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Biwarped Product Submanifolds of a Kdahler Manifold
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Abstract. We study biwarped product submanifolds which are special cases of multiply warped product
submanifolds in Kdhler manifolds. We observe the non-existence of such submanifolds under some cir-
cumstances. We show that there exists a non-trivial biwarped product submanifold of a certain type by
giving an illustrate example. We also give a necessary and sufficient condition for such submanifolds to be
locally trivial. Moreover, we establish an inequality for the squared norm of the second fundamental form
in terms of the warping functions for such submanifolds. The equality case is also discussed.

1. Introduction

Bishop and O’ Neill [4] introduced the concept of warped product of Riemannian manifolds to construct
a large class of complete manifolds of negative curvature. This concept is also a generalization of the usual
product of Riemannian manifolds. Nolker [21] considered the notion of multiply warped products as a
generalization of the warped products. Since that time, multiply warped products has been studied by
many authors. For example, Unal [38] studied partially the geometry of the multiply warped products
when the metrics of such products are Lorentzian. Curvature properties of such products were investigated
by Dobarro and Unal [14].

The concept of warped products or multiply warped products play very important roles in physics as
well as in differential geometry, especially in the theory of relativity. In fact, the standard spacetime models
such as Robertson-Walker, Schwarschild, static and Kruscal are warped products. Also, the simplest models
of neighborhoods of stars and black holes are warped products [23]. Moreover, many solutions to Einstein’s
field equation can be expressed in terms of warped products [2].

In differential geometry, especially in almost complex geometry, one of the most intensively research
areas is the theory of submanifolds. In fact, the almost complex structure of an almost Hermitian manifold
determines several classes of submanifolds such as holomorphic(invariant), totally real(anti-invariant) [40],
CR- [3], generic [6], slant [7], semi-slant [24], hemi-slant(pseudo-slant) [5, 29], pointwise slant [10, 15],
bi-slant [5], skew CR- and generic submanifolds [25]. Among them, the last one contains all other classes.
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The theory of warped product submanifolds has been becoming a popular research area since Chen
[8] studied the warped product CR-submanifolds in Kidhler manifolds. In fact, several classes of warped
product submanifolds appeared in the last fifteen years (see [26, 28-31]). Also, warped product submani-
folds have been studying in different kinds of structures such as nearly Kéhler [33], para-Kéhler [12], locally
product Riemannian [32, 34], cosymplectic [37], Sasakian [19], generalized Sasakian [27], trans-Sasakian
[17], (x, u)— [36], Kenmotsu [16, 20] and quaternion [18]. Most of the studies related to the theory of
warped product submanifolds can be found in Chen’s coming book [9]. Recently, Chen and Dillen [11]
studied multiply warped product submanifolds in Kdhler manifolds and they obtained very useful optimal
inequalities. We note that such submanifolds were also studied in Kenmotsu manifolds [22].

In this paper, we consider and study biwarped product submanifolds in Kdhler manifolds. Here, a
biwarped product means that a multiply warped product which has only two fibers. We observe the
non-existence of biwarped product submanifolds under some circumstances. After giving an illustrate
example, we study such submanifolds in case of the base factor is holomorphic and one of the two fibers
is totally real and the other one is pointwise slant submanifold. We also give characterization for this
kind of submanifolds. Moreover, we investigate the behavior of the second fundamental form of such
submanifolds and as a result, we give a necessary and sufficient condition for such manifolds to be locally
trivial. Furthermore, an inequality for the squared norm of the second fundamental form in terms of the
warping functions for such submanifolds is obtained. The equality case is also considered.

2. Preliminaries

In this section, we recall the fundamental definitions and notions needed further study. In fact, in
subsection 2.1, we will recall the definition of the multiply warped product manifolds. In subsection 2.2,
we will give the basic background for submanifolds of Riemannian manifolds. The definition of a Kédhler
manifold and the some classes of submanifolds of Kdhler manifolds are placed in subsection 2.3.

2.1. Multiply warped product manifolds

Let (M;, g;) be Riemannian manifolds for any i € {0, 1, ...k} and let f; : My — (0, o0) be smooth functions
forany j € {1,2, .., k}. Then the multiply warped product manifold [21] M = Mg Xy, My X ... X My is the product
manifold M = My X M X ... x My endowed with the metric

9 = 15(90) ® (fi © 10)* 10 (g1) @ .. ® (fi © T0)* T (k-

More precisely, for any vector fields X and Y of M, we have

k
9%, Y) = go(mo. X, m0.Y) + Y (fi 0 0)*gi(min X, 7iY),

i=1

where 1; : M — M; is the canonical projection of M onto M;, 7;(¢:) is the pullback of g; by 1; and the
subscript = denotes the derivative map of 7; for each i. Each function f; is called a warping function and each
manifold (M;, g;), j € {1,2, ..., k} is called a fiber of the multiply warped product M. The manifold (Mo, go) is
called a base manifold of M. As well known, the base manifold of M is totally geodesic and the fibers of M
are totally umbilic in M.

Let M = My X, My X ... X, M be multiply warped product manifold, if k = 1, then we get a (singly)
warped product [4]. We call the multiply warped product manifolds as biwarped product manifolds for k = 2.
In other words, a biwarped product manifold has the form Mg X s, M1 X, M. We say that a biwarped product
manifold is trivial, if the warping functions f; and f, are constants. Note that biwarped product manifolds
were also studied under the name of twice warped products [1].
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Let M = My X5, My Xj, M, be a biwarped product manifold with the Levi-Civita connection V and 'V
denote the Levi-Civita connection of M; for i € {0, 1,2}. By usual convenience, we denote the set of lifts of
vector fields on M; by L(M;) and use the same notation for a vector field and for its lift. On the other hand,
since the map g is an isometry and m; and m, are (positive) homotheties, they preserve the Levi-Civita
connections. Thus, there is no confusion using the same notation for a connection on M; and for its pullback
via 7t;. Then, the covariant derivative formulas for a biwarped product manifold are given by the following.

