), (ai+1, bi), (bi, bi+1),
(bi, ci), (ci, ci+1)|i = 0, . . . ,n − 1}.
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Figure 2: The graph of convex polytope Rn

Theorem 2.2. γold(Rn) = n.
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Table 1: OLD-set S for Tn
Case S |S|

n = 4k {b4i, b4i+1, b4i+2, c4i, c4i+1, c4i+2, |i = 0, . . . , k − 1} 6k
n = 4k + 1 {b4i, b4i+1, b4i+2, c4i, c4i+1, c4i+2, |i = 0, . . . , k − 1} ∪ {b4k, c4k} 6k + 2
n = 4k + 2 {b4i, b4i+1, b4i+2, c4i, c4i+1, c4i+2, |i = 0, . . . , k − 1} ∪ {b4k, c4k, b4k+1, c4k+1} 6k + 4
n = 4k + 3 {b4i, b4i+1, b4i+2, c4i, c4i+1, c4i+2, |i = 0, . . . , k − 1} ∪ {b4k, c4k, b4k+1, c4k+1, b4k+2, c4k+2} 6k + 6

Proof. Let S = {bi|i = 0, ...,n − 1}. It is easy to see that all intersections S
⋂

N(ai) = {bi−1, bi}; S
⋂

N(bi) =
{bi−1, bi+1} and S

⋂
N(ci) = {bi} are non-empty and distinct. Since S is an open locating-dominating set of Rn

and |S| = n therefore, γold(Rn) ≤ n.
On the other hand, by Theorem 1.7 it holds γold(Rn) ≥

⌈
2·3·n
1+5

⌉
= n. Therefore, γold(Rn) = n.

3. The upper bounds

3.1. Convex polytopes Tn

The graph of convex polytope Tn, in Figure 3, was introduced in [7]. It consists of 4n 3-sided faces, n
4-side faces and a pair of n-sided faces. Mathematically, it has vertex set V(Tn) = {ai, bi, ci, di}, and the set of
edges

E(Tn) = {aiai+1, bibi+1, cici+1, didi+1, aibi, bici, cidi, ai+1bi, ci+1di}
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Figure 3: The graph of convex polytope Tn

Theorem 3.1. γold(Tn) ≤ ln, where

ln =


6k, n = 4k;

6k + 2, n = 4k + 1;
6k + 4, n = 4k + 2;
6k + 6, n = 4k + 3.

Proof. We shall prove that set S

S = {bi, ci|i = 0, 1, . . . ,n − 1 ∧ i . 3 (mod 4)}

is an OLD-set for a graph Tn. The cardinality of set S depends on n, which is described in Table 1, where
the congruency of |S| on modulo 4 is given in the first column, elements of set S and its cardinality in the
second and third columns, respectively.

Depending on n we will consider the following four cases:
Case n = 4k: Intersection of open neighborhood of the vertices and set S are given in Table 2, where

vertex v is given in the columns labeled with v and the intersection of open neighborhood of the vertex
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Table 2: Intersection of open neighborhoods and set S where n = 4k
v N(v) ∩ S v N(v) ∩ S

a4i {b4i} a4i+2 {b4i+1, b4i+2}

b4i {b4i+1, c4i} b4i+2 {b4i+1, c4i+2}

c4i {c4i+1, b4i} c4i+2 {c4i+1, b4i+2}

d4i {c4i, c4i+1} d4i+2 {c4i+2}

a4i+1 {b4i+1, b4i} a4i+3 {b4i+2}

b4i+1 {b4i+2, b4i, c4i+1} b4i+3 {b4i+2, b4(i+1)}

c4i+1 {c4i+2, c4i, b4i+1} c4i+3 {c4i+2, c4(i+1)}

d4i+1 {c4i+1, c4i+2} d4i+3 {c4(i+1)}

Table 3: Special cases of intersections of open neighborhoods and set S
n=4k+1 n=4k+2 n=4k+3

v N(v) ∩ S v N(v) ∩ S v N(v) ∩ S
a0 {b0, b4k} a0 {b0, b4k+1} a0 {b0, b4k+1}

b0 {b1, b4k, c0} b0 {b1, b4k+1, c0} b0 {b1, b4k+1, c0}

c0 {c1, c4k, b0} c0 {c1, c4k+1, b0} c0 {c1, c4k+1, b0}

d0 {c0, c1} d0 {c0, c1} d0 {c0, c1}

a4k {b4k} a4k {b4k} a4k {b4k}

b4k {b0, c4k} b4k {b4k+1, c4k} b4k {b4k+1, c4k}

c4k {c0, b4k} c4k {c4k+1, b4k} c4k {c4k+1, b4k}

d4k {c0, c4k} d4k {c4k+1, c4k} d4k {c4k+1, c4k}

a4k+1 {b4k+1, b4k} a4k+1 {b4k, b4k+1}

b4k+1 {b0, b4k, c4k+1} b4k+1 {b4k+2, b4k, c4k+1}

c4k+1 {c0, c4k, b4k+1} c4k+1 {c4k+2, c4k, b4k+1}

d4k+1 {c0, c4k+1} d4k+1 {c4k+2, c4k+1}

a4k+2 {b4k+1, b4k+2}

b4k+2 {b0, b4k+1, c4k+2}

c4k+2 {c0, c4k+1, b4k+2}

d4k+2 {c0, c4k+2}

v with set S in columns labeled with N(v) ∩ S. In Table 2, where i = 0, . . . , k − 1, it can be seen that all
intersections are nonempty and distinct.

