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Abstract. Let R be a ring with involution ∗. An element a ∈ R is called ∗−strongly regular if there exists
a projection p of R such that p ∈ comm2(a), ap = 0 and a + p is invertible, and R is said to be ∗−strongly
regular if every element of R is ∗−strongly regular. We discuss the relations among strongly regular rings,
∗−strongly regular rings, regular rings and ∗−regular rings. Also, we show that an element a of a ∗−ring R
is ∗−strongly regular if and only if a is EP. We finally give some characterizations of EP elements.

1. Introduction

In this article, all rings are associative with identity unless otherwise stated, and modules will be unitary
modules. Let R be a ring, write E(R), N(R), U(R), J(R) and Z(R) to denote the set of all idempotents, the set
of all nilpotents, the set of units, the Jacobson radical and the center of R, respectively.

Rings in which every element is the product of a unit and an idempotent which commute are said to
be strongly regular, and have been studied by many authors. According to Koliha and Patricio [11], the
commutant and double commutant of an element a ∈ R are defined by comm(a) = {x ∈ R|xa = ax} and
comm2(a) = {x ∈ R|xy = yx for all y ∈ comm(a)}. It is known that a ring R is strongly regular if and only if for
each a ∈ R, there exists an idempotent p ∈ comm2(a) such that a + p ∈ U(R) and ap = 0.

Let R be a ring and write Rqnil = {a ∈ R|1+ax ∈ U(R) for every x ∈ comm(a)}. Recall that an element a ∈ R is
called polar (quasipolar) provided that there exists an idempotent p ∈ R such that p ∈ comm2(a), a + p ∈ U(R)
and ap ∈ N(R) (ap ∈ Rqnil), the idempotent p is unique, we denote it by aπ, which is called a spectral
idempotent of a. A ring R is polar [7] (quasipolar [18]) in the case that every element in R is polar
(quasipolar). [5, Theorem 2.4] shows that a ring R is strongly regular if and only if R is a quasipolar ring
and Rqnil = {0}.

Following [3], an element a of a ring R is called group invertible if there is a] ∈ R such that

aa]a = a, a]aa] = a], aa] = a]a.

Denote by R] the set of all group invertible elements of R. Clearly, a ring R is strongly regular if and only if
R = R].

An involution a 7−→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

2010 Mathematics Subject Classification. 16B99; 16W10, 46L05
Keywords. ∗−regular rings, ∗−strongly regular elements, projection elements, EP elements, involution is proper.
Received: 13 February 2017; Accepted: 13 May 2017
Communicated by Dragan S. Djordjević
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A ring R with an involution ∗ is called ∗−ring. An element a† in a ∗-ring R is called the Moore-Penrose
inverse (or MP-inverse)[? ]f a, if Penr

aa†a = a, a†aa† = a†, aa† = (aa†)∗, a†a = (a†a)∗.

In this case, we call a is MP-invertible in R. The set of all MP-invertible elements of R is denoted by R†.
An involution ∗ of R is called proper if x∗x = 0 implies x = 0 for all x ∈ R. Following [1], a ∗−ring R is

∗−regular if and only if R is regular and the involution is proper.
An idempotent p of a ∗−ring R is called projection if p = p∗. Denote by PE(R) the set of all projection

elements of R. Clearly, PE(R) ⊆ E(R). It is known that an idempotent e in a ∗−ring R is projection if and
only if e = e∗e if and only if Re = Re∗. [6, Lemma 2.1] shows that a ∗−ring R is ∗−regular if and only if for
each a ∈ R, there exists p ∈ PE(R) such that aR = pR.

Following [11], a ∗−ring R is ∗−regular if and only if R = R†. Due to [9], a ∗−ring R is said to satisfy the
k−term star-cancellation law (or SCk) if

a∗1a1 + · · · + a∗kak = 0 =⇒ a1 = · · · = ak = 0.

[10] shows that the 2 × 2 matrix ring M2(R) over a ∗−ring R is ∗−regular if and only if R is regular and
satisfies SC2.