Lemma 2.1. ([1]) Let M = My X5 My X5, M, be a biwarped product manifold. Then, for any U,V € L(My),
X € L(M;) and Z € L(M;), we have

VuV = vy, 1

VyX = VxV = V(In )X, 2)

_ 0 ifi#]

VxZ =1, 3
X {lvxz —g(X, Z)grad(In f;) ifi=], G

where, i,j € {1,2}.
We note that grad(ln f;) € L(Mp) fori=1,2 [21].

2.2. Submanifolds of Riemannian manifolds

Let M be an isometrically immersed submanifold in a Riemannian manifold (M, g). Let V be the Levi-
Civita connection of M with respect to the metric g and let V and V* be the induced, and induced normal
connection on M, respectively. Then, for all U,V € TM and & € T*M, the Gauss and Weingarten formulas
are given respectively by

VuV =VyuV + h(U, V) (4)
and
vué = —Agu + VJ&E , (5)

where TM is the tangent bundle and T*M is the normal bundle of M in M. Additionally, & is the second
fundamental form of M and A¢ is the Weingarten endomorphism associated with &. The second fundamental
form h and the shape operator A related by

g, V), &) = g(AU V) (6)

The mean curvature vector field H of M is given by H = L (trace h), where dim(M) = m. We say that the sub-
manifold M is totally geodesic in M if h = 0, and minimal if H = 0. The submanifold M is called totally umbilical
if h(U, V) = g(U, V)H for all U, V € TM. If the manifold M is totally umbilical and its mean curvature vector
field H is parallel, i.e. g(VyH,&) = 0 for all U € TM and & € T+M, then the submanifold M is said to be
spherical or extrinsic sphere.

Let D! and 9? be any two distributions on M. Then we say that M is D'-geodesic, if h(U, V) = 0 for all
U,V € D! and we say that (D', D?)-mixed geodesic if h(V,X) = 0 for V € D' and X € D?. If for all V € D!
and X € D?, VxV € D!, then D! is called D?-parallel. We say that D' is autoparallel if D' is D'-parallel. If a
distribution on M is autoparallel, then by the Gauss formula it is totally geodesic.

2.3. Some classes of submanifolds of Kihler manifolds

Let M be an almost complex manifold with almost complex structure . If there is a Riemannian metric
g on M satisfying

g(JX,JY) = 9(X,Y) 7)
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for any X,Y € TM, then we say that (M, ],g) is an almost Hermitian manifold. Let V be the Levi-Civita
connection of the almost Hermitian manifold (M, ], g) with respect to g. Then (M, ], g) is called a Kihler
manifold [40] if ] is parallel with respect to V, i.e.,

(Vx))Y =0 (8)
forall X,Y € TM.

Let M be a Riemannian manifold isometrically immersed submanifold in a K&hler manifold (M, ], g).
Then the submanifold M is called a pointwise slant submanifold [10, 15] if for every point p of M, the Wirtinger
angle O(V) between JV and the tangent space T,M at p is independent of the choice of the nonzero vector
V € T,M. In this case, the angle 0 can be viewed as a function on M and it is called the slant function of M.
We say that the pointwise slant submanifold M is proper neither cos 8(p) = 0 nor sin O(p) = 0 at each point
p € M. (This condition is different from Chen’s definition, see [10]).

Now, let M be a submanifold of a Kéhler manifold (M, J, g). For any V € TM, we put
JV=TV+FV . 9)

Here TV is the tangential part of JV, and FV is the normal part of JV. Then M is a pointwise slant submanifold
of M if and only if, for any V € TM, we have

T?V = —cos?0V (10)

for some function 6 defined on M [10]. For a pointwise slant submanifold of M, using (9), (10) and the
Kéhler structure, it is not difficult to prove the following two facts.

g(TU, TV) = cos*0g(U, V) , (11)
g(FU,FV) = sin*0g(U, V) (12)
for UV e TM.

Let M be a pointwise slant submanifold with slant function 6 of a Kahler manifold (M, ], g). If the func-
tion 0 is a constant, i.e., it is also independent of the choice of the point p € M, then we say that M is a slant
submanifold [7].

If 6 = 0, then M is called a holomorphic or complex submanifold of M [40]. In that case, the tangent space
T,M is invariant with respect to the almost complex structure | at each point p € M, i.e., [(T,M) € T,M.

If 0 = 3, then M is called a totally real submanifold of M [40]. In which case, the tangent space T,M is
anti-invariant with respect to the almost complex structure | for every point p of M, i.e., J[(T,M) C TPLM.

3. Generalized J-induced submanifolds of order 1

In this section, after renaming the generic submanifolds (in the sense of Ronsse [25]), we will give some
results concerning totally geodesicness and integrability of the distributions which are involved in the
definition of such submanifolds.

The most general class of submanifolds determined by the almost complex structure is the class of
generic submanifols which was defined by Ronsse [25]. There are two other classes of submanifolds with
the same name. One of these is the class of defined by Chen [6] and the other one is the class defined by
Yano and Kon [39]. Because of these facts, to avoid name confusion, we call the generic submanifolds (in
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the sense of Ronsse [25]) as generalized structure induced or generalized J-induced submanifolds.

