
Filomat 29:4 (2015), 781–785
DOI 10.2298/FIL1504781E

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Summation of Double Sequences and Selection Principles
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bUniversity in Kragujevac, Faculty of Technical Sciences Čačak, Svetog Save 65, 32000 Čačak, Serbia

Abstract. This paper proves some selection properties of a class of positive real double sequences which
converge to 0 in the sense of Pringsheim (see, e.g. [10]).

1. Introduction

For a real double sequence x = (xm,n) we say that it is convergent to 0 in the sense of Pringsheim (denoted
by P- lim x = 0) [10] if

lim
min{m,n}→+∞

xm,n = 0. (1)

Denote the class of such double sequences by c0
2 and the class of such positive double sequences by c0

2,+
(see [2]).

Theory of double sequences (in particular, theory of convergence of double sequences in Pringsheim’s
sense) is important current part of mathematical analysis and other mathematical disciplines (see, e.g.
[6, 7, 9, 11]).

Let x = (xm,n) be a double sequence of real numbers. Then:

1◦ ω(d)(x) = (ω(d)
n (x)) is the Landau-Hurwicz sequence of x, if

ω(d)
n (x) = sup{|xk,l − xr,s| | k ≥ n, l ≥ n, r ≥ n and s ≥ n}

for all n ∈N (see [1]);

2◦ S∗1(x) = (Sn(x)), where Sn(x) =
n∑

k=1

(
n∑

l=1
xk,l

)
for n ∈ N, is the sequence which represents the diagonal

series of x;

3◦ x is with finite diagonal sum, if there exists S(x)
1 ∈ R such that S(x)

1 = lim
n→+∞

Sn(x) (denoted by S(x)
1 =

∑
x);
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4◦ S∗2(x) = (Sm,n(x)), where Sm,n(x) =
m∑

k=1

(
n∑

l=1
xk,l

)
for m ∈ N and n ∈ N, is the double sequence which

represents the double series of x;

5◦ x is with finite sum in the Pringsheim sense, if there exists S(x)
2 ∈ R such that S(x)

2 = P- lim S∗2(x) (denoted
by S(x)

2 = P-
∑

x);

Let us take a double sequence x = (xm,n) of positive real numbers (denoted by x ∈ S2). Then:

6◦ x is an element of a class l12 if S(x)
1 ∈ R and x is an element of a class P-l12 if S(x)

2 ∈ R;

7◦ x is an element of a class l12,Tr(R−∞,S) if x ∈ l12 and ω(d)(S∗2(x)) ∈ Tr(R−∞,S).

Remark 1.1. (a) For a sequence a = (an) of positive numbers we say that it is translationally rapidly varying in
the sense of de Haan with the index of variability −∞, if

lim
n→+∞

a[n+α]

an
= 0 (2)

for every α ≥ 1 (the class of such sequences is denoted by Tr(R−∞,S)). Such sequences are important objects in
asymptotic analysis (see, e.g. [3]). It holds that the class Tr(R−∞,S) is a proper subclass of the class of positive
real sequences which converge to 0.

(b) For a double sequence x of positive real numbers it holds that x converges in Pringsheim’s sense in R if and
only if ω(d)

n (x)→ 0, for n→ +∞ (see [1]).

(c) For a sequence b = (bn) of real numbers the sequence ω(b) = (ωn(b)) is the Landau-Hurwicz sequence, if
ωn(b) = sup{|bk − br| | k ≥ n and r ≥ n} for every n ∈ N (see [4]). The fact ω(d)(S∗2(x)) ∈ Tr(R−∞,s) from 6◦ is
equal to the fact that ω(S∗1(x)) ∈ Tr(R−∞,s).

Proposition 1.2. Let x = (xm,n) ∈ S2. For S ∈ (0,+∞) it holds that S = P-
∑

x if and only if S =
∑

x.

Proof.

(⇒) Let S ∈ (0,+∞) and S = P-
∑

x. Then for ε > 0 there exists n0 = n0(ε) ∈ N such that S − Sm,n(x) ≤ ε for
every m ≥ n0 and every n ≥ n0. So, for n ≥ n0 we have S − Sn,n(x) ≤ ε, so S =

∑
x.

(⇐) Let S ∈ (0,+∞) and S =
∑

x. Then for every ε > 0 there is n0 = n0(ε) ∈ N such that S − Sn,n(ε)(x) ≤ ε
for every n ≥ n0. For k, l ∈ {0} ∪N it holds

0 < S − Sn0+max{l,k},n0+max{l,k}(x) ≤ S − Sn0+k,n0+l(x)
≤ S − Sn0+min{l,k},n0+min{l,k}(x) ≤ ε,

so S = P-
∑

x.