Duo to [8], an element a of a ∗−ring R is said to be EP if a ∈ R] ∩ R† and a] = a†. In [14], many
characterizations of EP elements are given.

The EP matrices and EP linear operators on Banach or Hilbert spaces have been investigated by many
authors. This article is motivated by the papers [6, 14]. In this paper, we shall first give some new
characterizations of EP elements. Next, we introduce ∗−strongly regular elements and ∗−strongly regular
rings. We investigate the characterizations of ∗−strongly regular rings. Finally, we discuss ∗−exchange
rings. With the help of ∗−exchange rings, we give some characterizations of ∗−strongly regular rings.

2. Some Characterizations of EP elements

Let R be a ∗−ring and a ∈ R†. Then by [14, Theorem 1.1], one knows that a∗ = a∗aa† = a†aa∗. Hence we
have the following proposition.

Proposition 2.1. Let R be a ∗−ring and a ∈ R. Then a is an EP element if and only if a ∈ R† and Ra = Ra†.

Proof. Suppose that a is EP. Then a ∈ R†∩R] and a† = a], it follows that Ra = Ra†a = Ra]a = Raa] = Ra] = Ra†.
Conversely, assume that a ∈ R† and Ra = Ra†. Then Ra = Raa† = R(aa†)∗ = R(a†)∗a∗ ⊆ Ra∗ = Ra∗aa† ⊆

Ra† = Ra, it follows that Ra = Ra∗. By [13, Theorem 3.1], one knows that a is EP.

Similar to the proof of Proposition 2.1, we have the following corollary.

Corollary 2.2. Let R be a ∗−ring and a ∈ R. Then a is an EP element if and only if a ∈ R† and aR = a†R.

It is known that for a ∗−ring R, a ∈ R is EP if and only if a† is EP. Hence we can obtain the following
corollary.

Corollary 2.3. Let R be a ∗−ring and a ∈ R. Then a is an EP element if and only if a ∈ R† and Ra∗ = R(a†)∗.

Proof. Suppose that a is EP. Then Proposition 2.1 and [13, Theorem 3.1] imply Ra∗ = Ra = Ra†. Note that a†

is EP. Then [13, Theorem 3.1] gives Ra† = R(a†)∗. Hence Ra∗ = R(a†)∗.
Conversely, assume that Ra∗ = R(a†)∗. Then aR = a†R, by Corollary 2.2, one gets a is EP.

Theorem 2.4. Let R be a ∗−ring and a ∈ R. Then the following conditions are equivalent:
(1) a is EP;
(2) a ∈ R† and Ra = R(a†)n for each n ≥ 2;
(3) a ∈ R† and Ra = R(a†)n for some n ≥ 2.
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Proof. (1) =⇒ (2) Since a is EP, by Proposition 2.1, we have a ∈ R† and Ra = Ra†. Noting that Ra† = Raa†.
Hence Ra = Ra† = Raa† = Ra†a† = R(a†)2, repeating the process, one obtains that Ra = R(a†)n for each n ≥ 2.

(2) =⇒ (3) It is trivial.
(3) =⇒ (1) Since Ra = R(a†)n for some n ≥ 2, Ra ⊆ Ra† = Ra∗. Note that Ra† = Raa†. Then Ra† = R(a†)n+1

⊆

R(a†)n = Ra, it follows that Ra ⊆ Ra∗ = Ra† ⊆ Ra. Hence Ra = Ra∗ = Ra†, this implies that a is EP.

Let R be a ∗−ring and a ∈ R. Then it is easy to show that a ∈ R† and aa∗ = 0 imply a = 0. Also, a ∈ R† ∩R]

is EP if and only if aa] = a†a. Hence we have the following theorem.

Theorem 2.5. Let R be a ∗−ring and a ∈ R. Then the following conditions are equivalent:
(1) a is EP;
(2) a ∈ R† ∩ R] and a†a2a∗ = a2a†a∗;
(3) a ∈ R† ∩ R] and a†a2a∗ = aa∗aa];
(4) a ∈ R† ∩ R] and a†ana∗ = an−1a∗a†a for some n ≥ 2.

