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Abstract. We study biwarped product submanifolds which are special cases of multiply warped product
submanifolds in Kähler manifolds. We observe the non-existence of such submanifolds under some cir-
cumstances. We show that there exists a non-trivial biwarped product submanifold of a certain type by
giving an illustrate example. We also give a necessary and sufficient condition for such submanifolds to be
locally trivial. Moreover, we establish an inequality for the squared norm of the second fundamental form
in terms of the warping functions for such submanifolds. The equality case is also discussed.

1. Introduction

Bishop and O’ Neill [4] introduced the concept of warped product of Riemannian manifolds to construct
a large class of complete manifolds of negative curvature. This concept is also a generalization of the usual
product of Riemannian manifolds. Nölker [21] considered the notion of multiply warped products as a
generalization of the warped products. Since that time, multiply warped products has been studied by
many authors. For example, Ünal [38] studied partially the geometry of the multiply warped products
when the metrics of such products are Lorentzian. Curvature properties of such products were investigated
by Dobarro and Ünal [14].

The concept of warped products or multiply warped products play very important roles in physics as
well as in differential geometry, especially in the theory of relativity. In fact, the standard spacetime models
such as Robertson-Walker, Schwarschild, static and Kruscal are warped products. Also, the simplest models
of neighborhoods of stars and black holes are warped products [23]. Moreover, many solutions to Einstein’s
field equation can be expressed in terms of warped products [2].

In differential geometry, especially in almost complex geometry, one of the most intensively research
areas is the theory of submanifolds. In fact, the almost complex structure of an almost Hermitian manifold
determines several classes of submanifolds such as holomorphic(invariant), totally real(anti-invariant) [40],
CR- [3], generic [6], slant [7], semi-slant [24], hemi-slant(pseudo-slant) [5, 29], pointwise slant [10, 15],
bi-slant [5], skew CR- and generic submanifolds [25]. Among them, the last one contains all other classes.
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The theory of warped product submanifolds has been becoming a popular research area since Chen
[8] studied the warped product CR-submanifolds in Kähler manifolds. In fact, several classes of warped
product submanifolds appeared in the last fifteen years (see [26, 28–31]). Also, warped product submani-
folds have been studying in different kinds of structures such as nearly Kähler [33], para-Kähler [12], locally
product Riemannian [32, 34], cosymplectic [37], Sasakian [19], generalized Sasakian [27], trans-Sasakian
[17], (κ, µ)− [36], Kenmotsu [16, 20] and quaternion [18]. Most of the studies related to the theory of
warped product submanifolds can be found in Chen’s coming book [9]. Recently, Chen and Dillen [11]
studied multiply warped product submanifolds in Kähler manifolds and they obtained very useful optimal
inequalities. We note that such submanifolds were also studied in Kenmotsu manifolds [22].

In this paper, we consider and study biwarped product submanifolds in Kähler manifolds. Here, a
biwarped product means that a multiply warped product which has only two fibers. We observe the
non-existence of biwarped product submanifolds under some circumstances. After giving an illustrate
example, we study such submanifolds in case of the base factor is holomorphic and one of the two fibers
is totally real and the other one is pointwise slant submanifold. We also give characterization for this
kind of submanifolds. Moreover, we investigate the behavior of the second fundamental form of such
submanifolds and as a result, we give a necessary and sufficient condition for such manifolds to be locally
trivial. Furthermore, an inequality for the squared norm of the second fundamental form in terms of the
warping functions for such submanifolds is obtained. The equality case is also considered.

2. Preliminaries

In this section, we recall the fundamental definitions and notions needed further study. In fact, in
subsection 2.1, we will recall the definition of the multiply warped product manifolds. In subsection 2.2,
we will give the basic background for submanifolds of Riemannian manifolds. The definition of a Kähler
manifold and the some classes of submanifolds of Kähler manifolds are placed in subsection 2.3.

2.1. Multiply warped product manifolds

Let (Mi, 1i) be Riemannian manifolds for any i ∈ {0, 1, ..., k} and let f j : M0 → (0,∞) be smooth functions
for any j ∈ {1, 2, ..., k}. Then the multiply warped product manifold [21] M̄ = M0 × f1 M1 × ...× fk Mk is the product
manifold M̃ = M0 ×M1 × ... ×Mk endowed with the metric

1 = π∗0(10) ⊕ ( f1 ◦ π0)2π∗1(11) ⊕ ... ⊕ ( fk ◦ π0)2π∗k(1k).

More precisely, for any vector fields X and Y of M̄, we have

1(X,Y) = 10(π0∗X, π0∗Y) +

k∑
i=1

( fi ◦ π0)21i(πi∗X, πi∗Y),

where πi : M̃ → Mi is the canonical projection of M̃ onto Mi, π∗i (1i) is the pullback of 1i by πi and the
subscript ∗ denotes the derivative map of πi for each i. Each function f j is called a warping function and each
manifold (M j, 1 j), j ∈ {1, 2, ..., k} is called a fiber of the multiply warped product M̄. The manifold (M0, 10) is
called a base manifold of M̄. As well known, the base manifold of M̄ is totally geodesic and the fibers of M̄
are totally umbilic in M̄.

Let M̄ = M0 × f1 M1 × ... × fk Mk be multiply warped product manifold, if k = 1, then we get a (singly)
warped product [4]. We call the multiply warped product manifolds as biwarped product manifolds for k = 2.
In other words, a biwarped product manifold has the form M0× f1 M1× f2 M2.We say that a biwarped product
manifold is trivial, if the warping functions f1 and f2 are constants. Note that biwarped product manifolds
were also studied under the name of twice warped products [1].
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Let M̄ = M0 × f1 M1 × f2 M2 be a biwarped product manifold with the Levi-Civita connection ∇̄ and i
∇

denote the Levi-Civita connection of Mi for i ∈ {0, 1, 2}. By usual convenience, we denote the set of lifts of
vector fields on Mi by L(Mi) and use the same notation for a vector field and for its lift. On the other hand,
since the map π0 is an isometry and π1 and π2 are (positive) homotheties, they preserve the Levi-Civita
connections. Thus, there is no confusion using the same notation for a connection on Mi and for its pullback
via πi. Then, the covariant derivative formulas for a biwarped product manifold are given by the following.

Lemma 2.1. ([1]) Let M̄ = M0 × f1 M1 × f2 M2 be a biwarped product manifold. Then, for any U,V ∈ L(M0),
X ∈ L(Mi) and Z ∈ L(M j), we have

∇̄UV = 0
∇UV, (1)

∇̄VX = ∇̄XV = V(ln fi)X, (2)

∇̄XZ =

0 if i , j,
i
∇XZ − 1(X,Z)grad (ln fi) if i = j,

(3)

where, i, j ∈ {1, 2}.