Proposition 1.3. Let x = (xm,n) ∈ S2. If
∑

x is an element of R (x ∈ l12), then P- lim x = 0. The converse need not be
true.

Proof. If x ∈ S2 and x ∈ l12, then for every ε > 0 there exists n0 = n0(ε) ∈N such that

Vn(x) = x1,n + x2,n + · · · + xn,n + xn,n−1 + · · · + xn,2 + xn,1 ≤ ε

for every n ≥ n0. So, for every k, l ∈ {0} ∪N it holds that xn0+k,n0+l ≤ ε, i.e. x ∈ c0
2,+.

Now, let us observe that the double sequence x = (xm,n), where xm,n = 1
max{m,n} for m ∈ N and n ∈ N.

Then
∑

x >
+∞∑
n=1

1
n = +∞, so the double sequence x does not have finite diagonal sum. On the other side,

x ∈ c0
2,+, because for every ε > 0 there exists n0 = n0(ε) ∈N (let say n0 = [ 1

ε ] + 1), such that xm,n ≤ ε for every
m ≥ n0 and every n ≥ n0.
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Corollary 1.4. Let x = (xm,n) ∈ S2. If P-
∑

x is an element of R (x ∈ P-l12), then P- lim x = 0. The converse need not
be true.

LetA andB be non-empty subsets from S2. Let us define the following selection principles (see, e.g. [5]
and [1]):

(a) S(d)
1 (A,B) denotes the selection principle: for every double sequence (Am,n) of elements fromA there

exists an element B from B such that B = (bm,n) and bm,n ∈ Am,n for every m,n ∈N;

(b) α(d)(A,B) denotes the selection principle: for every double sequence (Am,n) of elements fromA there
exists an element B ∈ B such that the set B ∩ Am,n is infinite for every m,n ∈N;

(c) Sϕ1 (A,B) denotes the selection principle: for every sequence (At) of elements from A there exists an
element B from B such that B = (bm,n) and bm,n ∈ At for t = ϕ(m,n), where ϕ : N ×N → N is an in
advance given bijection.

2. Main Results

The following propositions improve results given in [1] and [5].

Proposition 2.1. The selection principle S(d)
1 (c0

2,+, l
1
2,Tr(R−∞,S)) is satisfied.

Proof. Let a double sequence of double sequences (xm,n,k,l) be given, where for every (k0, l0) ∈N×N it holds
x(k0,l0) = (xm,n,k0,l0 ) ∈ c0

2,+. Let us create the double sequence y = (yk,l) in the following way:

(step 1) take y1,1 from the double sequence x(1,1) so that y1,1 ≤ 1;

(step 2) for (k, l) ∈ {(1, 2), (2, 2), (2, 1)} take yk,l from the double sequence x(k,l) so that yk,l ≤
1
22 ·

V1(y)
2·2−1 ;

(step n, n ≥ 3) for (k, l) ∈ {(1,n), (2,n), . . . , (n,n), . . . , (n, 2), (n, 1)} take yk,l from the double sequence x(k,l)

such that yk,l ≤
1
n2 ·

Vn−1(y)
2n−1 . We have that y is a double sequence of positive real numbers and that for

every n ∈ N it holds Sn,n(y) ≤ 1 + · · · + 1
n2 , because Sn,n(y) =

n∑
p=1

Vp(y). So, there exists S(y)
1 > 0 such that

S(y)
1 = lim

n→+∞
Sn,n(y), so y ∈ l12. Let us observe now that ω(d)(S∗2(y)) = (ω(d)

n (S∗2(y))). Then for every n ∈ N it

holds ω(d)
n (S∗2(y)) = S(y)

1 − Sn(y). Also, for sufficiently large n ∈N the following holds:

ω(d)
n+1(S∗2(y))

ω(d)
n (S∗2(y))

=
S(y)

1 − Sn+1(y)

S(y)
1 − Sn(y)

= 1 −
Sn+1(y) − Sn(y)

S(y)
1 − Sn(y)

=

= 1 −
Vn+1(y)

Vn+1(y) + Vn+2(y) + · · ·
= 1 −

1

1 +
Vn+2(y)
Vn+1(y) +

Vn+3(y)
Vn+1(y) + · · ·

=

= 1 −
1

1 +
Vn+2(y)
Vn+1(y) +

Vn+3(y)
Vn+2(y) ·

Vn+2(y)
Vn+1(y) + · · ·

≤

≤ 1 −
1

1 +
Vn+2(y)
Vn+1(y) +

Vn+3(y)
Vn+2(y) + · · ·

.

