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cFacultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Abstract. In this paper, we consider two new q-Sturm-Liouville problems and prove that their polynomial
solutions are finitely orthogonal with respect to two weight functions which correspond to Fisher and T-
student distributions as q→ 1. Then, we obtain the general properties of these polynomial solutions, such
as orthogonality relations, three term recurrence relations, q-difference equations and basic hypergeometric
representations, where all results in the continuous case are recovered as q→ 1.

1. Introduction

Let α1, α2 and β1, β2 be constant numbers, K(x), K′(x), and w(x) be assumed continuous for x ∈ [a, b]. A
boundary value problem in the form

d
dx

(
K(x)

dyn(x)
dx

)
+ λnw(x)yn(x) = 0, (1)

where K(x) > 0, and w(x) > 0 which is defined in an open interval, say (a, b), with the boundary conditions

α1y(a) + β1y′(a) = 0, α2y(b) + β2y′(b) = 0, (2)

is referred to as a regular Sturm-Liouville problem of continuous type. Moreover, if one of the boundary
points a or b is singular (i.e. K(a) = 0 or K(b) = 0), the problem is called a singular Sturm-Liouville problem
of continuous type.
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Let n , m and yn, ym be two eigenfunctions of the differential equation (1). According to Sturm-Liouville
theory [18], these two functions are orthogonal with respect to the weight function w(x) under the given
boundary conditions (2) i.e.∫ b

a
w(x)yn(x)ym(x)dx = d2

nδmn, (3)

where δmn denotes the Kronecker delta and d2
n the norm square of the functions yn.

Two types of orthogonality can appear for relation (3), namely infinitely orthogonality and finitely
orthogonality. In the infinite case, the positive integer number n is free up to infinite, while in the finite
case some constraints on n must be imposed. Three sequences of hypergeometric polynomials which are
finitely orthogonal have been studied in [17]. The first sequence satisfies the second order linear differential
equation [17]

x(1 + x)y′′n (x) +
(
(2 − s)x + (1 + t)

)
y′n(x) − n(n + 1 − s)yn(x) = 0, n = 0, 1, 2, . . . . (4)

According to [17], the orthogonal polynomial sequence of solutions of the latter equation, denoted by
{yn(x) = M(s,t)

n (x)}n, satisfies a finite orthogonality relation as∫
∞

0

xt

(1 + x)s+t M(s,t)
n (x)M(s,t)

m (x)dx =
n! (s − n − 1))!(t + n)!

(s − 2n − 1)) (s + t − n − 1)!
δm,n,

if and only if m,n = 0, 1, 2, . . . ,N < 1
2 (s − 1) and t > −1. As well, the second finite sequence satisfies the

second order linear differential equation [17]

(1 + x2)y′′n (x) + (3 − 2p)xy′n(x) − n(n + 2 − 2p)yn(x) = 0, (5)

and its symmetric polynomial solution, denoted by yn(x) = I(p)
n (x), is finitely orthogonal as∫

∞

−∞

(1 + x2)
1
2−pI(p)

n (x)I(p)
m (x)dx =

n! 22n−1√πΓ2(p)Γ(2p − 2n)

(p − n − 1)Γ(p − n)Γ(p − n + 1
2 )Γ(2p − n − 1)

δm,n,

if and only if m,n = 0, 1, 2, . . . , N < p − 1.

Similarly, we can consider regular or singular Sturm-Liouville problem in the form [12]

Dq

(
K(x; q)Dqyn(x; q)

)
+ λn,qw(x; q)yn(x; q) = 0, (6)

where K(x; q) > 0, w(x; q) > 0 and the q-difference operator is defined by

Dq f (x) =
f (qx) − f (x)

(q − 1)x
(x , 0, q , 1), (7)

with Dq f (0) := f ′(0) (provided f ′(0) exists), and (6) satisfies a set of boundary conditions like (2). The
solutions of the above equation are known as q-orthogonal functions. Therefore, for n , m, if we have two
eigenfunctions of (6), denoted by yn(x; q) and ym(x; q), then these functions are orthogonal with respect to a
weight function w(x; q) on a discrete set [19].

As a particular case of q-orthogonal functions, the so-called q-orthogonal polynomials have been ana-
lyzed in detail (see e.g. [10, 14] and references therein) due to their applications to e.g. continued fractions
[14], q-algebras and quantum groups [15, 16, 23] or q-oscillators [1, 2, 6].