We note that grad(ln fi) ∈ L(M0) for i = 1, 2 [21].

2.2. Submanifolds of Riemannian manifolds
Let M be an isometrically immersed submanifold in a Riemannian manifold (M̄, 1). Let ∇̄ be the Levi-

Civita connection of M̄ with respect to the metric 1 and let ∇ and ∇⊥ be the induced, and induced normal
connection on M, respectively. Then, for all U,V ∈ TM and ξ ∈ T⊥M, the Gauss and Weingarten formulas
are given respectively by

∇̄UV = ∇UV + h(U,V) (4)

and

∇̄Uξ = −AξU + ∇⊥Uξ , (5)

where TM is the tangent bundle and T⊥M is the normal bundle of M in M̄. Additionally, h is the second
fundamental form of M and Aξ is the Weingarten endomorphism associated with ξ. The second fundamental
form h and the shape operator A related by

1(h(U,V), ξ) = 1(AξU,V) . (6)

The mean curvature vector field H of M is given by H = 1
m (trace h), where dim(M) = m. We say that the sub-

manifold M is totally geodesic in M̄ if h = 0, and minimal if H = 0. The submanifold M is called totally umbilical
if h(U,V) = 1(U,V)H for all U,V ∈ TM. If the manifold M is totally umbilical and its mean curvature vector
field H is parallel, i.e. 1(∇̄UH, ξ) = 0 for all U ∈ TM and ξ ∈ T⊥M, then the submanifold M is said to be
spherical or extrinsic sphere.

Let D1 and D2 be any two distributions on M. Then we say that M is D1-geodesic, if h(U,V) = 0 for all
U,V ∈ D1 and we say that (D1,D2)-mixed geodesic if h(V,X) = 0 for V ∈ D1 and X ∈ D2. If for all V ∈ D1

and X ∈ D2, ∇XV ∈ D1, thenD1 is calledD2-parallel. We say thatD1 is autoparallel ifD1 isD1-parallel. If a
distribution on M is autoparallel, then by the Gauss formula it is totally geodesic.

2.3. Some classes of submanifolds of Kähler manifolds
Let M̄ be an almost complex manifold with almost complex structure J. If there is a Riemannian metric

1 on M̄ satisfying

1(JX, JY) = 1(X,Y) (7)
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for any X,Y ∈ TM̄, then we say that (M̄, J, 1) is an almost Hermitian manifold. Let ∇̄ be the Levi-Civita
connection of the almost Hermitian manifold (M̄, J, 1) with respect to 1. Then (M̄, J, 1) is called a Kähler
manifold [40] if J is parallel with respect to ∇̄, i.e.,

(∇̄X J)Y = 0 (8)

for all X,Y ∈ TM̄.

Let M be a Riemannian manifold isometrically immersed submanifold in a Kähler manifold (M̄, J, 1).
Then the submanifold M is called a pointwise slant submanifold [10, 15] if for every point p of M, the Wirtinger
angle θ(V) between JV and the tangent space TpM at p is independent of the choice of the nonzero vector
V ∈ TpM. In this case, the angle θ can be viewed as a function on M and it is called the slant function of M.
We say that the pointwise slant submanifold M is proper neither cosθ(p) = 0 nor sinθ(p) = 0 at each point
p ∈M. (This condition is different from Chen’s definition, see [10]).

Now, let M be a submanifold of a Kähler manifold (M̄, J, 1). For any V ∈ TM, we put

JV = TV + FV . (9)

Here TV is the tangential part of JV, and FV is the normal part of JV.Then M is a pointwise slant submanifold
of M̄ if and only if, for any V ∈ TM, we have

T2V = − cos2θV (10)

for some function θ defined on M [10]. For a pointwise slant submanifold of M̄, using (9), (10) and the
Kähler structure, it is not difficult to prove the following two facts.

1(TU,TV) = cos2θ1(U,V) , (11)

1(FU,FV) = sin2θ1(U,V) (12)

for U,V ∈ TM.

Let M be a pointwise slant submanifold with slant function θ of a Kähler manifold (M̄, J, 1). If the func-
tion θ is a constant, i.e., it is also independent of the choice of the point p ∈M, then we say that M is a slant
submanifold [7].

If θ ≡ 0, then M is called a holomorphic or complex submanifold of M̄ [40]. In that case, the tangent space
TpM is invariant with respect to the almost complex structure J at each point p ∈M, i.e., J(TpM) ⊆ TpM.

If θ ≡ π
2 , then M is called a totally real submanifold of M̄ [40]. In which case, the tangent space TpM is

anti-invariant with respect to the almost complex structure J for every point p of M, i.e., J(TpM) ⊆ T⊥p M.

3. Generalized J-induced submanifolds of order 1

In this section, after renaming the generic submanifolds (in the sense of Ronsse [25]), we will give some
results concerning totally geodesicness and integrability of the distributions which are involved in the
definition of such submanifolds.

The most general class of submanifolds determined by the almost complex structure is the class of
generic submanifols which was defined by Ronsse [25]. There are two other classes of submanifolds with
the same name. One of these is the class of defined by Chen [6] and the other one is the class defined by
Yano and Kon [39]. Because of these facts, to avoid name confusion, we call the generic submanifolds (in
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the sense of Ronsse [25]) as generalized structure induced or generalized J-induced submanifolds.

Let (M̄, J, 1) be a Kähler manifold and M be a submanifold of M̄. For all p ∈M and for any tangent vectors
U,V ∈ TpM, using (7) and (9), we have

1(TU,V) = −1(U,TV) . (13)

Hence, it follows that

1(T2U,V) = 1(T2V,U) . (14)

The equation (14) says that T2 is symmetric operator on TpM for all p ∈ M. Now, let % be an eigenvalue of
T2 at p ∈M, then using (13) and (14), we have

% = −
‖TV‖2

‖V‖2

for any tangent vector V at p ∈M. Again, using (7) and (9), we obtain

−1 ≤ −
‖TV‖2

‖TV‖2 + ‖FV‖2
= −
‖TV‖2

‖JV‖2
= −
‖TV‖2

‖V‖2
≤ 0 .

Namely, the eigenvalues of T2 are in the closed interval [−1, 0]. For arbitrary p ∈M, we define

D
τ
p = Ker{T2

p + τ2(p)Ip} ,

where I is the identity operator on TpM and τ is function defined on M with values in [0, 1] such that −τ2(p)
is an eigenvalue of T2

p. Specially, for boundary values of the function τ, we have

D
1
p = Ker{Fp} and D0

p = Ker{Tp} .