Here we used the fact that the series
+∞∑
n=1

Vn+1(y)
Vn(y) is convergent and because of that

+∞∑
k=n

Vk+1(y)
Vk(y) → 0 for n→ +∞.

Thus, the following holds:

lim
n→+∞

ω(d)
n+1(S∗2(y))

ω(d)
n (S∗2(y))

= 0,
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so ω(d)(S∗2(y)) ∈ Tr(R−∞,S). Thus, y ∈ l12,Tr(R−∞,S). From Proposition 1.3 it follows y ∈ c0
2,+ and from the

construction of the double sequence y it follows that yk,l ∈ x(k,l) for every (k, l) ∈ N ×N. This ends the
proof.

Corollary 2.2. The selection principle S(d)
1 (c0

2,+, l
1
2) is satisfied.

Remark 2.3. From Proposition 1.2 and Corollary 2.2 it follows that the selection principle S(d)
1 (c0

2,+,P-l12) is satisfied.

Proposition 2.4. The selection principle α(d)
2 (c0

2,+, l
1
2) is satisfied.

Proof. Let (xm,n,k,l) be a double sequence of double sequences with properties as in the proof of Proposition
2.1. Let us sort it (applying some of standard methods) into a sequence of double sequences (xm,n,r), where
for every r0 ∈ N it is fulfilled x(r0) = (xm,n,r0 ) ∈ c0

2,+. Let form the double sequence y = (ys,t) in the following
way:

(step 1) let y0 = (y(0)
s,t ) be a double sequence such that for every (s, t) ∈ N ×N it holds 0 < y(0)

s,t ≤
1

M2(2M−1) ,
where M = max{s, t};

(step 2) let (pr) be a sequence of prime numbers in ascending order, where p1 = 2. For r ∈N form the double
sequence yr = (y(r)

s,t ) by making changes in the double sequence yr−1 at positions (pϕr(1)
r , pϕr(1)

r ), 1 ∈N (where

ϕr : N → N is a bijection such that the sequence
+∞∑
1=1

xpϕr (1)
r ,pϕr (1)

r ,r is convergent and ≤ 1
r2 ), in the following

way: replace elements in yr−1 at the mentioned positions with elements from the double sequence x(r) at the
same positions, respectively.

Let y = lim
r→+∞

yr. Then the double sequence y = (ys,t) ∈ c0
2,+ and y ∈ l12. According to the construction

of y there are infinitely many common elements of y with every double sequence x(r), r ∈ N, at the same
positions, which ends this proof.

Remark 2.5.

(a) According to Propositions 1.2 and 2.4 the selection principle α(d)
2 (c0

2,+,P-l12) is satisfied.

(b) Also, selection principles α(d)
j (c0

2,+,B) are satisfied for B ∈ {l12,P-l12} and i ∈ {3, 4}, as well as selection principles
α j(c0

2,+,B) for j ∈ {2, 3, 4} (about these selection principles see [1] and [8]).

Proposition 2.6. The selection principle Sϕ1 (c0
2,+, l

1
2) is satisfied.

Proof. Let ϕ :N ×N→N be a bijection and let a sequence of double sequences (xm,n,r) be given, where for
every r0 ∈N, x(r0) = (xm,n,r0 ) ∈ c0

2,+ is fulfilled. Create the double sequence y = (ys,t) in the following way:
Let arbitrary r ∈ N be fixed. Also, let (s(r), t(r)) = ϕ−1(r) and let M(r) = max{s(r), t(r)}. There exists

n0(r) ∈ N such that xn0(r),n0(r),r ≤
1

M2(r)(2M(r)−1) . Take ys(r),t(r) = xn0(r),n0(r),r, for r ∈ N, and in that way create
the double sequence (ys(r),t(r)). It follows that y ∈ c0

2,+ and y ∈ l12. According to the construction of double
sequence y it follows that y and x(r) have exactly one common element for each r ∈ N. This ends the
proof.

Remark 2.7. According to Propositions 1.2 and 2.6 the selection principle Sϕ1 (c0
2,+,P-l12) holds.
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[3] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Classes of sequences of real numbers, games and selection properties, Topology Appl. 156
(2008), 46–55.
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[8] Lj.D.R. Kočinac, On the αi-selection principles and games, Contem. Math. 533 (2011), 107–124.
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