Let ϕ(x) = ax2 + bx + c and ψ(x) = dx + e, a, b, c, d, e ∈ C, d , 0 be two polynomials of degree at most 2 and
1. If {yn(x; q)}n is a sequence of polynomials that satisfies the q-difference equation [14]

ϕ(x)D2
q yn(x; q) + ψ(x)Dqyn(x; q) + λn,qyn(qx; q) = 0, (8)
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where the composition D2
q = Dq(Dq) is given by

D2
q( f (x)) =

f (q2x) − (1 + q) f (qx) + q f (x)
q(q − 1)2x2 ,

λn,q ∈ C, n ∈ {0, 1, 2, . . . }, q ∈ R \ {−1, 0, 1} and Dq is defined in (7), then the following orthogonality relation
holds∫ b

a
w(x; q)yn(x; q)ym(x; q)dqx =

(∫ b

a
w(x; q)y2

n(x; q)dqx
)
δn,m,

in which w(x; q) is solution of the Pearson-type q-difference equation

Dq(w(x; q)ϕ(q−1x)) = w(qx; q)ψ(x). (9)

In what follows w(x; q) is assumed to be positive and w(q−1x; q)ϕ(q−2x)xk for k ∈N0 must vanish at x = a, b.

Let Pn(x) = xn + · · · be a monic solution of equation (8). Then, by equating the coefficients of xn in (8) it
is possible to compute the eigenvalue λn,q as

λn,q = −
[n]q

qn (a[n − 1]q + d),

where the q-number [z]q is defined by

[z]q :=
qz
− 1

q − 1
, and [0]q := 0.

The orthogonality of all possible polynomial solutions of the q-hypergeometric equation (8) has been
studied in [4], by means of a qualitative analysis of the q-Pearson equation (9). Also, the boundary condition
[4]

ϕ(x)w(x; q)xk
∣∣∣
a,b = ϕ∗(q−1x)w(q−1x; q)xk

∣∣∣
a,b = 0, (10)

for k ∈N0 where

ϕ∗(x) := q
(
ϕ(x) + (1 − q−1)xψ(x)

)
,

must be satisfied in all q-orthogonal polynomial solutions.

In order to determine the weight function w(x; q) > 0, Adigüzel [20] studied the rational function
w(qx; q)/w(x; q) in detail and obtained all possible cases of q-orthogonal polynomials from the behaviour
of the aforesaid rational function. In this analysis it has been showed that some cases do not lead to
any q-orthogonal polynomial solution, since the boundary condition (10) is not satisfied for them. In our
approach, we reconsider this problem by replacing ym Dqyn−yn Dqym instead of xk in (10) and after imposing
some constraints on n to obtain two finite classes of q-orthogonal polynomials. In [3], Álvarez-Nodarse and
Medem classified the q-orthogonal polynomial families of the q-Hahn tableau, and compared both q-Askey
scheme and Nikiforov-Uvarov tableaus. Recently in [21], we have studied a class of finite q-orthogonal
polynomials whose weight function corresponds to the inverse gamma distribution as q→ 1.

The main aim of this paper is to consider two specific q-difference equations of type (8), which give two
q-analogues of the finite orthogonal polynomials {M(s,t)

n (x)}n and {I(p)
n (x)}n satisfying the equations (4) and (5)

respectively. The paper is organized as follows. In section 2, we recall some basic definitions and notations.
In section 3, we obtain the polynomial solutions of two specific q-difference equations of type (8) and prove
that they are finitely orthogonal. We also obtain general properties of them and show that as q → 1, all
obtained results in the continuous case are recovered.
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2. Basic Definitions and Notations

In what follows, we shall consider the notations as in [9, 14]. The rising factorial or Pochhammer symbol
is defined by

(a)k := a(a + 1) · · · (a + k − 1), with (a)0 := 1,

and its q-analogue, the q-shifted factorial, is defined by

(a; q)k := (1 − a)(1 − aq) · · · (1 − aqk−1),

with (a; q)0 := 1. As an extension,

(a; q)∞ =

∞∏
k=0

(1 − aqk), for 0 < |q| < 1.