Let (M, J, g) be a Kéhler manifold and M be a submanifold of M. For all p € M and for any tangent vectors
U,V € T,M, using (7) and (9), we have

g(TU, V) =—gU,TV) . (13)
Hence, it follows that
9(T*U, V) = g(T*V,U) . (14)

The equation (14) says that T2 is symmetric operator on T,M for all p € M. Now, let ¢ be an eigenvalue of
T? at p € M, then using (13) and (14), we have

__ltvp
VIR

for any tangent vector V at p € M. Again, using (7) and (9), we obtain

o TV imvip v
= TITVIECIEVIE T VP T VP

Namely, the eigenvalues of T? are in the closed interval [-1,0]. For arbitrary p € M, we define
D}y = Ker{T, + T (p),} ,

where [ is the identity operator on T,M and 7 is function defined on M with values in [0, 1] such that —7*(p)
is an eigenvalue of T;. Specially, for boundary values of the function 7, we have

Z); = Ker{F,} and Z)g = Ker({T,} .

Here, D, is maximal J-invariant where as D} is the maximal anti-J-invariant subspace of T,M. Since, T} is
symmetric and diagonalizable, there is some integer k such that —T%(p), vees —T]%(p) are distinct eigenvalues

of Tﬁ. In this case, the tangent space T,M can be decomposed as a direct sum of the mutually orthogonal
T-invariant eigenspaces, i.e,

— T T
TM=D,)®..0D, .
Moreover, if t; # 0 fori € {1, ..., k}, then each Z),T,’ is even dimensional.

We now recall the definitions of generic and skew CR-submanifolds defined first by Ronsse [25].

Definition 3.1. ([25]) Let M be a submanifold of a Kiihler manifold (M, ], g). Then M is called a generic submani-
fold if there exists an integer k functions t;, i € {1, ..., k} defined on M with values in (0,1) such that

i) Each —17, i € {1, ..., k} is a distinct eigenvalue of T,ZJ with
TM=D,0 D) @D, ®...0 D)
forp e M.

ii) The dimensions of Z);,Z)g and Z);", i € {1, ..., k} are independent of p € M. In addition, if each t; is constant
on M, then M is called a skew CR-submanifold.
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As mentioned before, we call the generic submanifolds (in the sense of Ronsse [25]) as generalized struc-
ture induced or generalized J-induced submanifolds.

Based on the basic background in subsection 2.3, we see that the notion of Z),l, (respectively, 1)2) coincides

with the notion of holomorphic distribution (respectively, totally real distribution). Moreover, the notion of Dy

coincides with the notion of pointwise slant distribution. In that case, with the help of (10), we have > = cos?6,

where —1? is an eigenvalue of TFZ, while 0 is the slant function of the pointwise slant distribution Z)g . From

now on, we denote the distributions D', D° and D, by DT, D* and Z)f,)", respectively. Thus, we rearrange
the definition 3.1 as follows.

Definition 3.2. Let M be a submanifold of a Kiihler manifold (M, ], g). Then M is said to be a generalized structure
induced or generalized J-induced submanifold if the tangent bundle TM of M has the form

TM=D"e D eD .. .0D%,

where DT is a holomorphic, D+ is a totally real and each of DY is a pointwise slant distribution on M and 6;’s are
distinct fori = 1, ..., k. In addition, ifeach of D is a slant distribution, then we say that M is a skew CR-submanifold.

In a special case, we have the following definition.

Definition 3.3. A submanifold M of a Kiihler manifold (M, ], g) is called a generalized structure induced sub-
manifold of order 1 or generalized J-induced submanifold of order 1 if it is a generalized [-induced submanifold
with k =1, i.e. the tangent bundle TM of M has the form

T™M=DTeD oD’ , (15)

where DT is a holomorphic, D* is a totally real and each of D is a pointwise slant distribution on M. Additionally,
if the slant function O is constant, i.e. DC is a slant distribution, then M is said to be a skew CR-submanifold of
order 1 [30].

In this case, the normal bundle T*M of M is decomposed as
T*M = (DY) 8 FD) 8D . (16)

where ET is the orthogonal complementary distribution of J(D*) @ F(D’) in T*M and it is an invariant
subbundle of T*M with respect to J.

We say that a generalized J-induced submanifold of order 1 is proper, if DT # {0}, D* # {0} and the slant
function 6 belongs to open interval (0, 5).

For the further study of generalized J-induced submanifolds of order 1 of a Kidhler manifold, we need
the following lemma.

Lemma 3.4. Let M be a generalized J-induced submanifold of order 1 of a Kiihler manifold (M, ], g). Then, we have
g(VuV, Z) = esc?0g(Arz]V — AprzV, U) (17)
g(VzW, V) = csc®0g(AprwV = Arw]V, Z) (18)

where LV € DT and Z, W € DP.

Proof. Using (4), (7) and (8), we have

g(VuV,Z) = g(Vu]V,JZ) = gVu]V,TZ) + g(Vu]V,FZ)
= —g(VuV,T°Z) - g(VuV,FTZ) + g(Vu]V, FZ).
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for U,V € DT and Z € D. Now, using (10) and (5), we obtain
sin0g(VuV, Z) = g(Apz]V = AprzV, U) .
This gives (17). The other assertion can be obtained in a similar way. [

Lemma 3.5. Let M be a generalized J-induced submanifold of order 1 of a Kiihler manifold (M, ], g). Then, we have

g(VuV, X) = g(AixU, JV), (19)
g(VuX,Z) = —sec’09(AjxTZ — ArrzX, U), (20)
g(VxY, U) = —g(Ap X, JU), (21)
g(VzW,Y) = sec’0g(AyTW — AprwY, Z), (22)
g(VzY, U) = —g(AJU, 2), (23)
9(VxY, Z) = —sec*0{g(Ajy X, TZ) — g(ArrzX, )}, (24)
9(VxU,Z) = csc®01g(ArzJU — AprzU, X)}, (25)

where LWV € DT, X, Y € D+ and Z, W € DP.

Proof. The proofs of all equations are same as the proofs of equations of Lemma 1, Lemma 2 and Lemma 3
of [30]. So, we omit them. [

As applications of Lemma (3.4) and Lemma (3.5), we have the following results.