Proof. (1) =⇒ (2) It is trivial.
(2) =⇒ (3) Suppose that a†a2a∗ = a2a†a∗. Then aa∗ = a]a2a∗ = a]a(a†a2a∗) = a]a(a2a†a∗) = a2a†a∗ = a†a2a∗,

it follows that aa∗ = (aa∗)∗ = aa∗a†a, one obtains a∗ = a†aa∗ = a†aa∗a†a = a∗a†a, so a = (a∗a†a)∗ = a†a2. Hence
aa∗aa] = aa∗(a†a2)a] = a(a∗a†a) = aa∗ = a†a2a∗.

(3) =⇒ (4) Suppose that a†a2a∗ = aa∗aa]. Then similar to (2) =⇒ (3), one can show that a = a†a2 and
a∗ = a∗a†a. Hence a†ana∗ = (a†a2)an−2a∗ = an−1a∗ = an−1a∗a†a.

(4) =⇒ (1) Assume that a†ana∗ = an−1a∗a†a. Then an−1a∗ = a]ana∗ = a]a(a†ana∗) = a]a(an−1a∗a†a) = an−1a∗a†a,
it follows that aa∗ = (a])n−2an−1a∗ = (a])n−2an−1a∗a†a = aa∗a†a, so a∗ = a†aa∗ = a†(aa∗a†a) = a∗a†a, this gives
(a])∗a∗ = (a])∗a∗a†a, so aa] = a†a. Hence a is EP.

Remark: The condition (4) of Theorem 2.5 exists in [12, Theorem 2.1(xii)] for m = n − 1 and n = 1.

Theorem 2.6. Let R be a ∗−ring and a ∈ R. Then the following conditions are equivalent:
(1) a is EP;
(2) a ∈ R† ∩ R] and a2a† + a]aa† = a + a†;
(3) a ∈ R† ∩ R] and a2a† + a] = a + a†;
(4) a ∈ R† ∩ R] and a]aa† + a†aa] = 2a†;
(5) a ∈ R† ∩ R] and a† + a] = 2a†aa];
(6) a ∈ R† ∩ R] and a† + a] = 2a†a†a.

Proof. (1) =⇒ (i), i = 2, 3, 4, 5, 6 They are trivial.
(2) =⇒ (1) From the assumption a2a† + a]aa† = a + a†, we get a2a†a + a]aa†a = a2 + a†a. So, a]a = a†a, it

follows that a is EP.
(3) =⇒ (1) By the equality a2a† + a] = a + a†, we get a2a†a + a]a = a2 + a†a, this gives a]a = a†a. Hence a is

EP.
(4) =⇒ (1) Using the equality a]aa† + a†aa] = 2a†, we have 2aa† = aa]aa† + aa†aa] = aa† + aa], it follows that

aa† = aa]. Hence a is EP.
(5) =⇒ (1) The equality a† + a] = 2a†aa] gives aa† + aa] = 2aa†aa] = 2aa], again we have aa† = aa]. Hence

a is EP.
(6) =⇒ (1) If a† + a] = 2a†a†a, then a† + a] = 2a†a†a = a†a(2a†a†a) = a†a(a† + a]) = a† + a†aa], one obtains

that a] = a†aa]. Hence a†a = a]a and so a is EP.

Remark: The condition (4) of Theorem 2.6 exists in [12, Theorem 2.1(xv)] for n = 1.

Theorem 2.7. Let R be a ∗−ring. Then E(R) = PE(R) if and only if every element of E(R) is EP.

Proof. Let e ∈ E(R). If E(R) = PE(R), then e = e∗. It is not difficult to verify that e is EP with e] = e† = e.
Conversely, we assume that e is EP. Then e] = e†, it follows that e = ee]e = ee] and so e† = e] = (ee])e] = ee] = e.
Hence e ∈ PE(R).
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Recall that a ring R is directly finite if ab = 1 implies ba = 1 for any a, b ∈ R. Clearly, a ring R is directly
finite if and only if right invertible element of R is invertible.