The hypergeometric series are defined as

rFs

(
a1, . . . , ar
b1, . . . , bs

z
)

:=
∞∑

k=0

(a1, . . . , ar)k

(b1, . . . , bs)k

zk

k!
,

where

(a1, . . . , ar)k := (a1)k · · · (ar)k,

and r, s ∈ Z+ and a1, a2, . . . , ar, b1, b2, . . . , bs, z ∈ C. We shall assume that b1, . . . , bs , −k (k = 0, 1, . . . ), in order
to have a well defined series. The basic hypergeometric series (or q-hypergeometric series) is defined by

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q; z
)

:=
∞∑

k=0

(a1, . . . , ar; q)k

(b1, . . . , bs; q)k

zk

(q; q)k
[(−1)kq

k(k−1)
2 ]1+s−r,

where

(a1, . . . , ar; q)k := (a1; q)k · · · (ar; q)k,

and r, s ∈ Z+ and a1, a2, . . . , ar, b1, b2, . . . , bs, z ∈ C. In this case, we shall assume that b1, b1, . . . , bs , q−k (k =
0, 1, . . . ), in order to have a well defined series. The following limit relation holds true [14]

lim
q→1

rφs

(
qa1 , . . . , qar

qb1 , . . . , qbs

∣∣∣∣ q; (q − 1)1+s−rz
)

= rFs

(
a1, . . . , ar
b1, . . . , bs

z
)
. (11)

We shall denote by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1 − q)1−x (0 < q < 1), (12)

which is a q-analogue of the gamma function.

Let µ ∈ C be fixed. A set A ⊆ C is called a µ-geometric set if for x ∈ A, µx ∈ A. Let f be a function
defined on a q-geometric set A ⊆ C. If 0 ∈ A, we say that f has the q-derivative at zero if the limit

lim
n→∞

f (xqn) − f (0)
xqn (x ∈ A),

exists and does not depend on x. We then denote this limit by Dq f (0).
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The following properties can be directly derived from the definition of the q-difference operator

DqDq−1 = q−1Dq−1 Dq, Dq = Dq−1 + (q − 1)xDqDq−1 ,
Dq f (q−1x) = Dq−1 f (x), DqDq−1 f (x) = q−1D2

q f (q−1x),

Moreover, for two functions f1, f2 ∈ A we have

Dq( f1(x) f2(x)) = Dq( f1(x)) f2(x) + f1(qx)Dq( f2(x)).

The inverse of the q-difference operator is usually known as q-integral. It was introduced by Thomae
[22] and F.H. Jackson [11] —see also [10, 14]— and it is defined as∫ x

0
f (t)dqt = (1 − q)x

∞∑
j=0

q j f (q jx) (x ∈ A),

provided that the series converges. Moreover,∫
∞

0
f (t)dqt = (1 − q)

∞∑
n=−∞

qn f (qn),

and ∫
∞

−∞

f (t)dqt = (1 − q)
∞∑

n=−∞

qn (
f (qn) + f (−qn)

)
.

The q−1-integrals can be similarly defined.

Let A be a q-geometric set such that 0 ∈ A, and let f be defined in A. The function f is said to be q-regular
at zero if limn→∞ f (xqn) = f (0) for every x ∈ A. The q-analogue of integration by parts is given by [5, 13]∫ a

0
1(x)Dq f (x)dqx = ( f1)(a) − lim

n→∞
( f1)(aqn) −

∫ a

0
Dq1(x) f (qx)dqx. (13)

Notice that if the functions f , 1 are q-regular at zero, then we have that limn→∞( f1)(aqn) on the right-hand
side of (13) can be replaced by ( f1)(0).

Let 0 < R ≤ ∞ and ΩR denote the disc {z ∈ C : |z| < R}. The q-analogue of the fundamental theorem of
calculus says: If f : ΩR → C is q-regular at zero and θ ∈ ΩR is fixed, then the function

F(x) =

∫ x

θ
f (t)dqt (x ∈ ΩR),

is q-regular at zero, DqF(x) exists for any x ∈ ΩR and DqF(x) = f (x). Conversely, If a, b ∈ ΩR we have∫ b

a
Dq f (t)dqt = f (b) − f (a).

The function f is q-integrable on ΩR if | f (t)|dqt exists for all x ∈ ΩR.
In some particular cases, it is possible to derive a q-analogue of the theorem of change of variable. If

u(x) = αxβ, then [13]∫ u(b)

u(a)
f (u)dqu =

∫ b

a
f (u(x))D

q
1
β
u(x)d

q
1
β
x. (14)
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3. Two New Classes of Finite q-orthogonal Polynomials

In this section we consider two special cases of equation (8), providing a detailed analysis for the
orthogonal polynomial solutions of these equations.

3.1. First class: q-orthogonal polynomials corresponding to Fisher distribution
Consider the q-difference equation

x(qx + 1)D2
q yn(x; q) − (q [s − 2]q x + [−t − 1]q)Dqyn(x; q) + λn,qyn(qx; q) = 0, (15)

with

λn,q = [n]q [s − n − 1]q,

for n = 0, 1, 2, . . . and q ∈ R \ {−1, 0, 1}.
It is clear that

lim
q→1

λn,q = n(s − n − 1),

which is the same value as in the continuous case (4).