Here, D1
p is maximal J-invariant where asD0

p is the maximal anti-J-invariant subspace of TpM. Since, T2
p is

symmetric and diagonalizable, there is some integer k such that −τ2
1(p), ...,−τ2

k(p) are distinct eigenvalues
of T2

p. In this case, the tangent space TpM can be decomposed as a direct sum of the mutually orthogonal
T-invariant eigenspaces, i.e,

TpM = Dτ1
p ⊕ ... ⊕D

τk
p .

Moreover, if τi , 0 for i ∈ {1, ..., k}, then eachDτi
p is even dimensional.

We now recall the definitions of generic and skew CR-submanifolds defined first by Ronsse [25].

Definition 3.1. ([25]) Let M be a submanifold of a Kähler manifold (M̄, J, 1). Then M is called a generic submani-
fold if there exists an integer k functions τi, i ∈ {1, ..., k} defined on M with values in (0, 1) such that

i) Each −τ2
i , i ∈ {1, ..., k} is a distinct eigenvalue of T2

p with

TpM = D1
p ⊕D

0
p ⊕D

τ1
p ⊕ ... ⊕D

τk
p

for p ∈M.

ii) The dimensions of D1
p,D

0
p andDτi

p , i ∈ {1, ..., k} are independent of p ∈ M. In addition, if each τi is constant
on M, then M is called a skew CR-submanifold.
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As mentioned before, we call the generic submanifolds (in the sense of Ronsse [25]) as generalized struc-
ture induced or generalized J-induced submanifolds.

Based on the basic background in subsection 2.3, we see that the notion ofD1
p (respectively,D0

p) coincides
with the notion of holomorphic distribution (respectively, totally real distribution). Moreover, the notion ofDτ

p

coincides with the notion of pointwise slant distribution. In that case, with the help of (10), we have τ2 = cos2θ,
where −τ2 is an eigenvalue of T2

p while θ is the slant function of the pointwise slant distributionDθ
p . From

now on, we denote the distributionsD1,D0 andDτi
p byDT,D⊥ andDθi

p , respectively. Thus, we rearrange
the definition 3.1 as follows.

Definition 3.2. Let M be a submanifold of a Kähler manifold (M̄, J, 1). Then M is said to be a generalized structure
induced or generalized J-induced submanifold if the tangent bundle TM of M has the form

TM = DT
⊕D

⊥
⊕D

θ1 ⊕ ... ⊕Dθk ,

where DT is a holomorphic, D⊥ is a totally real and each of Dθi is a pointwise slant distribution on M and θi’s are
distinct for i = 1, ..., k. In addition, if each ofDθi is a slant distribution, then we say that M is a skew CR-submanifold.

In a special case, we have the following definition.

Definition 3.3. A submanifold M of a Kähler manifold (M̄, J, 1) is called a generalized structure induced sub-
manifold of order 1 or generalized J-induced submanifold of order 1 if it is a generalized J-induced submanifold
with k = 1, i.e. the tangent bundle TM of M has the form

TM = DT
⊕D

⊥
⊕D

θ , (15)

whereDT is a holomorphic,D⊥ is a totally real and each ofDθ is a pointwise slant distribution on M. Additionally,
if the slant function θ is constant, i.e. Dθ is a slant distribution, then M is said to be a skew CR-submanifold of
order 1 [30].

In this case, the normal bundle T⊥M of M is decomposed as

T⊥M = J(D⊥) ⊕ F(Dθ) ⊕D
T
, (16)

where D
T

is the orthogonal complementary distribution of J(D⊥) ⊕ F(Dθ) in T⊥M and it is an invariant
subbundle of T⊥M with respect to J.

We say that a generalized J-induced submanifold of order 1 is proper, ifDT , {0},D⊥ , {0} and the slant
function θ belongs to open interval (0, π2 ).

For the further study of generalized J-induced submanifolds of order 1 of a Kähler manifold, we need
the following lemma.

Lemma 3.4. Let M be a generalized J-induced submanifold of order 1 of a Kähler manifold (M̄, J, 1). Then, we have

1(∇UV,Z) = csc2θ1(AFZ JV − AFTZV,U) , (17)

1(∇ZW,V) = csc2θ1(AFTWV − AFW JV,Z) , (18)

where U,V ∈ DT and Z,W ∈ Dθ.

Proof. Using (4), (7) and (8), we have

1(∇UV,Z) = 1(∇̄U JV, JZ) = 1(∇̄U JV,TZ) + 1(∇̄U JV,FZ)

= −1(∇̄UV,T2Z) − 1(∇̄UV,FTZ) + 1(∇̄U JV,FZ).
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for U,V ∈ DT and Z ∈ Dθ. Now, using (10) and (5), we obtain

sin2θ1(∇UV,Z) = 1(AFZ JV − AFTZV,U) .

This gives (17). The other assertion can be obtained in a similar way.

Lemma 3.5. Let M be a generalized J-induced submanifold of order 1 of a Kähler manifold (M̄, J, 1). Then, we have

1(∇UV,X) = 1(AJXU, JV), (19)

1(∇UX,Z) = − sec2θ1(AJXTZ − AFTZX,U), (20)
1(∇XY,U) = −1(AJYX, JU), (21)

1(∇ZW,Y) = sec2θ1(AJYTW − AFTWY,Z), (22)
1(∇ZY,U) = −1(AJY JU,Z), (23)

1(∇XY,Z) = − sec2θ{1(AJYX,TZ) − 1(AFTZX,Y)}, (24)

1(∇XU,Z) = csc2θ{1(AFZ JU − AFTZU,X)}, (25)

where U,V ∈ DT, X,Y ∈ D⊥ and Z,W ∈ Dθ.

Proof. The proofs of all equations are same as the proofs of equations of Lemma 1, Lemma 2 and Lemma 3
of [30]. So, we omit them.

As applications of Lemma (3.4) and Lemma (3.5), we have the following results.

Theorem 3.6. Let M be a generalized J-induced submanifold of order 1 of a Kähler manifold (M̄, J, 1). Then the
holomorphic distributionDT is totally geodesic if and only if the following equations hold

1(AJXU, JV) = 0 , (26)

1(AFZU, JV) = 1(AFTZU,V) (27)

for U,V ∈ DT, X ∈ D⊥ and Z ∈ Dθ.

Proof. Let M be a generalized J-induced submanifold of order 1 of a Kähler manifold (M̄, J, 1). Then, the
holomorphic distribution DT is totally geodesic if and only if 1(∇UV,X) = 0 and 1(∇UV,Z) = 0 for all
U,V ∈ DT, X ∈ D⊥ and Z ∈ Dθ. Thus, both assertions follow from (19) and (17), respectively.