Theorem 2.8. Let R be a ∗−ring. Then the following conditions are equivalent:
(1) R is a directly finite ring;
(2) Every right invertible element of R is group invertible;
(3) Every right invertible element of R is EP.

Proof. (1) =⇒ (3) It is trivial because every invertible element is EP.
(3) =⇒ (2) It is evident.
(2) =⇒ (1) Suppose that a, b ∈ R with ab = 1. By hypothesis, a ∈ R], so 1 = ab = (aa])(ab) = aa] = a]a, one

obtains that a is invertible. Hence R is directly finite.

Recall that a ring R is reduced if N(R) = {0}. Using the EP elements, we can characterize reduced rings
as follows.

Theorem 2.9. Let R be a ∗−ring. Then the following conditions are equivalent:
(1) R is a reduced ring;
(2) Every element of N(R) is group invertible;
(3) Every element of N(R) is EP.

Proof. (1) =⇒ (3) =⇒ (2) They are trivial.
(2) =⇒ (1) Suppose that the condition (2) holds. If R is not reduced, then there exists b ∈ R\{0}, let n be

the positive integer such that bn = 0 and bn−1 , 0. Choose a = bn−1. Then a ∈ R\{0}with a2 = 0. Since a ∈ R],
a = a2a] = 0, which is a contradiction. Hence R is reduced.

Theorem 2.10. Let R be a ∗−ring and a ∈ R. Then a is EP if and only if there exists (unique) p ∈ PE(R) such that
pa = ap = 0 and a + p ∈ U(R).

Proof. It is similar to the proof of [2, Theorem 2.1].

Also, similar to the proof of [2, Theorem 2.1], we have the following corollary.

Corollary 2.11. Let R be a ∗−ring and a ∈ R. Then a is EP if and only if there exists unique p ∈ PE(R) such that
pa = ap = 0 and a − p ∈ U(R).

Corollary 2.12. Let R be a ∗−ring and a ∈ R. Then a is EP if and only if there exists p ∈ PE(R) such that
p ∈ comm2(a), ap = 0 and a + p ∈ U(R).

Proof. The sufficiency follows from Theorem 2.10.
The necessity: Noting that p = 1 − a]a in Theorem 2.10. Then, for any x ∈ comm(a), we have (1 − p)xp =

a]axp = a]xap = 0 and px(1 − p) = pxaa] = paxa] = 0, this implies that px = pxp = xp. Hence p ∈ comm2(a), we
are done.

Similarly, we have the following corollary.

Corollary 2.13. Let R be a ∗−ring and a ∈ R. Then a is EP if and only if there exists unique p ∈ PE(R) such that
p ∈ comm2(a), ap = 0 and a − p ∈ U(R).

Theorem 2.14. Let R be a ∗−ring and a ∈ R. Then a is EP if and only if there exists b ∈ comm2(a), ab = ba ∈ PE(R),
a = a2b and b = ab2.

Proof. Suppose that a is EP. Then by Corollary 2.12, there exists p ∈ PE(R) such that p ∈ comm2(a), ap = 0
and a + p ∈ U(R). Choose b = (a + p)−1(1 − p). Then clearly, b ∈ comm2(a) and ab = ba = 1 − p ∈ PE(R). By a
simple computation, we have a = a2b and b = ab2.

Conversely, assume that there exists b ∈ comm2(a), ab = ba ∈ PE(R), a = a2b and b = ab2. Choose p = 1−ab.
Then p ∈ PE(R), ap = a − a2b = 0 = pa and pb = b − ab2 = 0 = bp. Note that (a + p)(b + p) = ab + p = 1. Then
a + p ∈ U(R), by Theorem 2.10, a is EP.
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3. ∗−Strongly Regular Rings

Recall that an element a of a ring R is strongly regular if a ∈ a2R ∩ Ra2. It is well known that a ∈ R is
strongly regular if and only if there exist e ∈ E(R) and u ∈ U(R) such that a = eu = ue.

Let R be a ∗−ring. An element a ∈ R is called ∗−strongly regular if there exist p ∈ PE(R) and u ∈ U(R)
such that a = pu = up. A ring R is called ∗−strongly regular if every element of R is ∗−strongly regular.