An equivalent form of equation (15) is as

(x + 1)yn(qx; q) −
(
(qs−1−n + qn)x + (q−t + 1)

)
yn(x; q) + (qs−1x + q−t) yn(q−1x; q) = 0.

Theorem 3.1. Let {M(s,t)
n (x; q)}n be a sequence of polynomials that satisfies the q-difference equation (15). For

n = 0, 1, . . . ,N we have∫
∞

0
w1(x; q)M(s,t)

n (x; q)M(s,t)
m (x; q)dqx =

(∫
∞

0
w1(x; q)

(
M(s,t)

n (x; q)
)2

dqx
)
δn,m,

where 0 < q < 1, t > −1, N = max{m,n}, N < 1
2 (s − 1) and w1(x; q) is the solution of the Pearson-type q-difference

equation

Dq

(
w1(x; q)(q−1x2 + q−1x)

)
= −w1(qx; q)

(
q [s − 2]q x + [−t − 1]q

)
,

which is equivalent to

w1(x; q)
w1(qx; q)

=
qs+tx + 1

x + 1
q−t. (16)

Proof. It can be verified that

w1(x; q) =
xt

(−x; q)s+t

(
s, t ∈ R and 0 < |q| < 1

)
, (17)

is a solution of the Pearson-type q-difference equation (16). It can be verified that

lim
q→1

w1(x; q) =
xt

(1 + x)s+t ,

which coincides with [17]

Now we rewrite equation (15) in self-adjoint form

Dq[w1(x; q)(q−1x2 + q−1x)DqM(s,t)
n (x; q)] + λn,qw1(qx; q)M(s,t)

n (qx; q) = 0, (18)
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and for m as

Dq[w1(x; q)(q−1x2 + q−1x)DqM(s,t)
m (x; q)] + λm,qw1(qx; q)M(s,t)

m (qx; q) = 0. (19)

Let us multiply (18) by M(s,t)
m (qx; q) and (19) by M(s,t)

n (qx; q) and substract each other in order to obtain

(λm,q − λn,q)w1(x; q)M(s,t)
m (x; q)M(s,t)

n (x; q)

= q2Dq[$1(x; q)DqM(s,t)
n (q−1x; q)]M(s,t)

m (x; q) − q2Dq[$1(x; q)DqM(s,t)
m (q−1x; q)]M(s,t)

n (x; q). (20)

where $1(x; q) = w1(q−1x; q)(q−3x2 + q−2x). By using q-integration by parts on both sides of (20) over [0,∞) it
yields

(λm,q − λn,q)
∫
∞

0
w1(x; q)M(s,t)

m (x; q)M(s,t)
n (x; q)dqx

=

∫
∞

0
q2

{
Dq[$1(x; q)DqM(s,t)

n (q−1x; q)]M(s,t)
m (x; q) −Dq[$1(x; q)DqM(s,t)

m (q−1x; q)]M(s,t)
n (x; q)

}
dqx

= q2
[
$1(x; q)

(
DqM(s,t)

n (q−1x; q)M(s,t)
m (x; q) − DqM(s,t)

m (q−1x; q)M(s,t)
n (x; q)

)]∞
0
. (21)

Since

max deg{DqM(s,t)
n (q−1x; q)M(s,t)

m (x; q) −DqM(s,t)
m (q−1x; q)M(s,t)

n (x; q)} = m + n − 1,

if t > −1 and N < 1
2 (s − 1) for N = max{m,n}, the following boundary conditions must hold

lim
x→0

w1(q−1x; q)(q−3x2 + q−2x)x2N−1 = 0,

lim
x→∞

w1(q−1x; q)(q−3x2 + q−2x)x2N−1 = 0.

In these conditions, the right hand side of (21) tends to zero and consequently∫
∞

0
w1(x; q)M(s,t)

m (x; q)M(s,t)
n (x; q)dqx = 0,

if and only if m , n, t > −1 and N < 1
2 (s − 1) for N = max{m,n}.

Corollary 3.2. The finite set {M(s,t)
n (x; q)}N<

1
2 (s−1)

n=0 for t > −1 is orthogonal with respect to the weight function

w1(x; q) =
xt

(−x; q)s+t
on [0,∞). Especially, when q→ 1 in this set, a q-analogue of [17] is obtained.

