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Abstract. A 2-rainbow dominating function (2RDF) of a graph G is a function f : V(G) → P({1, 2}) such
that for each v ∈ V(G) with f (v) = ∅we have

⋃
u∈N(v) f (u) = {1, 2}. For a 2RDF f of a graph G, the weight w( f )

of f is defined as w( f ) =
∑

v∈V(G) | f (v)|. The minimum weight over all 2RDFs of G is called the 2-rainbow
domination number of G, which is denoted by γr2(G). A subset S of vertices of a graph G without isolated
vertices, is a total dominating set of G if every vertex in V(G) has a neighbor in S. The total domination
number γt(G) is the minimum cardinality of a total dominating set of G. Chellali, Haynes and Hedetniemi
conjectured that γt(G) ≤ γr2(G) [M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak Roman
and 2-rainbow domination numbers, Discrete Appl. Math. 178 (2014), 27–32.], and later Furuya confirmed
the conjecture [M. Furuya, A note on total domination and 2-rainbow domination in graphs, Discrete Appl.
Math. 184 (2015), 229–230.]. In this paper, we provide a constructive characterization of trees T with
γr2(T) = γt(T).

1. Introduction

In this paper, we shall only consider graphs without multiple edges or loops or isolated vertices. Let
G be a graph, S ⊆ V(G), v ∈ V(G), the open neighborhood of v in S is denoted by NS(v). That is to say
NS(v) = {u|uv ∈ E(G),u ∈ S}. The closed neighborhood NS[v] of v in S is defined as NS[v] = {v} ∪ NS(v). If
S = V(G), then NS(v) and NS[v] are denoted by N(v) and N[v], respectively. The degree of v is the number
of neighbors of v and it is denoted by deg(v), i.e. deg(v) = |N(v)|. A leaf of G is a vertex with degree one in
G and a vertex that has a leaf neighbor is called a support vertex. The set of leaf neighbors of a vertex v is
denoted by L(v). A strong support vertex is a support vertex adjacent to at least two leaves. An end support
vertex is a support vertex whose all neighbors with exception at most one are leaves. We denote by Pn the
path on n vertices. A pendant path P of a graph G is an induced path such that one of end points has degree
one in G, and its other end point is the only vertex of P adjacent to some vertex in G−P. The distance dG(u, v)
between two vertices u and v in a connected graph G is the length of a shortest uv-path in G. The diameter
of a graph G, denoted by diam(G), is the greatest distance between two vertices of G. A double star is a tree
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with exactly two vertices that are not leaves. For a vertex v in a rooted tree T, let C(v) denotes the set of
children of v, D(v) denotes the set of descendants of v and D[v] = D(v) ∪ {v}. Also, the depth of v, depth(v),
is the largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by
D(v) ∪ {v}, and is denoted by Tv.

In a graph G, a vertex is said to dominate all vertices adjacent to it. A total dominating set (TDS) in a graph
G is a subset S ⊆ V(G) such that each vertex in V(G) is dominated by at least a vertex in S, that is N(S) = V(G).
The total domination number γt(G) is the minimum cardinality of a total dominating set of G. A TDS with
cardinality γt(G) is called a γt-set of G (or γt(G)-set). The total domination number was introduced by
Cockayne, Dawes and Hedetniemi [5] and is now well studied in graph theory. The literatures on this
subject has been surveyed and detailed in the book by Henning and Yeo [10].

A 2-rainbow dominating function (2RDF) of a graph G is a function f : V(G) → P({1, 2}) such that for
each v ∈ V(G) with f (v) = ∅ we have

⋃
u∈N(v) f (u) = {1, 2}. For a 2RDF f of a graph G, the weight w( f )

of f is defined as w( f ) =
∑

v∈V(G) | f (v)|. The minimum weight over all 2RDFs of G is called the 2-rainbow
domination number of G, and is denoted by γr2(G). A 2RDF with weight γr2(G) is called a γr2-function of G
or a γr2(G)-function. The rainbow domination number was introduced by Brešar, Henning, and Rall [1] and
has been studied by several authors (see for example [3, 6, 11, 13, 14]).

Chellali, Haynes and Hedetniemi [4] investigated difference between many domination-like parameters
and they conjectured that γt(G) ≤ γr2(G) for any graph G without isolated vertices. Later, Furuya [7]
confirmed this conjecture. A natural problem that may arise is the characterization of graphs (or trees) G
with γt(G) = γr2(G). In this paper, we provide a constructive characterization of trees T with γr2(T) = γt(T).

We make use of the following results in this paper.