Theorem 3.6. Let M be a generalized J-induced submanifold of order 1 of a Kihler manifold (M, ], g). Then the
holomorphic distribution DT is totally geodesic if and only if the following equations hold

gAxUJvV)=0, (26)
9(ArzU JV) = g(ArrzU, V) (27)
for UV eD', XeDand Z € DP.

Proof. Let M be a generalized J-induced submanifold of order 1 of a Kéhler manifold (M, ], g). Then, the
holomorphic distribution DT is totally geodesic if and only if g(Vi;V,X) = 0 and ¢g(ViV,Z) = 0 for all
UVeD', XeD and Z € DU. Thus, both assertions follow from (19) and (17), respectively. [

Theorem 3.7. Let M be a generalized J-induced submanifold of order 1 of a Kihler manifold (M, ], g). Then the
pointwise slant distribution DO is integrable if and only if the following equations hold

g(ArrzV — Apz]V, W) = g(ArrwV — AWV, Z) , (28)
g(AXTW = Aprw X, Z) = g(AjxTZ — Aprz X, W) (29)
forVeD', XeDand Z,W € D°.

Proof. Let M be a generalized J-induced submanifold of order 1 of a Kéhler manifold (M, ], g). Then, the
pointwise slant distribution D? is integrable if and only if g([Z, W], V) = 0 and ¢([Z, W], X) = 0 for all
Ue DT, XeDand Z, W € DY. Thus, both assertions follow from (18) and (22), respectively. [

Remark 3.8. From Lemma 1 of [25] or Theorem 4.2 of [35], we know that the totally real distribution D* is always
integrable.
4. Biwarped product submanifolds of Kihler manifolds

In this section, we check that the existence of biwarped product submanifolds in the form Mo x ;, M1 X, M,
of a Kéhler manifold (M, J, g), where My, M; and M, are one of the submanifolds given in subsection 2.3.
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4.1. Existence problems

Chen proved that there do not exist (non-trivial) warped product submanifolds in the form M, X; Mr in
a Kdhler manifold M such that M, is a totally real and My is a holomorphic submanifold of M in Theorem
3.1 of [8], Thus, we obtain the following result.

Corollary 4.1. There do not exist (non-trivial) biwarped product submanifolds in the form M, Xy Mr X; Mg of a
Kiihler manifold (M, ], g) such that M, is a totally real, Mr is a holomorphic and Mg is a pointwise slant or slant
submanifold of M.

In Theorem 3.1 of [28], Sahin showed that there is no (non-trivial) warped product submanifolds of the form
M % ¢ Mr in a Kihler manifold M such that My is a proper slant and Mr is a holomorphic submanifold of M.
In Theorem 4.1 of [31], he also proved that there exist no (non-trivial) warped product submanifolds of the
form Mg x; Mr in a Kéhler manifold M such that My is a proper pointwise slant and My is a holomorphic
submanifold of M. Hence, we conclude that:

Corollary 4.2. Let M be a Kiihler manifold. Then there exist no (non-trivial) biwarped product submanifolds of type
Mg X Mt X; My of M such that Mg is a proper pointwise slant or proper slant, Mr is a holomorphic and M is a
totally real submanifold of M.

On the other hand, in Theorem 3.2 of [28], Sahin proved that there exists no (non-trivial) warped product
submanifolds of the form Mr Xy My in a Kéhler manifold M such that Mr is a holomorphic and My is a
proper slant submanifold of M. Thus, we get the following result.

Corollary 4.3. There exist no (non-trivial) biwarped product submanifolds of type Mr Xy My X; My of a Kihler
manifold (M, ], g) such that My is a holomorphic, My is a proper slant and M is a totally real submanifold of M.

Now, we consider (non-trivial) biwarped product submanifolds of the form Mr Xy M, X; My in a Kéhler
manifold (M, ], g) such that My is a holomorphic, M, is a totally real and M, is a pointwise slant submanifold
of M. We first present an example of such a submanifold.

Example 4.4. Consider the Kihler manifold R™ with usual Kiihler structure. For u,v # 0,1 and x,z,w € (0, 7)), we
consider a submanifold M in R given by

Y1 = UCOSZ, Yp = VCOSZ, Y3 = U COSW, Y4 = UCOSW,
Y5 = usinz, ye = vsing, y7 = usinw, yg = vsinw,

Yo = Z, Y10 = W, Y11 = UCOSX, Y12 = VCOSX, Y13 = USInx, Y14 = vsinx.

Then, we see that the local frame of the tangent bundle TM of M is given by

d d . d . d :
U = cosz=— + cosw—— + sinz=— + sinw—— + cosx—— + sinx

I Iy dys dy7 dyn s’
0 . . .
V= COSZa—y2 + COST/Ua—y4 + SlI'lZ'a—y6 + SlI'lT/Ua—y8 + COSX% + smx%,
. . J
X=-u Smx% — vsmx% +u cosxay—13 + vcosx%,
Z = —usinz— — vsinzi + ucoszi + vcoszi + i
3]/1 &yz &y5 8y6 ayg ’
W=-u sinwi —vsinw— + ucoswi + vcoswi + i
8y3 3}/4 8y7 93/8 3y10'

where (y1, ..., Y14) are natural coordinates of R™. Then DT = span{U, V'} is a holomorphic, D+ = span{X} is a totally

real and D° = span{Z, W} is a (proper) pointwise slant distribution with the slant function 6 = cos™ (7). Thus,

M is a generalized J-induced submanifold of order 1 of R'. Also, one can easily see the distribution DT is totally
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geodesic and the distributions D+ and D? are integrable. If we denote the integral submanifolds of DT, D+ and D°
by Mr, M, and Mg, respectively, then the induced metric tensor of M is

ds? 3(du? + dv?) + (u? + v*)dx? + (1 + u? + v?)(dz? + du?)

gumy + @2 + P)gm, + (1 + u? + 0% g, -

Thus, M = My Xy M, X Mg is a (non-trivial) biwarped product generalized J-induced submanifold of order 1 of R*

with warping functions f = Yu? + v2 and 6 = V1 + u? + 02

5. Biwarped product generalized J-induced submanifolds of order 1 in the form Mr X M, X; My

In this section, we give a characterization for biwarped product generalized J-induced submanifolds of
order 1in the form Mr X M, X; Mg, where Mr is a holomorphic, M, is a totally real and My is a pointwise
slant submanifold of a Kdhler manifold (M, J,g). After that, we investigate the behavior of the second
fundamental form of such submanifolds and as a result, we give a necessary and sufficient condition for
such manifolds to be locally trivial. Now, we give one of the main theorems of this paper. We first recall
the following fact given in [13] to prove our theorem.