Theorem 3.7. Let M be a generalized J-induced submanifold of order 1 of a Kähler manifold (M̄, J, 1). Then the
pointwise slant distributionDθ is integrable if and only if the following equations hold

1(AFTZV − AFZ JV,W) = 1(AFTWV − AFW JV,Z) , (28)

1(AJXTW − AFTWX,Z) = 1(AJXTZ − AFTZX,W) (29)

for V ∈ DT, X ∈ D⊥ and Z,W ∈ Dθ.

Proof. Let M be a generalized J-induced submanifold of order 1 of a Kähler manifold (M̄, J, 1). Then, the
pointwise slant distribution Dθ is integrable if and only if 1([Z,W],V) = 0 and 1([Z,W],X) = 0 for all
U ∈ DT, X ∈ D⊥ and Z,W ∈ Dθ. Thus, both assertions follow from (18) and (22), respectively.

Remark 3.8. From Lemma 1 of [25] or Theorem 4.2 of [35], we know that the totally real distributionD⊥ is always
integrable.

4. Biwarped product submanifolds of Kähler manifolds

In this section, we check that the existence of biwarped product submanifolds in the form M0× f1 M1× f2 M2
of a Kähler manifold (M̄, J, 1), where M0,M1 and M2 are one of the submanifolds given in subsection 2.3.
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4.1. Existence problems
Chen proved that there do not exist (non-trivial) warped product submanifolds in the form M⊥× f MT in

a Kähler manifold M̄ such that M⊥ is a totally real and MT is a holomorphic submanifold of M̄ in Theorem
3.1 of [8], Thus, we obtain the following result.

Corollary 4.1. There do not exist (non-trivial) biwarped product submanifolds in the form M⊥ × f MT ×σ Mθ of a
Kähler manifold (M̄, J, 1) such that M⊥ is a totally real, MT is a holomorphic and Mθ is a pointwise slant or slant
submanifold of M̄.

In Theorem 3.1 of [28], Şahin showed that there is no (non-trivial) warped product submanifolds of the form
Mφ× f MT in a Kähler manifold M̄ such that Mφ is a proper slant and MT is a holomorphic submanifold of M̄.
In Theorem 4.1 of [31], he also proved that there exist no (non-trivial) warped product submanifolds of the
form Mθ × f MT in a Kähler manifold M̄ such that Mθ is a proper pointwise slant and MT is a holomorphic
submanifold of M̄. Hence, we conclude that:

Corollary 4.2. Let M̄ be a Kähler manifold. Then there exist no (non-trivial) biwarped product submanifolds of type
Mθ × f MT ×σ M⊥ of M̄ such that Mθ is a proper pointwise slant or proper slant, MT is a holomorphic and M⊥ is a
totally real submanifold of M̄.

On the other hand, in Theorem 3.2 of [28], Şahin proved that there exists no (non-trivial) warped product
submanifolds of the form MT × f Mφ in a Kähler manifold M̄ such that MT is a holomorphic and Mφ is a
proper slant submanifold of M̄. Thus, we get the following result.

Corollary 4.3. There exist no (non-trivial) biwarped product submanifolds of type MT × f Mφ ×σ M⊥ of a Kähler
manifold (M̄, J, 1) such that MT is a holomorphic, Mφ is a proper slant and M⊥ is a totally real submanifold of M̄.

Now, we consider (non-trivial) biwarped product submanifolds of the form MT × f M⊥ ×σ Mθ in a Kähler
manifold (M̄, J, 1) such that MT is a holomorphic, M⊥ is a totally real and Mφ is a pointwise slant submanifold
of M̄. We first present an example of such a submanifold.

Example 4.4. Consider the Kähler manifoldR14 with usual Kähler structure. For u, v , 0, 1 and x, z,w ∈ (0, π2 ), we
consider a submanifold M in R14 given by

y1 = u cosz, y2 = v cosz, y3 = u cosw, y4 = v cosw,
y5 = u sinz, y6 = v sinz, y7 = u sinw, y8 = v sinw,
y9 = z, y10 = w, y11 = u cosx, y12 = v cosx, y13 = u sinx, y14 = v sinx.

Then, we see that the local frame of the tangent bundle TM of M is given by

U = cosz
∂
∂y1

+ cosw
∂
∂y3

+ sinz
∂
∂y5

+ sinw
∂
∂y7

+ cosx
∂
∂y11

+ sinx
∂
∂y13

,

V = cosz
∂
∂y2

+ cosw
∂
∂y4

+ sinz
∂
∂y6

+ sinw
∂
∂y8

+ cosx
∂
∂y12

+ sinx
∂
∂y14

,

X = −u sinx
∂
∂y11

− v sinx
∂
∂y12

+ u cosx
∂
∂y13

+ v cosx
∂
∂y14

,

Z = −u sinz
∂
∂y1
− v sinz

∂
∂y2

+ u cosz
∂
∂y5

+ v cosz
∂
∂y6

+
∂
∂y9

,

W = −u sinw
∂
∂y3
− v sinw

∂
∂y4

+ u cosw
∂
∂y7

+ v cosw
∂
∂y8

+
∂
∂y10

,

where (y1, ..., y14) are natural coordinates ofR14. ThenDT = span{U,V} is a holomorphic,D⊥ = span{X} is a totally
real andDθ = span{Z,W} is a (proper) pointwise slant distribution with the slant function θ = cos−1( 1

1+u2+v2 ). Thus,
M is a generalized J-induced submanifold of order 1 of R14. Also, one can easily see the distribution DT is totally
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geodesic and the distributionsD⊥ andDθ are integrable. If we denote the integral submanifolds ofDT,D⊥ andDθ

by MT,M⊥ and Mθ, respectively, then the induced metric tensor of M is

ds2 = 3(du2 + dv2) + (u2 + v2)dx2 + (1 + u2 + v2)(dz2 + dw2)
= 1MT + (u2 + v2)1M⊥ + (1 + u2 + v2)1Mθ .

Thus, M = MT × f M⊥ ×σ Mθ is a (non-trivial) biwarped product generalized J-induced submanifold of order 1 ofR14

with warping functions f =
√

u2 + v2 and σ =
√

1 + u2 + v2.

5. Biwarped product generalized J-induced submanifolds of order 1 in the form MT × f M⊥ ×σ Mθ

In this section, we give a characterization for biwarped product generalized J-induced submanifolds of
order 1 in the form MT × f M⊥ ×σ Mθ, where MT is a holomorphic, M⊥ is a totally real and Mθ is a pointwise
slant submanifold of a Kähler manifold (M̄, J, 1). After that, we investigate the behavior of the second
fundamental form of such submanifolds and as a result, we give a necessary and sufficient condition for
such manifolds to be locally trivial. Now, we give one of the main theorems of this paper. We first recall
the following fact given in [13] to prove our theorem.