Observation 1.1. ([6]) Let G be a connected graph. If there is a path v3v2v1 in G with deg(v2) = 2 and deg(v1) = 1,
then G has a γr2(G)-function f such that f (v1) = {1} and 2 ∈ f (v3).

Observation 1.2. Let H be an induced subgraph of a graph G such that G and H have no isolated vertices. If
γr2(H) = γt(H), γt(G) ≥ γt(H) + s and γr2(G) ≤ γr2(H) + s for some positive integer s, then γr2(G) = γt(G).

Proof. It follows from the assumptions and the fact γt(G) ≤ γr2(G) that

γt(G) ≥ γt(H) + s = γr2(H) + s ≥ γr2(G) ≥ γt(G)

and this leads to the result.

Observation 1.3. Let H be an induced subgraph of a graph G such that G and H have no isolated. If γr2(G) = γt(G),
γt(G) ≤ γt(H) + s and γr2(G) ≥ γr2(H) + s for some positive integer s, then γr2(H) = γt(H).

Proof. By assumptions and the fact γt(H) ≤ γr2(H), we have

γt(G) ≤ γt(H) + s ≤ γr2(H) + s ≤ γr2(G) = γt(G)

and this leads to the result.

2. Trees with equal total domination and 2-rainbow domination numbers

In this section, we provide a constructive characterization of all trees with γt(T) = γr2(T). We begin with
three definitions.

Definition 2.1. For a tree T and v ∈ V(T), let

γt(T, v) = min{|S| : S ⊆ V(T) and each vertex w , v has a neighbor in S}.

Clearly γt(T, v) ≤ γt(v) for each v ∈ V(T). We define

W1
T = {v|γt(T, v) = γt(T)}.
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Definition 2.2. For a tree T and v ∈ V(T), we say v has property P in T if there exists a γr2(T)-function f such that
f (v) , ∅. Define

W2
T = {v|v has property P in T}.

Definition 2.3. An extended spider with t (t ≥ 2) feet is a tree obtained from star K1,t by subdividing every edge of
K1,t twice. The center of star is called the head of spider.

In order to presenting our constructive characterization, we define a family of trees as follows. Let T
be the family of trees T that can be obtained from a sequence T1, T2, · · · , Tk of trees for some k ≥ 1, where
T1 is P2 or P3 and T = Tk. If k ≥ 2, Ti+1 can be obtained from Ti by one of the following ten operations.

Operation O1: If x ∈ V(Ti) and x is a strong support vertex, then O1 adds a vertex y and an edge xy to
obtain Ti+1.

Operation O2: If x ∈W1
Ti

, then O2 adds a star K1,s (s ≥ 3) with a leaf c and an edge xc to obtain Ti+1 (see Fig.
1 (a));

Operation O3: If x ∈ V(Ti) and there is a pendant path xyz, then O3 adds a pendant path xba to obtain Ti+1
(see Fig. 1 (b));

Operation O4: If x ∈ V(Ti) and x is adjacent to the center of a pendant star K1,s (s ≥ 1), then O4 adds a
pendant path xcba to obtain Ti+1 (see Fig. 1 (c));

Operation O5: If Ti contains a strong support vertex z and a pendant path zyx, then O5 adds a pendant
edge xa to obtain Ti+1 (see Fig. 1 (d));

Operation O6: If x ∈W1
Ti

, then O6 adds a path P5 = abcde and an edge xd to obtain Ti+1 (see Fig. 1 (e));

Operation O7: If x ∈ V(Ti), then O7 adds an extended spider headed at a with k ≥ 2 feet and joins x to a for
obtaining Ti+1 (see Fig. 1 (f));

Operation O8: If x ∈W2
Ti

, then O8 adds a pendant path xdcba to obtain Ti+1 (see Fig. 1 (g)).

Operation O9: If x ∈ W1
Ti

and x is a strong support vertex, then O9 adds a pendant path xab to obtain Ti+1
(see Fig. 1 (h)).

Operation O10: If x ∈ Ti is a support vertex and there is a pendant path xx3x2x1, then O10 adds a pendant
path xabc to obtain Ti+1 (see Fig. 1 (i)).
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The proof of the first lemma is trivial.

Lemma 2.4. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O1, then γt(Ti+1) =
γr2(Ti+1).

Lemma 2.5. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O2, then γt(Ti+1) =
γr2(Ti+1).