Remark 5.1. (Remark 2.1 [13]) Suppose that the tangent bundle of a Riemannian manifold M splints into an
orthogonal sum TM = Dy @ D1 @ ... ® Dy of non-trivial distributions such that each D; is spherical and its
complement in TM is autoparallel for j € {1,2, ..., k}. Then the manifold M is locally isometric to a multiply warped
product Mo Xy, My X ... X5 M.

Theorem 5.2. Let M be a proper generalized J-induced submanifold of order 1 of a Kiihler manifold (M, ], g). Then
M is a locally biwarped product submanifold of type Mt X ¢ M X; Mo if and only if, we have

AV =-JV(V)X, (30)
AprzV = Apz]V = =sin®0V (1)Z, (31)

for some functions A and p satisfying X(A) = Z(A) = 0 and X(u) = Z(u) = 0, and

JANTZ, X) = g(ArrzY, X), (32)
JANTW, Z) = g(ArrzY, W). (33)

forVeD!, X,Ye D and Z, W € D°.
Proof. Let M be a biwarped product proper generalized J-induced submanifold of order 1 of a Kdhler
manifold (M, ], g) in the form My X M, X, Mg. Then forany V € D', X € D* and Z € D? using (4)~(5) and
(7)~(8), we have

gAY, U) = ~g(Vu]X, V) = g(VuX, JV) = g(VuX, V).
Here, we know V; X = U(In f)X from (2). Thus, we obtain

g(AxV,U) = U(ln /g(X,JV) =0, (34)

since g(X, JV) = 0. Similarly, we have

9AXV, Z) = —g(Vz]X, V) = g(VzX, V) = g(VzX, ] V).
Thus, we obtain

gAxV,2)=0, (35)
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since VzX = 0 from (3). Next, by a similar argument, for Y € D+, we have
gAXVY) = —g(Vy]X, V) = g(Vy X, JV) = —g(Vy]V, X).
Using (2), we obtain
gAXVY) = g(=]JV(In )X, Y) . (36)

Moreover, we have X(In f) = Z(In f) = 0, since f depends on only points of Mr. So, we conclude that
A = In f. Thus, from (34)~(36), it follows that (30). Now, we prove (31). Using (4)~(5) and (7)~(10), we have
9(ArrzV = Apz]V,U) = - g(VvFTZ,U) + g(V)vFZ,U)
=—g(VyJTZ,U) + g(VyT?*Z,U)
ViviZ,U) - g(VyTZ,U)

+4(

=+ g(VyTZ, JU) — V[cos*0]g(Z, U) - cos*0g(VyZ, U)
(
(
(

VivZ, JU) - g(ViyTZ, U)
VyTZ, JU) - cos*0g(VyZ, U)
V]VZ, IU) - g(VWTZ, U)

g

=+ g

A
Here, if we use (2), we obtain

g(ArrzV — ApzJV,U) =V(In0)g(TZ, JU) — cos*0V (In 0)g(Z, U)
— JV(no)g(Z, JU) - JV(Ino)g(TZ U).

Hence, we get
9(ArrzV — ApzJV,U) =0, (37)
since g(TZ, JU) = g(Z,U) = g(Z,JU) = g(TZ, U) = 0. Similarly, we have
9J(ArrzV = Apz]V, X) = = g(VxFTZ, V) + g(VxFZ, ]V)
=—g(VxJTZ, V) + g(VxT?Z,V)
+9(VxJZ,JV) = g(VxTZ,]V)
=+ g(VxTZ,JV) - X[cos*0]g(Z, V) — cos*0g(VxZ, V)
= 9(VxZ, V) = g(VxTZ,]V)
=+ g(VxTZ,JV) - cos*0g(VxZ, V)
—g9(VxZ, V) = g(VxTZ,]V).
Here, we know VxTZ = VxZ = 0 from (3). So, we get
g(ArrzV — Apz]V,X) =0 . (38)
On the other hand, using (18) , we have
9(ArrzV = Apz]V, W) = —sin®0g(VwV, Z) .
Using (2), we get
9(ArrzV = Apz]V, W) = g(-=sin*0V(In0)Z, W) . (39)

Moreover, we have X(Ino) = Z(Ino) = 0, since ¢ depends on only points of Mr. So, we conclude that
u = Ino. Thus, (31) follows form (37)~(39). Next, we prove (32) and (33). Using (24) and (3), we have

JANX, TZ) — g(ArrzX,Y) = —cos?09(VxZ, Y) =0 .
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Thus, (32) follows. Similarly, using (34) and (3), we have
gANTW, Z) = g(ArrzY, W) = —cos?0g(VzY, W) =0 .
So, we get (33).