Proposition 3.3. The monic polynomial solution of equation (15) has the following basic hypergeometric represen-
tation

M̄(s,t)
n (x; q) =

q
1
2 (n2+(1−2s−2t)n)(qt+1; q)n

(qn−s+1; q)n
× 2φ1

(
q−n , qn−s+1

qt+1

∣∣∣∣ q;−qs+tx
)
. (22)

To obtain (22), it is enough to expand the polynomial solution of equation (15) as

M(s,t)
n (x; q) =

n∑
k=0

an,k
xk

[k]q!
(
an,n , 0, n = 0, 1, 2, . . .

)
.

Then it can be verified that the coefficients {an,k}
n
k=0 satisfy the two-term recurrence relation

[n − k]q(qs−1
− qn+k)an,k = (q−(t+1)

− qk)qn−kan,k+1,
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and they are determined uniquely up to the normalizing constant an,n , 0 as

an,k =

 n−k∏
i=1

qi

[i]q

(q−(t+1)
− qn−i)

(qs−1 − q2n−i)

 an,n,

for k = 0, 1, . . . ,n − 1. For an,n = (1 − q)−n (q; q)n, the monic solution is finally derived as

M̄(s,t)
n (x; q) = q

1
2 n(n+1)

n∑
k=0

(q−n; q)k

(q; q)k

 n−k∏
i=1

(q−(t+1)
− qn−i)

(qs−1 − q2n−i)

 (−x)k,

which is equivalent to

M̄(s,t)
n (x; q) =

q
1
2 (n2+(1−2s−2t)n)(qt+1; q)n

(qn−s+1; q)n

n∑
k=0

(q−n; q)k(qn−s+1; q)k

(qt+1; q)k(q; q)k
(−qs+tx)k.

Remark 3.4. From (11), we can directly conclude that

lim
q→1

q−
1
2 (n2+(1−2s−2t)n)(qn−s+1; q)n

(qt+1; q)n
M̄(s,t)

n (x; q) = M(s,t)
n (x),

where M(s,t)
n (x) is the polynomial solution of equation (4) given by

M(s,t)
n (x) = (−1)nn!

(
t + n

n

)
2F1

(
−n,n + 1 − s

t + 1 −x
)
.

Moreover, the q-difference equation (15) converges formally to equation (4) when q→ 1.

Proposition 3.5. The following relation holds true

DqM̄(s,t)
n (x; q) = q1−n[n]qM̄(s−2,t+1)

n−1 (qx; q).

Proof. From (22) we have

M̄(s,t)
n (x; q) − M̄(s,t)

n (qx; q) =
q

1
2 (n2+(1−2s−2t)n)(1 − q−n)(qt+2; q)n−1

(qn−s+2; q)n−1

n∑
k=1

(q1−n; q)k−1(qn−s+2; q)k−1

(qt+2; q)k−1(q; q)k−1
(−qs+t)kxk,

and

xM̄(s−2,t+1)
n−1 (qx; q) =

q
1
2 (n2+(1−2s−2t)n−(2−2s−2t))(qt+2; q)n−1

(qn−s+2; q)n−1

n∑
k=1

(q1−n; q)k−1(qn−s+2; q)k−1

(qt+2; q)k−1(q; q)k−1
(−qs+t)k−1xk.

Therefore

M̄(s,t)
n (x; q) − M̄(s,t)

n (qx; q) = q1−n(1 − qn )xM̄(s−2,t+1)
n−1 (qx; q),

which is equivalent to

DqM̄(s,t)
n (x; q) = q1−n[n]qM̄(s−2,t+1)

n−1 (qx; q).
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3.2. Computing the Norm Square Value
It is straightforward to find that the monic polynomial solution of equation (15) satisfies the recurrence

relation

M̄(s,t)
n+1(x; q) = (x − cn) M̄(s,t)

n (x; q) − dnM̄(s,t)
n−1(x; q),

with the initial terms M̄(s,t)
0 (x; q) = 1, M̄(s,t)

1 (x; q) = x − c0, where

cn = −
1

q2s−2(1 − q2n−s)(1 − q2n−s+2)
×

(
qn+s−1(1 − qn

− qn+1 + q2n−s+1) +q2n−t(qs−n−1
− q−1

− 1 + qn)
)
,

dn = q2n−2s−t+1 [n]q [n − s]q [n − t − s]q [n + t]q

[2n − s − 1]q ([2n − s]q)2 [2n − s + 1]q
.