Clearly, ∗−strongly regular elements are strongly regular, and so ∗−strongly regular rings are strongly
regular. However, the converse is not true by the following example.

Example 3.1. Let D be a division ring and R = D ⊕ D. Set ∗ be an involution of R defined by ∗((a, b)) = (b, a).
Evidently, R is a strongly regular ring, but R is not ∗−strongly regular. In fact (1, 0) is not a ∗−strongly regular
element.

Theorem 3.2. Let R be a ∗−ring. Then R is a ∗−strongly regular ring if and only if R is a strongly regular ring with
E(R) = PE(R).

Proof. Suppose that R is a ∗−strongly regular ring and e ∈ E(R). Then there exist p ∈ PE(R) and u ∈ U(R)
such that e = pu = up, this gives e = pe = ep. Note that p = eu−1. Then p = ep = e, so E(R) ⊆ PE(R), this
shows that E(R) = PE(R).

The converse is trivial.

Theorem 3.3. Let R be a ∗−ring and a ∈ R. Then a is EP if and only if a is ∗−strongly regular.

Proof. Suppose that a is EP. Then, by Theorem 2.10, there exists p ∈ PE(R) such that a + p ∈ U(R) and
ap = pa = 0. Write a + p = u ∈ U(R). Then a = a(1 − p) = u(1 − p) = (1 − p)u. Since 1 − p ∈ PE(R), a is
∗−strongly regular.

Conversely, assume that a is ∗−strongly regular. Then there exist p ∈ PE(R) and u ∈ U(R) such that
a = pu = up. Since (a + 1 − p)(u−1p + 1 − p) = (u−1p + 1 − p)(a + 1 − p) = 1, a + 1 − p ∈ U(R). Noting that
a(1 − p) = (1 − p)a = 0 and 1 − p ∈ PE(R). Hence a is EP by Theorem 2.10.

Theorem 3.4. Let R be a ∗−ring. Then R is ∗−strongly regular if and only if R is Abel and for each a ∈ R, Ra = Ra∗a.

Proof. Suppose that R is ∗−strongly regular. Note that ∗−strongly regular rings are strongly regular. Then
R is also Abel. Now let a ∈ R. Then a is ∗−strongly regular, so there exist p ∈ PE(R) and u ∈ U(R) such that
a = pu = up. Hence a∗a = u∗up, one obtains that Ra∗a = Rp = Ra.

Conversely, assume that R is Abel and for each a ∈ R, Ra = Ra∗a. Write that a = da∗a for some d ∈ R. Then
(ad∗)2 = ad∗ad∗ = (da∗a)d∗ad∗ = d(a∗ad∗)ad∗ = da∗ad∗ = ad∗. Noting that R is Abel, ad∗ is a central idempotent of
R, so da∗ is a central idempotent of R, this gives that a = (da∗)a = a(da∗). Hence Ra ⊆ Ra∗. By [4, Proposition
2.7], R is a ∗-regular ring, so a ∈ R†. Thus by [13, Theorem 3.1], one knows that a is EP, by Theorem 3.3, a is
∗−strongly regular. Hence R is ∗−strongly regular.

Corollary 3.5. A ∗−ring R is a ∗−strongly regular ring if and only if R is an Abel ring and ∗−regular ring.

Let R be a ring and write ZE(R) = {x ∈ R|ex = xe for each e ∈ E(R)}. It is easy to show that ZE(R) is a
subring of R and Z(R), the center, of R is contained in ZE(R).

Let R be a ∗−ring. Choose a ∈ ZE(R) and e ∈ E(R). Since e∗ ∈ E(R), ae∗ = e∗a, it follows that ea∗ = a∗e.
Hence a∗ ∈ ZE(R), so ZE(R) becomes a ∗−ring.

Theorem 3.6. Let R be a ∗−regular ring. Then ZE(R) is a ∗−strongly regular ring.