Conversely, assume that M is a proper generalized J-induced submanifold of order 1 of a Kéhler manifold
(M, ], 9) such that (30)~(33) hold. Then we satisfy (26) and (27) by using (30) and (31), respectively. Thus,
by Theorem 3.6, the holomorphic distribution DT is totally geodesic and as a result it is integrable. By
(32) and (33), we easily satisfy (28) and (29). Thus, by Theorem 3.7, the pointwise slant distribution DY is
integrable. Also, by Remark 3.8, the totally real distribution D* is always integrable. Let My, M, and My

be the integral manifolds of DT, D and DY, respectively. If we denote the second fundamental form of
M, inMbyh*,forX,Y e Dt and Z € DY, using (4), (24) and (32), we have

gh*+(X,Y),Z) = g(VxY,Z) =0 . (40)
Forany X, Y € D* and V € D, using (4), (20) and (30), we have

gt (X, Y), V) = g(VxY, V) = =g(Ay X, JV) = =V(1)g(X, Y) .
After some calculation, we obtain

g (X, Y), V) = g(=g(X, Y)VA, V), (41)
where VA is the gradient of A. Thus, from (40) and (41), we conclude that

(X, Y) = -g(X, Y)VA .

This equation says that M, is totally umbilic in M with the mean curvature vector field —VA. Now, we show
that —V A is parallel. We have to satisfy g(VxVA,E) = 0 for X € D* and E € (D4)* = DT @ DY. Here, we can
put E =V +Z where V € DT and Z € DP. By direct computations, we obtain

9(VxVA,E) ={Xg(VA,E) - g(VA, VxE)}

{X(E(A) = [X, E]A = g(VA, VEX))

{[X, E]A + E(X(A)) = [X, EIA = g(VA, VEX))
- g(VA, VyX) — g(VA, VzX),

since X(A) = 0. Here, for any U € DT, we have g(VvX, U) = —g(VyU, X) = 0, since Mr is totally geodesic in
M. Thus, Vy X € D+ or Vy X € D?. In either case, we have

g(VA,VyX) =0 . (42)

On the other hand, from (23), we have g(VzX, U) = —g(A;xJU, Z). Here, using (32), we obtain g(VzX, U) = 0.
That is; VzX € D+ or VzX € DP. In either case, we get

g(VA,VzX) =0 . (43)
From (42) and (43), we find
g(VxVA,E)=0 .

Thus, M, is spherical, since it is also totally umbilic. Consequently, D* is spherical.
Next, we show that D is spherical. Let h? denote the second fundamental form of My in M. Then for
Z,W € DY and X € D*, using (4), (22) and (32), we have

9(h(Z, W), X) = g(V, W, X) =0 . (44)
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On the other hand, for any V € DT, using (4) and (18), we have
g(h°(Z,W), V) = g(VzW, V) = csc®0g(AprwV — Apw]V, Z) .
Using (31), we obtain
g’ (Z,W), V) = =V(w)g(Z, W) .
After some calculation, we get
g(h°(Z,W), V) = —g(g(Z, W)V, V) , (45)
where Vi is the gradient of p. Thus, from (44) and (45), we deduce that
h(Z, W) = —g(Z, W)Vu .

It means that My is totally umbilic in M with the mean curvature vector field —Vu. What's left is to show that
—Vu is parallel. We have to satisfy g(VzVy, E) = 0 for Z € DY and E € (D) = DT @ D*. Here, E = V + X,
for V € D and X € D*. Upon direct calculation, we obtain

9(VzVu, E) ={Zg(Vu, E) — g(Vu, VZE)}
={Z(E(w)) — [Z,E]u — g(Vu, VeZ)}
={[Z Elp + E(Z(p)) = [Z, Elu — g(Vu, VEZ)}
=-9(Vu,VvZ) = g(Vu, VxZ),

since Z(u) = 0. Here, for any U € DT, using (25) and (30), we have
g(VxZ,U) = — cs?0{g(ArzJU — ArrzU, X)} = 0 .
So, VxZ € D+ or VxZ € DP. Hence
gV, VxZ) =0, (46)

since Vyu € DT. On the other hand, since Mr is totally geodesic in M, we have g(VyZ, U) = —g(VyU,Z) = 0.
Hence, VyZ € D* or VyZ € DY. So, we get

g(Vu,VyZ) =0 . (47)
By (46) and (47), we find
g(VzVu,E)=0 .

Lastly, we prove that (D+)* = DT@D? and (DY)* = DT®@D™ are autoparallel. In fact, DT @D is autoparallel
if and only if all four types of covariant derivatives ViV, Vi Z, VU, VzW are again in DTe D for UV €
DT and Z, W € DY. This is equivalent to say that all four inner products g(ViV, X), g(VuZ, X), g(VzU, X),
g(VzW, X) vanish, where X € D+. Using (19) and (30), we get

g(VuV,X) =g(VzU, X) =0 .
By (20), (22) and (32), we get
g(VuZ,X) = g(VzZW,X) =0 .

Thus, DT & DY is autoparallel. On the other hand, DT & D+ is autoparallel if and only if all four inner
products g(VuV, Z), g(VuX, Z), g(VxU, Z), g(VxY, Z) vanish, where U, V € DT, XY € D' and Z € D°. Firstly,
we have already g(VyX, Z) = 0 from above. Using (17), (25) and (31), we get

9(VuV,Z) = g(VxU,2) =0 .
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Using (24) and (32), we find
9(VxY,Z2) =0 .

So, DT ® D* is autoparallel. Thus, by Remark 5.1, M is locally biwarped product submanifold of the form
My XfMJ_ Xs Mg. O

Let M = Mt Xy M, X; Mg be a non-trivial biwarped product generalized J-induced submanifold of order 1
of a Kéhler manifold (M, J, g). Next, we investigate the behavior of the second fundamental form  of such
submanifolds.