Since dn > 0 for n = 1, 2, . . . ,N < 1
2 (s − 1), applying the Favard theorem [7] it yields∫

∞

0
w1(x; q)M̄(s,t)

m (x; q)M̄(s,t)
n (x; q)dqx =

 n∏
k=1

dk

∫
∞

0
w1(x; q)dqx

 δn,m.

To compute∫
∞

0
w1(x; q)dqx =

∫
∞

0

xt

(−x; q)s+t
dqx,

we can directly use [8] to get∫
∞

0

xt

(−x; q)s+t
dqx =

2 Γq(t + 1)Γq(s − 1)
(−1; q)t+1(−1; q)−t Γq(s + t)

, (23)

where Γq(x) is defined in (12). Hence, the norm square value of the monic q-polynomials (22) is computed
as ∫

∞

0

xt

(−x; q)s+t
(M̄(s,t)

n (x; q))2dqx =
Γq(t + 1)Γq(s − 1)

Γq(s + t)
2 q(n2+(2−t−2s)n)(q, q1−s, q1−s−t, q1+t; q)n

(q1−s, q2−s, q2−s, q3−s; q2)n (−1; q)t+1(−1; q)−t
, (24)

which is valid for n = 0, 1, ...,N < s−1
2 .

Remark 3.6. Relation (23) helps us compute the moments corresponding to the weight function (17) as

µk =

∫
∞

0

xt+k

(−x; q)s+t
dqx =

2 Γq(t + 1 + k)Γq(s − 1 − k)
(−1; q)t+1+k(−1; q)−t−k Γq(s + t)

.

Note that if n > 1
2 (s − 1) in (24), the above moments would be divergent and the norm square value will be divergent

too.

3.3. Second class: q-orthogonal polynomials corresponding to T-student distribution
As a further special case of equation (8), let us now consider the q-difference equation

(q2x2 + 1)D2
q yn(x; q) − q2 [2p − 3]q xDqyn(x; q) + λn,qyn(qx; q) = 0, (25)

with

λn,q = q [n]q [2p − n − 2]q,
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for n = 0, 1, 2, . . . and q ∈ R \ {−1, 0, 1}. The following limit relation holds true

lim
q→1

λn,q = −n(n + 2 − 2p),

which is the same value as in the continuous case (5).
The equivalent form of equation (25) is as

(x2 + 1)yn(qx; q) −
(
(q2p−2−n + qn)x2 + (q + 1)

)
yn(x; q) + (q2p−2x2 + q) yn(q−1x; q) = 0.

Theorem 3.7. Let {I(p)
n (x; q)}n be a sequence of symmetric polynomials that satisfies the q-difference equation (25).

For n = 0, 1, . . . ,N we have∫
∞

−∞

w2(x; q)I(p)
n (x; q)I(p)

m (x; q)dqx =

(∫
∞

−∞

w2(x; q)
(
I(p)
n (x; q)

)2
dqx

)
δn,m,

where q > 1, N = max{m,n}, N < p − 1, (−1)2p = −1, and the symmetric function w2(x; q) is the solution of the
Pearson-type q-difference equation

Dq

(
w2(x; q)(x2 + 1)

)
= −q2 [2p − 3]q w2(qx; q),

which is equivalent to

w2(x; q)
w2(qx; q)

=
q2p−1x2 + 1

x2 + 1
. (26)

Proof. First, it can be verified that

w2(x; q) =
x1−2p

(−x−2; q−2)p− 1
2

(
0 < |q−2

| < 1
)
, (27)

is a solution of the Pearson-type q-difference equation (26), provided that (−1)2p = −1. Note that

lim
q→1

w2(x; q) = (1 + x2)−(p− 1
2 ),

which gives the same as weight function of orthogonal polynomials {I(p)
n (x)}n [17].

Now change equation (25) in the self-adjoint form

Dq[w2(x; q)(x2 + 1)DqI(p)
n (x; q)] + λn,qw2(qx; q)I(p)

n (qx; q) = 0, (28)

and for m as

Dq[w2(x; q)(x2 + 1)DqI(p)
m (x; q)] + λm,qw2(qx; q)I(p)

m (qx; q) = 0. (29)

By multiplying (28) by I(p)
m (qx; q) and (29) by I(p)

n (qx; q) and subtracting each other we get

(λm,q − λn,q)w2(x; q)I(p)
m (x; q)I(p)

n (x; q)

= q2Dq[w2(q−1x; q)(q−2x2 + 1)DqI(p)
n (q−1x; q)]I(p)

m (x; q)

− q2Dq[w2(q−1x; q)(q−2x2 + 1)DqI(p)
m (q−1x; q)]I(p)

n (x; q). (30)
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Hence, q-integration by parts on both sides of (30) over (−∞,∞) yields