Proof. Let a ∈ ZE(R). Since R is a ∗−regular ring, by [6, Lemma 2.1], there exists p ∈ PE(R) such that
aR = pR. Write p = ab for some b ∈ R. Then a = pa = aba. Choose e ∈ E(R). Then ae = ea, it follows
that (1 − p)epa = (1 − p)ea = (1 − p)ae = 0, this gives (1 − p)ep = 0, that is, ep = pep. Since e∗ ∈ E(R),
e∗p = pe∗p, one obtains pe = pep. Hence ep = pe, this implies p ∈ ZE(R). Note that ba ∈ E(R). Then
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ba2 = (ba)a = a(ba) = a = pa = ap = a2b, it follows that b3a2 = a2b3. Since ba2e = ae = ea = ea2b = a2eb,
b3a2e = a2eb3 = ea2b3, this implies that a2b3

∈ ZE(R). Choose c = a2b3
∈ ZE(R). Then ac = a3b3 = a2(ab)b2 =

a2pb2 = pa2b2 = a2b2 = a(ab)b = apb = ab = p. Hence aZE(R) = paZE(R) ⊆ pZE(R) = acZE(R) ⊆ aZE(R), by [6,
Lemma 2.1], ZE(R) is a ∗−regular ring. Note that ZE(R) is Abel. Then by Corollary 3.5, we have ZE(R) is
∗−strongly regular.

Clearly, if R is an Abel ring, then ZE(R) = R. Hence Corollary 3.5 and Theorem 3.6 give the following
corollary.

Corollary 3.7. Let R be a ∗−ring. Then R is a ∗−strongly regular ring if and only if R is an Abel ring and ZE(R) is
a ∗−strongly regular ring.

Due to [16], a ∗−ring is ∗−Abel if every projection is central. Clearly, Abel ∗−rings are ∗−Abel. A ∗−ring
R is called ∗−quasi-normal if pR(1 − p)Rp = 0 for each p ∈ PE(R). Clearly, ∗−Abel rings are ∗−quasi-normal.

Corollary 3.8. Let R be a ∗−ring. Then R is a ∗−strongly regular ring if and only if R is a ∗−quasi-normal ∗−regular
ring.

Proof. The necessity follows from Corollary 3.5.
Conversely, assume that R is a ∗−quasi-normal ∗−regular ring. Then R is a semiprime ring and pR(1 −

p)Rp = 0 for each p ∈ PE(R), this implies pR(1− p) = 0 = (1− p)Rp. Hence R is ∗−Abel, by Corollary 3.5, R is
∗−strongly regular.

Corollary 3.9. If R is a ∗−strongly regular ring, then so is pRp for any p ∈ PE(R).

Proof. It follows from Corollary 3.5 and [6, Proposition 2.8].

4. ∗−Exchange Rings

Definition 4.1. Let R be a ∗−ring and a ∈ R. If there exists p ∈ PE(R) such that p ∈ aR and 1− p ∈ (1− a)R, then a
is called ∗−exchange element of R. And a ∗−ring R is said to be ∗−exchange if every element of R is ∗−exchange.

Clearly, any ∗−exchange element of a ∗−ring R is exchange and the converse is true whenever PE(R) =
E(R).

Lemma 4.2. Let R be a ∗−ring and x ∈ R. If x is ∗−strongly regular, then x is ∗−exchange.

Proof. Suppose that x is ∗−strongly regular. Then there exist u ∈ U(R) and p ∈ PE(R) such that x = pu = up,
and hence x(1 − p) = 0. Note that p = xu−1 and (1 − x)(1 − p) = 1 − p. Hence x is ∗−exchange.

Lemma 4.3. Let R be a ∗−ring and x ∈ R. Then the following conditions are equivalent:
(1) x is ∗−exchange;
(2) There exists p ∈ PE(R) such that p − x ∈ (x − x2)R.

Proof. (1) =⇒ (2) Assume that x is ∗−exchange. Then there exists p ∈ PE(R) such that p ∈ xR and 1 − p ∈
(1 − x)R, this gives p − x = (1 − x)p − x(1 − p) ∈ (x − x2)R.