Lemma 5.3. Let M be a biwarped product generalized J-induced submanifold of order 1 in the form Mr Xy M, X; Mg
of a Kiihler manifold (M, ], g). Then for the second fundamental form h of M in M, we have

g, V), JX) =0, (48)
g(h(V, X),]Y) = =]V(In )g(X,Y), (49)
g(h(V,2),]X) =0, (50)

where UV e DY, XY € D+ and Z € D°.
Proof. Using (4),(7) and (8), we have
g(h(U, V), JX) = g(VuV,JX) = —=g(Vu]X, V) = g(VuX,]V)

for U,V € DT and X € D*. Again, using (4), we obtain g(h(U, V), ]X) = g(VyX,JV). Here, we know
VuX = U(n f)X from (2). Thus, we obtain g(h(U, V), JX) = U(In /)g(X, V) = 0, since g(X, V) = 0. So, (48)
follows. Now, let V € DT and X, Y € D*. Then using (4), (7) and (8), we have

g(h(V,X),JY) = g(VxV, JY) = —=g(Vx]V, Y) = —=g(Vx]V,Y) .

Here, we know VxJV = JV(In f)X from (2). Thus, we get (49). The last assertion can be obtained in a similar
method. O

The previous lemma shows partially us the behavior of the second fundamental form & of the biwarped
product generalized J-induced submanifolds of order 1 has the form Mr Xy M, X; Mg in the normal
subbundle J(DT).

Lemma 5.4. Let M be a biwarped product generalized J-induced submanifold of order 1 in the form Mr X ¢ M1 X; Mg
of a Kiihler manifold (M, ], g). Then for the second fundamental form h of M in M, we have

gW(U,V),FZ)=0, (51)
g(h(V, X),FZ) =0, (52)
9((V, Z), FW) = ~V(In0)g(Z, W) - V(In0)g(Z, TW), (53)

where UV € DT, X € Dt and Z, W € DP°.

Proof. Using (4),(7) and (8), we have
90U, V), FZ) = g(VuV,FZ) = g(VuV, ]Z) - g(VuV, TZ)

for UV e D and Z € D?. After some calculation, we obtain
g((U, V), FZ) = g(VuZ, V) + g(VuTZ, V) .

Here, we know Vi Z = U(Ino)Z and Vi Z = U(Ino0)TZ from (2). Thus, we get
g, V),FZ) = U(lno)g9(Z,]V) + U(lno)g(TZ, V) =0 ,
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since g(Z,JV) = g(TZ, V) = 0. So, (51) follows. Now, we prove (53). Let V € DT and Z, W € DY. Then using
(4),(7) and (8), we have

g(h(V, 2), FW) = —g(V 2]V, W) = g(V,V, TW) .
Again, by (2), we easily get (53). Similarly, we can obtain (52). O

The last lemma shows partially us the behavior of the second fundamental form & of the biwarped product
generalized J-induced submanifolds of order 1 of type Mr X M, X; Mg in the normal subbundle F (D).

Remark 5.5. Equation (48) of Lemma 5.3 and equation (51) of Lemma 5.4 also hold for skew CR-warped product
submanifolds of Kithler manifolds, see Lemma 4 of [30]. Moreover, equations (51) and (53) of Lemma 5.4 are also valid
for warped product pointwise semi-slant submanifolds in Kihler manifolds, see Lemma 5.3 of [31].

By (48) and (51), we immediately get the following result.

Corollary 5.6. Let M be a biwarped product generalized J-induced submanifold of order 1 in the form MrX M X; Mg
of a Kiihler manifold (M, ], g) such that the invariant normal subbundle D = {0}. Then M is DT -geodesic.

Lastly, we give a necessary and sufficient condition for such submanifolds to be locally trivial.

Theorem 5.7. Let M be a biwarped product proper generalized |-induced submanifold in the form Mr X My X; Mg
of a Kiihler manifold (M, ], g) such that the invariant normal subbundle D = {0}. Then M is locally trivial if and
only if M is both (DT, D*) and (DT, D)-mixed geodesic.

Proof. Let M be a biwarped product proper generalized J-induced submanifold of order 1 in the form

Mr Xy M, X; My of a Kéhler manifold (M, ], g) such that the invariant normal subbundle ET ={0}. If M
is locally trivial, then the warping functions f and o are constants. By (49), we have g(h(V, X), JY) = 0 for
VeDNand X,Y € D, since JV(In f) = 0. Taking into account the equation (16) and (52), we get h(V, X) = 0.
It means that M is (DT, D*)-mixed geodesic.

On the other hand, for any V € DT and Z, W € DY, we have g(h(V, Z), FW) = 0 from (53), since JV(Ino) = 0
and V(Ino) = 0. Taking into account the equation (16) and (50), we obtain h(V, Z) = 0. Which says us M is
(DT, DP)-mixed geodesic.

Conversely, let M be both (DT, D*) and (DT, DY)-mixed geodesic. Then, for any V € DT, from (49) we
conclude that JV(In f) = 0, since M is (DT, D*)-mixed geodesic. Hence, it follows that f is a constant. Since
M is also (DT, DY)-mixed geodesic, for V € DT and Z, W € DY, we have

JV(no)g(Z, W) + V(Ino)g(Z, TW) =0 (54)
from (53). If we put V = JV in (54), we obtain

-V(no)g(Z W)+ JV(Ino)g(Z, TW) =0 .
If we take W = TW in the last equation and use (10), the last equation becomes

~V(Ino)g(Z, TW) - cos?0]V(Ino)g(Z, W) =0 . (55)
From (54) and (55), we get

sin*0]V(Ino)g(Z, W) =0 . (56)

Since M is proper, sinf # 0. So, we deduce that JV(In o) = 0 from (56). Hence, it follows that ¢ is a constant.
Thus, M must be locally trivial, since we found the warping functions f and ¢ as constants. [
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6. An inequality for non-trivial biwarped product generalized J-induced submanifolds of order 1 in the
form My Xy M, X; My

In this section, by using the results given the preceding section, we shall establish an inequality for the
squared norm of the second fundamental form in terms of the warping functions for biwarped product
generalized J-induced submanifolds of order 1 in the form Mr Xy M, X, Mg, where Mr is a holomorphic,
M, is a totally real and My is a pointwise slant submanifold of a Kéhler manifold(M, J, ).