(λm,q − λn,q)
∫
∞

−∞

w2(x; q)I(p)
m (x; q)I(p)

n (x; q)dqx

=

∫
∞

−∞

q2
{
Dq[w2(q−1x; q)(q−2x2 + 1)DqI(p)

n (q−1x; q)]

× I(p)
m (x; q) −Dq[w2(q−1x; q)(q−2x2 + 1)DqI(p)

m (q−1x; q)]I(p)
n (x; q)

}
dqx

= q2
[
w2(q−1x; q)(q−2x2 + 1)

(
DqI(p)

n (q−1x; q)I(p)
m (x; q) −DqI(p)

m (q−1x; q)I(p)
n (x; q)

)]∞
−∞
. (31)

But since

max deg{DqI(p)
n (q−1x; q)I(p)

m (x; q) −DqI(p)
m (q−1x; q)I(p)

n (x; q)} = m + n − 1,

if N < p − 1 for N = max{m,n}, the following boundary condition holds

lim
x→∞

w2(q−1x; q)(q−2x2 + 1)x2N−1 = 0.

Therefore, the right hand side of (31) tends to zero and consequently∫
∞

−∞

w2(x; q)I(p)
m (x; q)I(p)

n (x; q)dqx = 0,

if and only if m , n, N < p − 1, (−1)2p = −1, and N = max{m,n}.

Corollary 3.8. The finite polynomial set {I(p)
n (x; q)}N<p−1

n=0 is orthogonal with respect to the even weight fuction
w2(x; q) = x1−2p

(−x−2;q−2)p− 1
2

on (−∞,∞). Especially, when q→ 1 in this set, a q-analogue of [17] is obtained.

Proposition 3.9. The monic polynomial solution of equation (25) has the following basic hypergeometric represen-
tation

Ī(p)
n (x; q) =

inq
1
2 n(n+3)−n(p+ 1

2 )(q
3
2−p,−q

3
2−p; q)n

(qn−2p+2; q)n
3φ2

(
q−n, iq

3
2−px−1, qn−2p+2

q
3
2−p,−q

3
2−p

∣∣∣∣ q; iqp− 1
2 x

)
. (32)

Proof. To obtain (32), it is enough to expand the polynomial solution of equation (25) as follows

I(p)
n (x; q) =

n∑
k=0

an,k
(−cx−1q; q)k

(q; q)k
(1 − q)kxk,

where c ∈ C, and an,n , 0, n = 0, 1, 2, . . . . If c satisfies the relation

q2p−1c2 + q2 = 0,

it can be verified that the coefficients {an,k}
n
k=0 satisfy the two-term recurrence relation

[n − k]q(q2p−1
− qn+k+1)c an,k = (q2kc2 + 1)qn−k+1an,k+1,

for k = 0, 1, . . . ,n− 1, and they are therefore determined uniquely up to the normalizing constant an,n , 0 as

an,k = ck−n

 n−k∏
i=1

c2q2n−i+1 + qi+1

[i]q(q2p−1 − q2n−i+1)

 an,n,
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for k = 0, 1, . . . ,n − 1. For an,n = (1 − q)−n (q; q)n, the monic solution is finally derived as

Ī(p)
n (x; q) = inq

(
n(n+3)

2 +n(p− 3
2 )

) n∑
k=0

(q−n; q)k(iq
3
2−px−1; q)k

(q; q)k

 n−k∏
i=1

(1 − qn−i−p+ 1
2 )(1 + qn−i−p+ 1

2 )
(q2p−1 − q2n−i+1)

 (iq
1
2−px)k,

which is equivalent to

Ī(p)
n (x; q) =

inq
1
2 n(n+3)−n(p+ 1

2 )(q
3
2−p,−q

3
2−p; q)n

(qn−2p+2; q)n

n∑
k=0

(q−n; q)k(iq
3
2−px−1; q)k(qn−2p+2; q)k

(q
3
2−p,−q

3
2−p)k(q; q)k

(iqp− 1
2 x)k.

Remark 3.10. From (11), we can directly conclude that

lim
q→1

(qn−2p+2; q)n

inq
1
2 n(n+3)−n(p+ 1

2 )(q
3
2−p,−q

3
2−p; q)n

Ī(p)
n (x; q) = I(p)

n (x),

where I(p)
n (x) is the polynomial solution of equation (5) and

I(p)
n (x) =

(−4i)n(p − n)n( 3
2 − p)n

(n + 2 − 2p)n
2F1

 −n ,n + 2 − 2p
3
2
− p

1 − ix
2

 .
Moreover, the q-difference equation (25) converges formally to equation (5) when q→ 1.