(2) =⇒ (1) Let p ∈ PE(R) satisfy p − x ∈ (x − x2)R. Write p − x = (x − x2)c for some c ∈ R. It follows that
p = x(1 + (1 − x)c) ∈ xR and 1 − p = (1 − x)(1 − xc) ∈ (1 − x)R. Hence x is ∗−exchange.

Let R be a ∗−ring and I be an (one-sided) ideal of R. I is called ∗−(one-sided) ideal of R if a∗ ∈ I for each
a ∈ I. Clearly, the Jacobson radical J(R) of a ∗−ring R is ∗−ideal.

Lemma 4.4. Let R be a ∗−exchange ring and I a ∗−right ideal of R. Then the projection elements can be lifted modulo
I.
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Proof. Let x ∈ R satisfy x − x2
∈ I. Since R is ∗−exchange, there exists p ∈ PE(R) such that p − x ∈ (x − x2)R

by Lemma 4.3. Note that I is a ∗−right ideal of R. Hence p − x ∈ I, we are done.

Lemma 4.5. If R is a ∗−exchange ring, then E(R) = PE(R).

Proof. Let e ∈ E(R). Then by the hypothesis, there exists p ∈ PE(R) such that p ∈ eR and 1 − p ∈ (1 − e)R. It
follows that p = ep = e. Hence e ∈ PE(R), this gives E(R) ⊆ PE(R). Therefore E(R) = PE(R).

Let R be a ∗−ring and I a ∗−ideal of R. For each ā = a + I in R̄ = R/I, we define ā∗ = a∗ + I. Then R/I
becomes a ∗−ring.

Theorem 4.6. Let R be a ∗−ring. Then R is a ∗−exchange ring if and only if
(1) R/J(R) is ∗−exchange ring;
(2) Projection elements can be lifted modulo J(R);
(3) E(R) = PE(R).

Proof. Suppose that R is ∗−exchange. Then the projection elements can be lifted modulo J(R) by Lemma 4.4
and E(R) = PE(R) by Lemma 4.5. Note that R is exchange. Then R/J(R) is exchange, it follows that R/J(R)
is ∗−exchange because E(R) = PE(R).

Conversely, let a ∈ R. Since R̄ = R/J(R) is ∗−exchange, there exists p ∈ R such that p̄ ∈ PE(R̄) ∩ āR̄ and
1̄ − p̄ ∈ (1̄ − ā)R̄. Note that the projection elements can be lifted modulo J(R). Then we can assume that
p ∈ PE(R). Let b, c ∈ R satisfy p− ab ∈ J(R) and 1− p− (1− a)c ∈ J(R). Write u = 1− p + ab. Then u ∈ U(R). Let
e = upu−1. Then we have e2 = e = abpu−1

∈ aR. Note that E(R) = PE(R). Then e ∈ PE(R). Since p − ab ∈ J(R),
āb̄ = p̄, it follows that ū = 1̄ − p̄ + āb̄ = 1̄, so ē = āb̄p̄ū−1 = p̄, e − p ∈ J(R), it follows that 1 − e − (1 − a)c =
1 − p − (1 − a)c + p − e ∈ J(R). Write 1 − e − (1 − a)c = d ∈ J(R). Then 1 = e(1 − d)−1 + (1 − a)c(1 − d)−1. Choose
f = e+e(1−d)−1(1−e). Then f ∈ PE(R)∩aR and 1− f = (1−e(1−d)−1)(1−e) = (1−a)c(1−d)−1(1−e) ∈ (1−a)R.
Therefore a is ∗−exchange and so R is ∗−exchange.

Theorem 4.6 implies the following corollary.

Corollary 4.7. A ∗−ring R is ∗−exchange if and only if R is exchange and PE(R) = E(R).

Lemma 4.8. Let R be a ∗−ring. Then E(R) = PE(R) if and only if for each e, 1 ∈ E(R), e∗e = ee∗ and 1∗1 = 0 implies
1 = 0.