Remark 5.1. (Remark 2.1 [13]) Suppose that the tangent bundle of a Riemannian manifold M splints into an
orthogonal sum TM = D0 ⊕ D1 ⊕ ... ⊕ Dk of non-trivial distributions such that each D j is spherical and its
complement in TM is autoparallel for j ∈ {1, 2, ..., k}. Then the manifold M is locally isometric to a multiply warped
product M0 × f1 M1 × ... × fk Mk.

Theorem 5.2. Let M be a proper generalized J-induced submanifold of order 1 of a Kähler manifold (M̄, J, 1). Then
M is a locally biwarped product submanifold of type MT × f M⊥ ×σ Mθ if and only if, we have

AJXV = −JV(λ)X, (30)

AFTZV − AFZ JV = − sin2θV(µ)Z, (31)

for some functions λ and µ satisfying X(λ) = Z(λ) = 0 and X(µ) = Z(µ) = 0, and

1(AJYTZ,X) = 1(AFTZY,X), (32)
1(AJYTW,Z) = 1(AFTZY,W). (33)

for V ∈ DT, X,Y ∈ D⊥ and Z,W ∈ Dθ.

Proof. Let M be a biwarped product proper generalized J-induced submanifold of order 1 of a Kähler
manifold (M̄, J, 1) in the form MT × f M⊥ ×σ Mθ. Then for any V ∈ DT, X ∈ D⊥ and Z ∈ Dθ using (4)∼(5) and
(7)∼(8), we have

1(AJXV,U) = −1(∇̄U JX,V) = 1(∇̄UX, JV) = 1(∇UX, JV).

Here, we know ∇UX = U(ln f )X from (2). Thus, we obtain

1(AJXV,U) = U(ln f )1(X, JV) = 0 , (34)

since 1(X, JV) = 0. Similarly, we have

1(AJXV,Z) = −1(∇̄Z JX,V) = 1(∇̄ZX, JV) = 1(∇ZX, JV).

Thus, we obtain

1(AJXV,Z) = 0 , (35)
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since ∇ZX = 0 from (3). Next, by a similar argument, for Y ∈ D⊥, we have

1(AJXV,Y) = −1(∇̄Y JX,V) = 1(∇̄YX, JV) = −1(∇Y JV,X).

Using (2), we obtain

1(AJXV,Y) = 1(−JV(ln f )X,Y) . (36)

Moreover, we have X(ln f ) = Z(ln f ) = 0, since f depends on only points of MT. So, we conclude that
λ = ln f . Thus, from (34)∼(36), it follows that (30). Now, we prove (31). Using (4)∼(5) and (7)∼(10), we have

1(AFTZV − AFZ JV,U) = − 1(∇̄VFTZ,U) + 1(∇̄JVFZ,U)

= − 1(∇̄V JTZ,U) + 1(∇̄VT2Z,U)
+ 1(∇̄JV JZ,U) − 1(∇̄JVTZ,U)

= + 1(∇̄VTZ, JU) − V[cos2θ]1(Z,U) − cos2θ1(∇̄VZ,U)
− 1(∇̄JVZ, JU) − 1(∇̄JVTZ,U)

= + 1(∇VTZ, JU) − cos2θ1(∇VZ,U)
− 1(∇JVZ, JU) − 1(∇JVTZ,U).

Here, if we use (2), we obtain

1(AFTZV − AFZ JV,U) =V(ln σ)1(TZ, JU) − cos2θV(ln σ)1(Z,U)
− JV(ln σ)1(Z, JU) − JV(ln σ)1(TZ,U).

Hence, we get

1(AFTZV − AFZ JV,U) = 0 , (37)

since 1(TZ, JU) = 1(Z,U) = 1(Z, JU) = 1(TZ,U) = 0. Similarly, we have

1(AFTZV − AFZ JV,X) = − 1(∇̄XFTZ,V) + 1(∇̄XFZ, JV)

= − 1(∇̄X JTZ,V) + 1(∇̄XT2Z,V)
+ 1(∇̄X JZ, JV) − 1(∇̄XTZ, JV)

= + 1(∇̄XTZ, JV) − X[cos2θ]1(Z,V) − cos2θ1(∇̄XZ,V)
− 1(∇̄XZ,V) − 1(∇̄XTZ, JV)

= + 1(∇XTZ, JV) − cos2θ1(∇XZ,V)
− 1(∇XZ,V) − 1(∇XTZ, JV).

Here, we know ∇XTZ = ∇XZ = 0 from (3). So, we get

1(AFTZV − AFZ JV,X) = 0 . (38)

On the other hand, using (18) , we have

1(AFTZV − AFZ JV,W) = − sin2θ1(∇WV,Z) .

Using (2), we get

1(AFTZV − AFZ JV,W) = 1(− sin2θV(ln σ)Z,W) . (39)

Moreover, we have X(ln σ) = Z(ln σ) = 0, since σ depends on only points of MT. So, we conclude that
µ = ln σ. Thus, (31) follows form (37)∼(39). Next, we prove (32) and (33). Using (24) and (3), we have

1(AJYX,TZ) − 1(AFTZX,Y) = − cos2θ1(∇XZ,Y) = 0 .
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Thus, (32) follows. Similarly, using (34) and (3), we have

1(AJYTW,Z) = 1(AFTZY,W) = − cos2θ1(∇ZY,W) = 0 .

So, we get (33).

Conversely, assume that M is a proper generalized J-induced submanifold of order 1 of a Kähler manifold
(M̄, J, 1) such that (30)∼(33) hold. Then we satisfy (26) and (27) by using (30) and (31), respectively. Thus,
by Theorem 3.6, the holomorphic distribution DT is totally geodesic and as a result it is integrable. By
(32) and (33), we easily satisfy (28) and (29). Thus, by Theorem 3.7, the pointwise slant distribution Dθ is
integrable. Also, by Remark 3.8, the totally real distributionD⊥ is always integrable. Let MT, M⊥ and Mθ

be the integral manifolds of DT, D⊥ and Dθ, respectively. If we denote the second fundamental form of
M⊥ in M by h⊥, for X,Y ∈ D⊥ and Z ∈ Dθ, using (4), (24) and (32), we have

1(h⊥(X,Y),Z) = 1(∇XY,Z) = 0 . (40)

For any X,Y ∈ D⊥ and V ∈ DT, using (4), (20) and (30), we have

1(h⊥(X,Y),V) = 1(∇XY,V) = −1(AJYX, JV) = −V(λ)1(X,Y) .

After some calculation, we obtain

1(h⊥(X,Y),V) = 1(−1(X,Y)∇λ,V) , (41)

where ∇λ is the gradient of λ. Thus, from (40) and (41), we conclude that

h⊥(X,Y) = −1(X,Y)∇λ .