Proof. Let f be a γr2-function of Ti, we can obtain a 2RDF f ′ of Ti+1 by letting f ′(t) = f (t) for t ∈ V(Ti),
f ′(v) = {1, 2}, f ′(u) = ∅ for u ∈ N(v). Hence γr2(Ti+1) ≤ γr2(Ti) + 2. On the other hand, let S be a γt(Ti+1)-set
containing no leaves and let v be the central vertex of the star added by Operation O2. Then we have
v, c ∈ S and clearly S − {c, v} is a subset of vertices such that each vertex w ∈ V(Ti) − {x} has a neighbor in
S− {v, c}. Since x ∈W1

Ti
, we have |S− {v, c}| ≥ γt(Ti) and so γt(Ti+1) ≥ γt(Ti) + 2. Now the result follows from

Observation 1.2.

Lemma 2.6. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O3, then γt(Ti+1) =
γr2(Ti+1).

Proof. By Observation 1.1, there exists a γr2-function f of Ti such that f (z) = {1} and 2 ∈ f (x), now we can
extend f to a 2RDF f ′ of Ti+1 by letting f ′(a) = {1} and f ′(b) = ∅. Hence we have γr2(Ti+1) ≤ γr2(Ti) + 1. On
the other hand, if S is a γt(Ti+1)-set containing no leaves, then y, x, b ∈ S and it follows that S − {b} is a TDS
of Ti yielding γt(Ti+1) ≥ γt(Ti) + 1. By Observation 1.2, we have γt(Ti+1) = γr2(Ti+1) as desired.

Lemma 2.7. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O4, then γt(Ti+1) =
γr2(Ti+1).

Proof. By observation 1.2, it is enough to show that γr2(Ti+1) ≤ γr2(Ti) + 2 and γt(Ti+1) ≥ γt(Ti) + 2. Clearly
any γr2(Ti)-function f can be extended to a 2RDF of Ti+1 by assigning {1} to a, ∅ to b and {2} to c and this
implies that γr2(Ti+1) ≤ γr2(Ti)+2. Now let S be a γt(Ti+1)-set containing no leaves. Then we have b, c, x, y ∈ S
where y is the center of the star K1,s. Then obviously S − {b, c} is a TDS of Ti of size γt(Ti+1) − 2 and so
γt(Ti+1) ≥ γt(Ti) + 2. This completes the proof.
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Lemma 2.8. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O5, then γt(Ti+1) =
γr2(Ti+1).

Proof. By observation 1.2, we need only to show that γr2(Ti+1) ≤ γr2(Ti) + 1 and γt(Ti+1) ≥ γt(Ti) + 1. By
Observation 1.1, there exists aγr2(Ti)-function f such that f (x) = {1}. Then the function 1 : V(Ti+1)→ P({1, 2})
defined by 1(a) = {1} and 1(z) = f (z) for z ∈ V(Ti+1) − {a} is a 2RDF of Ti+1 of weight γr2(Ti) + 1 and so
γr2(Ti+1) ≤ γr2(Ti) + 1.

Now let S be a γt(Ti+1)-set which contains no leaf. Then we must have x, y, z ∈ S and clearly S − {x} is a
TDS of Ti. Therefore γt(Ti+1) ≥ γt(Ti) + 1 and the proof is complete.

Lemma 2.9. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O6, then γt(Ti+1) =
γr2(Ti+1).

Proof. We show that γr2(Ti+1) ≤ γr2(Ti) + 3 and γt(Ti+1) ≥ γt(Ti) + 3. Let f be an arbitrary γr2-function of Ti
and define 1 : V(Ti+1)→ P({1, 2} by 1(a) = 1(e) = {1}, 1(c) = {2}, 1(b) = 1(d) = ∅ and 1(z) = f (z) for z ∈ V(Ti).
Clearly 1 is a 2RDF of Ti+1 of weight γr2(Ti) + 3 and hence γr2(Ti+1) ≤ γr2(Ti) + 3.

Now let S be a γt(Ti+1)-set which contains no leaf. Then we have b, c, d ∈ S. It is not hard to see that
S′ = S − {b, c, d} is a set of vertices of Ti such that any vertex w , x has a neighbor in S′. Since x ∈ W1

Ti
, we

have |S′| ≥ γt(Ti) and this implies that γt(Ti+1) ≥ γt(Ti) + 3. Now the result follows by Observation 1.2.

Lemma 2.10. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O7, then
γt(Ti+1) = γr2(Ti+1).