n = 4k + 1: The intersections of open neighborhood of a given vertex and the set S are the same as given
in Table 2, with exception for the cases with indices i = 0 and i = 4k. The intersection sets for vertices
with indices i = 0 and i = 4k are given separately in Table 3. From Tables 2 and 3 it can be concluded that
intersection sets are nonempty and distinct.

n = 4k + 2: The intersections of open neighborhood of a given vertex and the set S are the same as given
in Table 2, with exception for the cases with indices i = 0, i = 4k and i = 4k + 1. The intersection sets for
vertices with indices i = 0, i = 4k and i = 4k + 1 are given separately in Table 3 . From Tables 2 and 3 it can
be concluded that intersection sets are nonempty and distinct.

n = 4k + 3: The intersections of open neighborhood of a given vertex and the set S are the same as given
in Table 2, with exception for the cases with indices i = 0, i = 4k, i = 4k + 1 and i = 4k + 2. The intersection
sets for vertices with indices i = 0, i = 4k, i = 4k + 1 and i = 4k + 2 are given separately in Table 3 . From
Tables 2 and 3 it can be concluded that intersection sets are nonempty and distinct.

From the previous discussion we can conclude that the set S is OLD set for graph Tn and consequently
γold(Tn) ≤ |Sn|.

3.2. Convex polytope Bn

The graph of convex polytope Bn (Figure 4) is introduced in [2] and consists of 2n 4-sided faces, n 3-sided
faces, n 5-sided faces and a pair of n-sided faces. The set of vertices is

V(Bn) = {ai, bi, ci, di, ei | i = 0, . . . ,n − 1}
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and the set of edges is

E(Bn) = {aiai+1, bibi+1, didi+1, eiei+1, aibi, bici, bi+1ci, cidi, diei | i = 0, . . . ,n − 1}
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Figure 4: The graph of convex polytope Bn

Theorem 3.2. γold(Bn) ≤ 2n.

Proof. Let S = {bi, di}|i = 0, ...,n − 1}. It is easy to see that all intersections S
⋂

N(ai) = {bi}; S
⋂

N(bi) =
{bi−1, bi+1}; S

⋂
N(ci) = {bi, bi+1, di}; S

⋂
N(di) = {di−1, di+1} and S

⋂
N(ei) = {di} are non-empty and distinct.

Since S is a open-locating-dominating set of Bn and |S| = 2n therefore, γold(Bn) ≤ 2n.

3.3. Convex polytope Cn

Convex polytopes Cn (Figure 5) were introduced in [8] consisting of 3n 3-sided faces, n 4-sided faces, n
5-sided faces and a pair of n-sided faces. There sets of vertices V(Cn) and sets of edges are given as

V(Cn) = {ai, bi, ci, di, ei | i = 0, . . . ,n − 1}

and

E(Cn) = {aiai+1, bibi+1, didi+1, eiei+1, aibi, bici, bi+1ci, cidi, diei, di+1ei | i = 0, . . . ,n − 1}.

Theorem 3.3. γold(Cn) ≤ 2n.

Proof. Let S = {bi, di}|i = 0, ...,n − 1}. It is easy to see that all intersections S
⋂

N(ai) = {bi}; S
⋂

N(bi) =
{bi−1, bi+1}; S

⋂
N(ci) = {bi, bi+1, di}; S

⋂
N(di) = {di−1, di+1} and S

⋂
N(ei) = {di, di+1} are non-empty and

distinct. Since S is a open-locating-dominating set of Cn and |S| = 2n therefore, γold(Cn) ≤ 2n.

3.4. Convex polytope En

The graph of convex polytope En (Figure 6) is similar to the Cn and is introduced in [8] consisting of 5n
3-sided faces, n 5-sided faces and a pair of n-sided faces, where:

V(En) = {ai, bi, ci, di, ei | i = 0, . . . ,n − 1}

E(En) = {aiai+1, bibi+1, didi+1, eiei+1, aibi, ai+1bi, bici, bi+1ci, cidi, diei, di+1ei|i = 0, . . . ,n − 1}

.
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Figure 5: The graph of convex polytope Cn
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Figure 6: The graph of convex polytope En
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Theorem 3.4. γold(En) ≤ 2n.

Proof. Let S = {bi, di}|i = 0, ...,n − 1}. It is easy to see that all intersections S
⋂

N(ai) = {bi−1, bi}; S
⋂

N(bi) =
{bi−1, bi+1}; S

⋂
N(ci) = {bi, bi+1, di}; S

⋂
N(di) = {di−1, di+1} and S

⋂
N(ei) = {di, di+1} are non-empty and distinct.

Since S is a open-locating-dominating set of Cn and |S| = 2n therefore, γold(Cn) ≤ 2n.

4. Conclusions

In this paper we solved the problem of finding open-locating-dominating number of polytopes Dn and
Rn. The upper bound of the open-locating-dominating number for certain classes of convex polytopes is
given, along with the appropriate open-locating domination sets.

In the future work the problem of finding open-locating-dominating number for other classes of graphs
could be considered. Another direction of future research could be to determine other graph invariants for
considered convex polytopes.
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