Proof. Suppose that E(R) = PE(R) and e ∈ E(R). We claim that eR(1 − e) = 0. If not, then there exists a ∈ R
such that ea(1− e) , 0. Note that 1 = e+ ea(1− e) ∈ E(R) = PE(R). Then e+ ea(1− e) = 1 = 1∗ = e∗+ (1− e∗)a∗e∗ =
e + (1− e)a∗e, it follows that ea(1− e) = (1− e)a∗e, so ea(1− e) = 0, which is a contradiction. Hence eR(1− e) = 0.
Similarly, we can show that (1 − e)Re = 0. Hence e∗e = ee∗e = ee∗.

Now assume that 1 ∈ E(R) and 1∗1 = 0. Noting that E(R) = PE(R). Then 1∗ = 1, so 1 = 0.
Conversely, let e ∈ E(R). Then by hypothesis, one has e∗e = ee∗. Since e−e∗e ∈ E(R) and (e−e∗e)∗(e−e∗e) = 0,

again by hypothesis, one obtains that e − e∗e = 0, this implies e ∈ PE(R). Hence E(R) = PE(R).

By the proof of Lemma 4.8, we have the following corollary.

Corollary 4.9. Let R be a ∗−ring and E(R) = PE(R). Then R is an Abel ring.

It is known that Abel exchange rings are clean. Hence Theorem 4.6 and Corollary 4.9 imply the following
corollary.

Corollary 4.10. ∗−exchange rings are clean.

Since clean rings are always exchange, hence Theorem 4.6 and Corollary 4.10 give the following corollary.
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Corollary 4.11. Let R be a ∗−ring. Then the following conditions are equivalent:
(1) R is a ∗−exchange ring;
(2) R is an exchange ring and E(R) = PE(R);
(3) R is a clean ring and E(R) = PE(R).

The following corollary follows from [17, Theorem 3.3, Corollary 3.4, Theorem 3.12, Corollary 4.9],
Corollary 4.7 and Corollary 4.9.

Corollary 4.12. Let R be a ∗−exchange ring and P is an ideal of R.
(1) If P is a prime ideal of R, then R/P is a local ring;
(2) If P is a left (right) primitive ideal of R, then R/P is a division ring;
(3) R is a left and right quasi-duo ring;
(4) R has stable range one.

Theorem 4.13. The following conditions are equivalent for a ∗−ring R:
(1) R is a ∗−strongly regular ring;
(2) R is a semiprime ∗−exchange ring and every prime ideal of R is maximal;
(3) R is a semiprime ∗−exchange ring and every prime ideal of R is left (right) primitive.

Proof. (1) =⇒ (2) Suppose that R is ∗−strongly regular. Then, by Lemma 4.2, R is ∗−exchange, this implies
R is left and right quasi-duo by Corollary 4.12. Note that R is strongly regular. Hence, by [19, Theorem 2.6],
R is a semiprime and every prime ideal of R is maximal.

(2) =⇒ (3) It is trivial.
(3) =⇒ (1) Suppose that R is a semiprime ∗−exchange ring and every prime ideal of R is left (right)

primitive. Then R is left and right quasi-duo by Corollary 4.12 and PE(R) = E(R) by Theorem 4.6. Note that
R is strongly regular by [19, Theorem 2.6]. Hence R is ∗−strongly regular by Theorem 3.2.

Corollary 4.14. Let R be a ∗−exchange semiprimitive ring such that every left R-module has a maximal submodule,
then R is ∗−strongly regular.

Proof. Note that R is left and right quasi-duo and PE(R) = E(R) by Corollary 4.7 and Corollary 4.12. Then,
by [19, Lemma 3.2], R is von neumann regular, it follows that R is ∗−strongly regular by Theorem 3.2.

Corollary 4.15. Let R be a ∗−exchange ring. If every prime ideal of R is left (right) primitive, then R/J(R) is
∗−strongly regular.

Proof. Since R is a ∗−exchange ring, by Theorem 4.6, R/J(R) is ∗−exchange. Note that R/J(R) is semiprime
and every prime ideal of R/J(R) is left (right) primitive. Then, by Theorem 4.13, one obtains that R/J(R) is
∗−strongly regular.
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