This equation says that M⊥ is totally umbilic in M with the mean curvature vector field −∇λ.Now, we show
that −∇λ is parallel. We have to satisfy 1(∇X∇λ,E) = 0 for X ∈ D⊥ and E ∈ (D⊥)⊥ = DT

⊕D
θ. Here, we can

put E = V + Z, where V ∈ DT and Z ∈ Dθ. By direct computations, we obtain

1(∇X∇λ,E) ={X1(∇λ,E) − 1(∇λ,∇XE)}
={X(E(λ)) − [X,E]λ − 1(∇λ,∇EX)}
={[X,E]λ + E(X(λ)) − [X,E]λ − 1(∇λ,∇EX)}
= − 1(∇λ,∇VX) − 1(∇λ,∇ZX),

since X(λ) = 0. Here, for any U ∈ DT, we have 1(∇VX,U) = −1(∇VU,X) = 0, since MT is totally geodesic in
M. Thus, ∇VX ∈ D⊥ or ∇VX ∈ Dθ. In either case, we have

1(∇λ,∇VX) = 0 . (42)

On the other hand, from (23), we have 1(∇ZX,U) = −1(AJX JU,Z).Here, using (32), we obtain 1(∇ZX,U) = 0.
That is; ∇ZX ∈ D⊥ or ∇ZX ∈ Dθ. In either case, we get

1(∇λ,∇ZX) = 0 . (43)

From (42) and (43), we find

1(∇X∇λ,E) = 0 .

Thus, M⊥ is spherical, since it is also totally umbilic. Consequently,D⊥ is spherical.
Next, we show that Dθ is spherical. Let hθ denote the second fundamental form of Mθ in M. Then for
Z,W ∈ Dθ and X ∈ D⊥, using (4), (22) and (32), we have

1(hθ(Z,W),X) = 1(∇ZW,X) = 0 . (44)
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On the other hand, for any V ∈ DT, using (4) and (18), we have

1(hθ(Z,W),V) = 1(∇ZW,V) = csc2θ1(AFTWV − AFW JV,Z) .

Using (31), we obtain

1(hθ(Z,W),V) = −V(µ)1(Z,W) .

After some calculation, we get

1(hθ(Z,W),V) = −1(1(Z,W)∇µ,V) , (45)

where ∇µ is the gradient of µ. Thus, from (44) and (45), we deduce that

hθ(Z,W) = −1(Z,W)∇µ .

It means that Mθ is totally umbilic in M with the mean curvature vector field−∇µ.What’s left is to show that
−∇µ is parallel. We have to satisfy 1(∇Z∇µ,E) = 0 for Z ∈ Dθ and E ∈ (Dθ)⊥ = DT

⊕D
⊥. Here, E = V + X,

for V ∈ DT and X ∈ D⊥. Upon direct calculation, we obtain

1(∇Z∇µ,E) ={Z1(∇µ,E) − 1(∇µ,∇ZE)}
={Z(E(µ)) − [Z,E]µ − 1(∇µ,∇EZ)}
={[Z,E]µ + E(Z(µ)) − [Z,E]µ − 1(∇µ,∇EZ)}
= − 1(∇µ,∇VZ) − 1(∇µ,∇XZ),

since Z(µ) = 0. Here, for any U ∈ DT, using (25) and (30), we have

1(∇XZ,U) = − csc2θ{1(AFZ JU − AFTZU,X)} = 0 .

So, ∇XZ ∈ D⊥ or ∇XZ ∈ Dθ. Hence

1(∇µ,∇XZ) = 0 , (46)

since ∇µ ∈ DT. On the other hand, since MT is totally geodesic in M, we have 1(∇VZ,U) = −1(∇VU,Z) = 0.
Hence, ∇VZ ∈ D⊥ or ∇VZ ∈ Dθ. So, we get

1(∇µ,∇VZ) = 0 . (47)

By (46) and (47), we find

1(∇Z∇µ,E) = 0 .

Lastly, we prove that (D⊥)⊥ = DT
⊕D

θ and (Dθ)⊥ = DT
⊕D

⊥ are autoparallel. In fact,DT
⊕D

θ is autoparallel
if and only if all four types of covariant derivatives ∇UV,∇UZ,∇ZU,∇ZW are again in DT

⊕ D
θ for U,V ∈

D
T and Z,W ∈ D

θ. This is equivalent to say that all four inner products 1(∇UV,X), 1(∇UZ,X), 1(∇ZU,X),
1(∇ZW,X) vanish, where X ∈ D⊥. Using (19) and (30), we get

1(∇UV,X) = 1(∇ZU,X) = 0 .

By (20), (22) and (32), we get

1(∇UZ,X) = 1(∇ZW,X) = 0 .

Thus, DT
⊕ D

θ is autoparallel. On the other hand, DT
⊕ D

⊥ is autoparallel if and only if all four inner
products 1(∇UV,Z), 1(∇UX,Z), 1(∇XU,Z), 1(∇XY,Z) vanish, where U,V ∈ DT, X,Y ∈ D⊥ and Z ∈ Dθ. Firstly,
we have already 1(∇UX,Z) = 0 from above. Using (17), (25) and (31), we get

1(∇UV,Z) = 1(∇XU,Z) = 0 .
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Using (24) and (32), we find

1(∇XY,Z) = 0 .

So,DT
⊕D

⊥ is autoparallel. Thus, by Remark 5.1, M is locally biwarped product submanifold of the form
MT × f M⊥ ×σ Mθ.

Let M = MT × f M⊥ ×σ Mθ be a non-trivial biwarped product generalized J-induced submanifold of order 1
of a Kähler manifold (M̄, J, 1). Next, we investigate the behavior of the second fundamental form h of such
submanifolds.

Lemma 5.3. Let M be a biwarped product generalized J-induced submanifold of order 1 in the form MT× f M⊥×σMθ

of a Kähler manifold (M̄, J, 1). Then for the second fundamental form h of M in M̄, we have

1(h(U,V), JX) = 0 , (48)
1(h(V,X), JY) = −JV(ln f )1(X,Y) , (49)
1(h(V,Z), JX) = 0 , (50)

where U,V ∈ DT, X,Y ∈ D⊥ and Z ∈ Dθ.

Proof. Using (4),(7) and (8), we have

1(h(U,V), JX) = 1(∇̄UV, JX) = −1(∇̄U JX,V) = 1(∇̄UX, JV)

for U,V ∈ DT and X ∈ D⊥. Again, using (4), we obtain 1(h(U,V), JX) = 1(∇UX, JV). Here, we know
∇UX = U(ln f )X from (2). Thus, we obtain 1(h(U,V), JX) = U(ln f )1(X,V) = 0, since 1(X,V) = 0. So, (48)
follows. Now, let V ∈ DT and X,Y ∈ D⊥. Then using (4), (7) and (8), we have

1(h(V,X), JY) = 1(∇̄XV, JY) = −1(∇̄X JV,Y) = −1(∇X JV,Y) .