Let M be a (k+n+m)-dimensional biwarped product generalized J-induced submanifold of order 1 of type
Mr X ¢ M, X; Mg of a Kdhler manifold M. We choose a canonical orthonormal basis {e1, ..., ex, &1, ..., €4, 81, ..., m,
€], s € 81, e JE, €1, ..., €1} of M such that {ej, ..., e} is an orthonormal basis of D7, {¢1, ..., &,} is an orthonormal
basis of D+, {&y, ..., &,,} is an orthonormal basis of DY, {Jéi, ..., Jé,} is an orthonormal basis of ]D+, {el, ... elis

—T
an orthonormal basis of FD? and {é}, ..., )} is an orthonormal basis of D . Here, k = dim(D"), n = dim(D"),
m = dim(D% and | = dim(D' ).
Remark 6.1. In view of (7), we can observe that {Jey, ..., Je} is also an orthonormal basis of DT. On the other

hand, with the help of (11) and (12), we can see that {secOTey, ..., secOTé,,} is also an orthonormal basis of DY and
{cscOFey, ..., cscOFe,,} is also an orthonormal basis of FDO, where O is the slant function of Do,

Theorem 6.2. Let M be a biwarped product proper generalized J-induced submanifold of order 1 in the form Mr X
M, X, Mg of a Kiihler manifold (M, ], g). Then the squared norm of the second fundamental form h of M satisfies

I > 2{n|IV(In £)|I* + m(csc*O + cot*0)||V(In o)|I*} (57)

where n = dim(M,) and m = dim(Mp). The equality case of (57) holds identically if and only if the following
assertions are trie.

a) My is a totally geodesic submanifold in M.

b) M, and My are totally umbilic submanifolds in M with their mean curvature vector fields —V(In f) and —V(In o),
respectively.

¢) M is minimal in M.

d) M is (D*, D)-mixed geodesic.

Proof. By the decomposition (15), the squared norm of the second fundamental form & can be written as
1 = (D", DOI? + (D, DHI? + 1D, DI
+2{ (DT, DHIE + (DT, DV + D+, DR,

In view of decomposition (16) and by (48)~(53), which can be explicitly written as follows:

I =Y gh(en, @), Je? + ) Y gn@, &), )

ab,c=1 ab=1 r=1

+ Z Z g(h(e,, &), Jé,)* + i g(h(e, &), )

r,s=1 a=1 7,5,4=1

k n k m
+2)° Y gllei ), Jal +2) ) glile ), ¢ (58)

i=1 ab=1 i=1 rs=1

+ 2i i g2, 2,), J2,)* + 2i i g(h(e,, 2,),¢5)

ab=1 r=1 a=1 rs=1

k+n+m 1

+ Y ) gliea,en) e’

AB=1 t=1
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Where the set {ea}1<a<(x+n+m) is an orthonormal basis of M. Hence, we get

k n

k m
e 2 2{ Y Y gt Je? + ) Y gt )2} (59)

i=1 a,b=1 i=1 rs=1

Using (49) and Remark 6.1, we arrive

k n k m
P > 2{ Y " Jeitin g )+ )" Y glhtei, &), cscOFe)?}

i=1 a,b=1 i=1 rs=1

from the inequality (59). Using (53) and after some calculation we find

k m
P > 26V PP +2)", )" (esc){ Jeiino)g(er )2
i=1 rs=1 (60)

+2Jei(Ino)g(er, &)ei(ln 0)g(e,, Tes) + (ei(Ino)g(er, Tés))Z}-

from the last inequality. Here,

kK m
Y. Y {fetnoigte, eeinolge, 7o)
i=1 r,s=1
k

Z i {g(V Ino, Je))g(VIno,e)g(e, e)ge:, TES)}

i=1 rs=1

m k
==Y Y 0@Vt o) e, [V o) fo(e., 2, T2

rs=1 i=1

= —g(V(Ino), [V(in0)) Y 9, 2.)9(@,, Té.) = 0.
r,s=1
Thus, by Remark 6.1, the equation (11) and the last yield, we deduce the inequality (57) from the inequality
(60).

Next, from (58) we see that the equality case of (57) holds identically if and only if the following
conditions hold.

WD', D) = {0}, WD+, D+) = {0}, DO, D% = {0} (61)
and
h(D*, D) = {0}. (62)

Since Mr is totally geodesic in M, from the first condition in (61) it follows that Mr is also totally geodesic
in M. So, assertion a) follows. Now, let i+ denote the second fundamental of M, in M. We know that
(DL, D*) € DT from [21]. Then for V € DT and X, Y € D+, we have g(h* (X, Y), V) = g(VxY, V). Here, we
know VxY =+ VxY — g(X, Y)V(In f) from (3), where *V is an induced connection on M, . Hence, we obtain

g (X, Y), V) = =V(In /)g(X,Y) = —g(¢(X, Y)V(In f), V) .
It follows that

(X, Y) = —g(X, Y)V(In f) (63)
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from the last equation. Thus, combining the second condition in (61) and (63), we can deduce that M, is
a totally umbilic submanifold in M with its mean curvature vector field —V(In f). By a similar argument,
we can find My as a totally umbilic submanifold in M with its mean curvature vector field —V(Ino). So,
assertion b) is obtained. Assertions c) and d) immediately follow from (61) and (62), respectively. [

Remark 6.3. In case D° = {0}, Theorem 6.2 coincides with Theorem 5.1 of [8]. In other words, Theorem 6.2 is a
generalization of Theorem 5.1 of [8]. Moreover, Theorem 6.2 coincides with Theorem 5.2 of [31] if D+ = {0}. Thus,
Theorem 6.2 is also a generalization of Theorem 5.2 of [31].
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