Proposition 3.11. The following relation holds true

Dq Ī(p)
n (x; q) = q1−n[n]q Ī(p−1)

n−1 (qx; q).

Proof. From (32) we have

Ī(p)
n (x; q) − Ī(p)

n (qx; q) =
inq

1
2 n(n+3)−n(p+ 1

2 )(q
5
2−p,−q

5
2−p; q)n−1(1 − q−n)

(qn−2p+3; q)n−1

×

n∑
k=1

(q1−n; q)k−1(iq
3
2−px−1; q)k−1(qn−2p+3; q)k−1

(q
5
2−p,−q

5
2−p; q)k−1(q; q)k−1

(iqp− 1
2 )k xk,

and

xĪ(p−1)
n−1 (qx; q) =

in−1q
1
2 (n−1)(n+2)−(n−1)(p− 1

2 )(q
5
2−p,−q

5
2−p; q)n−1

(qn−2p+3; q)n−1

×

n∑
k=1

(q1−n; q)k−1(iq
3
2−px−1; q)k−1(qn−2p+3; q)k−1

(q
5
2−p,−q

5
2−p; q)k−1(q; q)k−1

(iqp− 1
2 x)k−1 xk.

Therefore

Ī(p)
n (x; q) − Ī(p)

n (qx; q) = q1−n(1 − qn )xĪ(p−1)
n−1 (qx; q),

which is equivalent to

Dq Ī(p)
n (x; q) = q1−n[n]q Ī(p−1)

n−1 (qx; q).
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3.4. Computing the Norm Square Value
It is straightforward to find that the monic polynomial solution of equation (25) satisfies the recurrence

relation

Ī(p)
n+1(x; q) = x Ī(p)

n (x; q) − d∗nĪ(p)
n−1(x; q),

with the initial terms Ī(p)
0 (x; q) = 1, Ī(p)

1 (x; q) = x,

d∗n = −qn−2p+2 [n]q [n − 2p + 1]q

[2n − 2p]q [2n − 2p + 2]q
.

Since d∗n > 0 for n = 1, 2, . . . ,N < p − 1, applying the Favard theorem [7] it yields∫
∞

−∞

w2(x; q)Ī(p)
m (x; q)Ī(p)

n (x; q)dqx =

 n∏
k=1

d∗k

∫
∞

−∞

w2(x; q)dqx

 δn,m,

where w2(x; q) is given by (27). In order to compute∫
∞

−∞

w2(x; q)dqx =

∫
∞

−∞

x1−2p

(−x−2; q−2)p− 1
2

dqx,

we use the q-analogue of the change of variable (14) for u(x) = x−
1
2 to obtain∫

∞

−∞

x1−2p

(−x−2; q−2)p− 1
2

dqx =
2q2

(q + 1)

∫
∞

0

xp−2

(−x; q−2)p− 1
2

dq−2 x. (33)

As the right hand side of equality (33) can be directly computed [8], so we have∫
∞

−∞

x1−2p

(−x−2; q−2)p− 1
2

dqx =
4q2

(q + 1)(−1; q−2)p−1(−1; q−2)2−p

Γq−2 (p − 1)Γq−2 ( 1
2 )

Γq−2 (p − 1
2 )

. (34)

Hence, the norm square value of the monic q-polynomials (32) is computed as∫
∞

−∞

x1−2p

(−x−2; q−2)p− 1
2

(
Ī(p)
n (x; q)

)2
dqx =

4(−1)nq
1
2 (n2+5n−4np+4)(q; q)n(q2−2p; q)n

(q + 1)(−1; q−2)p−1(−1; q−2)2−p(q2−2p; q2)n(q4−2p; q2)n

Γq−2 (p − 1)Γq−2 ( 1
2 )

Γq−2 (p − 1
2 )

(35)

if and only if n = 0, 1, ...,N < p − 1.

Remark 3.12. Relation (34) helps us compute the moments corresponding to the weight function (27) as

µk =

∫
∞

−∞

xk+1−2p

(−x−2; q−2)p− 1
2

dqx =
4q2 Γq−2 (k + p − 1)Γq−2 ( 1

2 − k)

(q + 1)(−1; q−2)k+p−1(−1; q−2)2−p−k Γq−2 (p − 1
2 )
.

Note that if n > p− 1 in (35), the above moments would be divergent and the norm square value will be divergent too.
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