Here, we know ∇X JV = JV(ln f )X from (2). Thus, we get (49). The last assertion can be obtained in a similar
method.

The previous lemma shows partially us the behavior of the second fundamental form h of the biwarped
product generalized J-induced submanifolds of order 1 has the form MT × f M⊥ ×σ Mθ in the normal
subbundle J(DT).

Lemma 5.4. Let M be a biwarped product generalized J-induced submanifold of order 1 in the form MT× f M⊥×σMθ

of a Kähler manifold (M̄, J, 1). Then for the second fundamental form h of M in M̄, we have

1(h(U,V),FZ) = 0 , (51)
1(h(V,X),FZ) = 0 , (52)
1(h(V,Z),FW) = −JV(ln σ)1(Z,W) − V(ln σ)1(Z,TW) , (53)

where U,V ∈ DT, X ∈ D⊥ and Z,W ∈ Dθ.

Proof. Using (4),(7) and (8), we have

1(h(U,V),FZ) = 1(∇̄UV,FZ) = 1(∇̄UV, JZ) − 1(∇̄UV,TZ)

for U,V ∈ DT and Z ∈ Dθ. After some calculation, we obtain

1(h(U,V),FZ) = 1(∇UZ, JV) + 1(∇UTZ,V) .

Here, we know ∇UZ = U(ln σ)Z and ∇UZ = U(ln σ)TZ from (2). Thus, we get

1(h(U,V),FZ) = U(ln σ)1(Z, JV) + U(ln σ)1(TZ,V) = 0 ,
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since 1(Z, JV) = 1(TZ,V) = 0. So, (51) follows. Now, we prove (53). Let V ∈ DT and Z,W ∈ Dθ. Then using
(4),(7) and (8), we have

1(h(V,Z),FW) = −1(∇Z JV,W) − 1(∇ZV,TW) .

Again, by (2), we easily get (53). Similarly, we can obtain (52).

The last lemma shows partially us the behavior of the second fundamental form h of the biwarped product
generalized J-induced submanifolds of order 1 of type MT × f M⊥ ×σ Mθ in the normal subbundle F(Dθ).

Remark 5.5. Equation (48) of Lemma 5.3 and equation (51) of Lemma 5.4 also hold for skew CR-warped product
submanifolds of Kähler manifolds, see Lemma 4 of [30]. Moreover, equations (51) and (53) of Lemma 5.4 are also valid
for warped product pointwise semi-slant submanifolds in Kähler manifolds, see Lemma 5.3 of [31].

By (48) and (51), we immediately get the following result.

Corollary 5.6. Let M be a biwarped product generalized J-induced submanifold of order 1 in the form MT× f M⊥×σMθ

of a Kähler manifold (M̄, J, 1) such that the invariant normal subbundleD
T

= {0}. Then M isDT-geodesic.

Lastly, we give a necessary and sufficient condition for such submanifolds to be locally trivial.

Theorem 5.7. Let M be a biwarped product proper generalized J-induced submanifold in the form MT × f M⊥ ×σ Mθ

of a Kähler manifold (M̄, J, 1) such that the invariant normal subbundle D
T

= {0}. Then M is locally trivial if and
only if M is both (DT,D⊥) and (DT,Dθ)-mixed geodesic.

Proof. Let M be a biwarped product proper generalized J-induced submanifold of order 1 in the form

MT × f M⊥ ×σ Mθ of a Kähler manifold (M̄, J, 1) such that the invariant normal subbundle D
T

= {0}. If M
is locally trivial, then the warping functions f and σ are constants. By (49), we have 1(h(V,X), JY) = 0 for
V ∈ DT and X,Y ∈ D⊥, since JV(ln f ) = 0. Taking into account the equation (16) and (52), we get h(V,X) = 0.
It means that M is (DT,D⊥)-mixed geodesic.
On the other hand, for any V ∈ DT and Z,W ∈ Dθ, we have 1(h(V,Z),FW) = 0 from (53), since JV(ln σ) = 0
and V(ln σ) = 0. Taking into account the equation (16) and (50), we obtain h(V,Z) = 0. Which says us M is
(DT,Dθ)-mixed geodesic.

Conversely, let M be both (DT,D⊥) and (DT,Dθ)-mixed geodesic. Then, for any V ∈ DT, from (49) we
conclude that JV(ln f ) = 0, since M is (DT,D⊥)-mixed geodesic. Hence, it follows that f is a constant. Since
M is also (DT,Dθ)-mixed geodesic, for V ∈ DT and Z,W ∈ Dθ, we have

JV(ln σ)1(Z,W) + V(ln σ)1(Z,TW) = 0 (54)

from (53). If we put V = JV in (54), we obtain

−V(ln σ)1(Z,W) + JV(ln σ)1(Z,TW) = 0 .

If we take W = TW in the last equation and use (10), the last equation becomes

−V(ln σ)1(Z,TW) − cos2θJV(ln σ)1(Z,W) = 0 . (55)

From (54) and (55), we get

sin2θJV(ln σ)1(Z,W) = 0 . (56)

Since M is proper, sinθ , 0. So, we deduce that JV(ln σ) = 0 from (56). Hence, it follows that σ is a constant.
Thus, M must be locally trivial, since we found the warping functions f and σ as constants.
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6. An inequality for non-trivial biwarped product generalized J-induced submanifolds of order 1 in the
form MT × f M⊥ ×σ Mθ

In this section, by using the results given the preceding section, we shall establish an inequality for the
squared norm of the second fundamental form in terms of the warping functions for biwarped product
generalized J-induced submanifolds of order 1 in the form MT × f M⊥ ×σ Mθ, where MT is a holomorphic,
M⊥ is a totally real and Mθ is a pointwise slant submanifold of a Kähler manifold(M̄, J, 1).

Let M be a (k+n+m)-dimensional biwarped product generalized J-induced submanifold of order 1 of type
MT× f M⊥×σMθ of a Kähler manifold M̄. We choose a canonical orthonormal basis {e1, ..., ek, ẽ1, ..., ẽn, ē1, ..., ēm,
e∗1, ..., e

∗
m, Jẽ1, ..., Jẽn, ê1, ..., êl} of M̄ such that {e1, ..., ek} is an orthonormal basis ofDT, {ẽ1, ..., ẽn} is an orthonormal

basis ofD⊥, {ē1, ..., ēm} is an orthonormal basis ofDθ, {Jẽ1, ..., Jẽn} is an orthonormal basis of JD⊥, {e∗1, ..., e
∗
m} is

an orthonormal basis of FDθ and {ê1, ..., êl} is an orthonormal basis ofD
T
. Here, k = dim(DT), n = dim(D⊥),

m = dim(Dθ) and l = dim(D
T
).

Remark 6.1. In view of (7), we can observe that {Je1, ..., Jek} is also an orthonormal basis of DT. On the other
hand, with the help of (11) and (12), we can see that {secθTē1, ..., secθTēm} is also an orthonormal basis of Dθ and
{cscθFē1, ..., cscθFēm} is also an orthonormal basis of FDθ, where θ is the slant function ofDθ.

Theorem 6.2. Let M be a biwarped product proper generalized J-induced submanifold of order 1 in the form MT × f
M⊥ ×σ Mθ of a Kähler manifold (M̄, J, 1). Then the squared norm of the second fundamental form h of M satisfies

‖h‖2 ≥ 2{n‖∇(ln f )‖2 + m(csc2θ + cot2θ)‖∇(ln σ)‖2} (57)

where n = dim(M⊥) and m = dim(Mθ). The equality case of (57) holds identically if and only if the following
assertions are true.
a) MT is a totally geodesic submanifold in M̄.
b) M⊥ and Mθ are totally umbilic submanifolds in M̄ with their mean curvature vector fields −∇(ln f ) and −∇(ln σ),
respectively.
c) M is minimal in M̄.
d) M is (D⊥,Dθ)-mixed geodesic.

Proof. By the decomposition (15), the squared norm of the second fundamental form h can be written as

‖h‖2 = ‖h(DT,DT)‖2 + ‖h(D⊥,D⊥)‖2 + ‖h(Dθ,Dθ)‖2

+ 2
{
‖h(DT,D⊥)‖2 + ‖h(DT,Dθ)‖2 + ‖h(D⊥,Dθ)‖2

}
.

In view of decomposition (16) and by (48)∼(53), which can be explicitly written as follows:

‖h‖2 =

n∑
a,b,c=1

1(h(ẽa, ẽb), Jẽc)2 +

n∑
a,b=1

m∑
r=1

1(h(ẽa, ẽb), e∗r)
2

+

m∑
r,s=1

n∑
a=1

1(h(ēr, ēs), Jẽa)2 +

m∑
r,s,q=1

1(h(ēr, ēs), e∗q)2

+ 2
k∑

i=1

n∑
a,b=1

1(h(ei, ẽa), Jẽb)2 + 2
k∑

i=1

m∑
r,s=1

1(h(ei, ēr), e∗s)
2 (58)

+ 2
n∑

a,b=1

m∑
r=1

1(h(ẽa, ēr), Jẽb)2 + 2
n∑

a=1

m∑
r,s=1

1(h(ẽa, ēr), e∗s)
2

+

k+n+m∑
A,B=1

l∑
t=1

1(h(eA, eB), êt)2.
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Where the set {eA}1≤A≤(k+n+m) is an orthonormal basis of M. Hence, we get

‖h‖2 ≥ 2
{ k∑

i=1

n∑
a,b=1

1(h(ei, ẽa), Jẽb)2 +

k∑
i=1

m∑
r,s=1

1(h(ei, ēr), e∗s)
2
}
. (59)

Using (49) and Remark 6.1, we arrive

‖h‖2 ≥ 2
{ k∑

i=1

n∑
a,b=1

(Jei(ln f )1(ẽa, ẽb))2 +

k∑
i=1

m∑
r,s=1

1(h(ei, ēr), cscθFēs))2
}
.

from the inequality (59). Using (53) and after some calculation we find

‖h‖2 ≥ 2n‖∇(ln f )‖2 + 2
k∑

i=1

m∑
r,s=1

(csc2θ)
{
(Jei(ln σ)1(ēr, ēs))2

+2Jei(ln σ)1(ēr, ēs)ei(ln σ)1(ēr,Tēs) + (ei(ln σ)1(ēr,Tēs))2
}
.

(60)

from the last inequality. Here,

k∑
i=1

m∑
r,s=1

{
Jei(ln σ)1(ēr, ēs)ei(ln σ)1(ēr,Tēs)

}

=

k∑
i=1

m∑
r,s=1

{
1(∇ ln σ, Jei)1(∇ ln σ, ei)1(ēr, ēs)1(ēr,Tēs)

}

= −

m∑
r,s=1

{ k∑
i=1

1(1(∇(ln σ), ei)ei, J∇(ln σ))
}
1(ēr, ēs)1(ēr,Tēs)

= −1(∇(ln σ), J∇(ln σ))
m∑

r,s=1

1(ēr, ēs)1(ēr,Tēs) = 0.

Thus, by Remark 6.1, the equation (11) and the last yield, we deduce the inequality (57) from the inequality
(60).

Next, from (58) we see that the equality case of (57) holds identically if and only if the following
conditions hold.

h(DT,DT) = {0}, h(D⊥,D⊥) = {0}, h(Dθ,Dθ) = {0} (61)

and

h(D⊥,Dθ) = {0}. (62)

Since MT is totally geodesic in M, from the first condition in (61) it follows that MT is also totally geodesic
in M̄. So, assertion a) follows. Now, let h⊥ denote the second fundamental of M⊥ in M. We know that
h⊥(D⊥,D⊥) ⊆ DT from [21]. Then for V ∈ DT and X,Y ∈ D⊥, we have 1(h⊥(X,Y),V) = 1(∇XY,V). Here, we
know ∇XY =⊥∇XY − 1(X,Y)∇(ln f ) from (3), where ⊥∇ is an induced connection on M⊥. Hence, we obtain

1(h⊥(X,Y),V) = −V(ln f )1(X,Y) = −1(1(X,Y)∇(ln f ),V) .

It follows that

h⊥(X,Y) = −1(X,Y)∇(ln f ) (63)
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from the last equation. Thus, combining the second condition in (61) and (63), we can deduce that M⊥ is
a totally umbilic submanifold in M̄ with its mean curvature vector field −∇(ln f ). By a similar argument,
we can find Mθ as a totally umbilic submanifold in M̄ with its mean curvature vector field −∇(ln σ). So,
assertion b) is obtained. Assertions c) and d) immediately follow from (61) and (62), respectively.

Remark 6.3. In case Dθ = {0}, Theorem 6.2 coincides with Theorem 5.1 of [8]. In other words, Theorem 6.2 is a
generalization of Theorem 5.1 of [8]. Moreover, Theorem 6.2 coincides with Theorem 5.2 of [31] if D⊥ = {0}. Thus,
Theorem 6.2 is also a generalization of Theorem 5.2 of [31].
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