Proof. Let k ≥ 2 and T1 be the extended spider with k feet added by Operation O7. Assume T1 headed
at a and its feet are ai1ai2ai3 with ai3a ∈ E(T1) for 1 ≤ i ≤ k. Let f be a γr2-function of Ti, we can obtain
a 2RDF f ′ of Ti+1 by letting f ′(a) = ∅, f ′(ai1) = {2}, f ′(ai2) = ∅ and f ′(ai3) = {1} for i = 1, 2, . . . , k. Hence
γr2(Ti+1) ≤ γr2(Ti) + 2k. Now we show that γt(Ti) ≤ γt(Ti+1)− 2k. Let S be a γt(Ti+1)-set containing no leaves.
Then we must have ai2, ai3 ∈ S for i = 1, 2, . . . , k. If a < S, then S′ = S − {ai2, ai3 | i = 1, . . . , k} is a TDS of Ti
of weight at most γt(Ti+1) − 2k yielding γt(Ti) ≤ γt(Ti+1) − 2k. Suppose that a ∈ S. This implies that u < S
for each u ∈ N(x) \ {a}. Then S′ = (S − {a, ai2, ai3 | i = 1, . . . , k}) ∪ {u} for each u ∈ N(x) \ {a} is clearly a TDS
of Ti of size at most γr2(Ti+1) − 2k. Thus γt(Ti) ≤ γt(Ti+1) − 2k. We now deduce from Observation 1.2 that
γr2(Ti+1) = γt(Ti+1) and the proof is complete.

Lemma 2.11. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O8, then
γt(Ti+1) = γr2(Ti+1).

Proof. Let f be a γr2-function of Ti such that f (x) , ∅ (since x ∈ W2
T, so such a function exists). Assume

without loss of generality that 1 ∈ f (x). Then f can be extended to a 2RDF f ′ of Ti+1 by letting f ′(a) = {1},
f ′(b) = f ′(d) = ∅ and f ′(c) = {2}. Then we have γr2(Ti+1) ≤ γr2(Ti) + 2.

On the other hand, let S be a γt(Ti+1)-set containing no leaves. Then we have b, c ∈ S. We claim that
there exists a TDS S′ of G of size at most |S| such that b, c ∈ S′ and a, d < S′. If d < S, then let S′ = S. Assume
that d ∈ S. This implies that u < S for each u ∈ N(x) \ {d}. Now let S′ = (S − {d})∪ {u} for some u ∈ N(x) \ {d}.
Clearly S′ is a TDS of Ti+1 of size at most |S| satisfying our claim. Then S′ − {b, c} is a TDS of Ti of size at
most γr2(Ti+1) − 2. This yields γt(Ti) ≤ |S′| − 2 ≤ |S| − 2 = γt(Ti+1) − 2. Therefore, γt(Ti+1) ≥ γt(Ti) + 2 and the
result follows by Observation 1.2.

Lemma 2.12. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O9, then
γt(Ti+1) = γr2(Ti+1).

Proof. Let f be a γr2-function of Ti that assigns {1, 2} to each strong support vertex. We can obtain a 2RDF
f ′ of Ti+1 by letting f ′(t) = f (t) for t ∈ V(Ti), f ′(b) = {1}, f ′(a) = ∅. Hence γr2(Ti+1) ≤ γr2(Ti) + 1. Now let S
be a γt(Ti+1)-set containing no leaves. Then we must have x, a ∈ S and clearly S− {a} is a set of vertices of Ti
such that each vertex w ∈ V(Ti) − {x} has a neighbor in S − {a}. Since x ∈ W1

Ti
, we have |S − {a}| ≥ γt(Ti) and

so γt(Ti+1) ≥ γt(Ti) + 1. Now the result follows from Observation 1.2.
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Lemma 2.13. If Ti is a tree with γt(Ti) = γr2(Ti) and Ti+1 is a tree obtained from Ti by Operation O10, then
γt(Ti+1) = γr2(Ti+1).

Proof. Assume S is an arbitrary γt(Ti+1)-set containing no leaves. Then we have a, b, x3, x2, x ∈ S and clearly
S − {a, b} is a TDS of Ti yielding γt(Ti+1) ≥ γt(Ti) + 2. On the other hand, any γr2(Ti)-function can be
extended to a 2RDF of Ti+1 by assigning {1} to a, {2} to c and ∅ to b, and hence γr2(Ti+1) ≤ γr2(Ti) + 2. Thus
γt(Ti+1) = γr2(Ti+1) by Observation 1.2.

Theorem 2.14. If T ∈ T , then γr2(T) = γt(T).

Proof. Obviously, if T is P2 or P3, then γr2(T) = γt(T). Now assume that T ∈ T , then there exists a sequence
of trees T1,T2, . . . ,Tk (k ≥ 1) such that T1 is P2 or P3, and if k ≥ 2, then Ti+1 can be obtained recursively
from Ti by Operation O1,O2, . . . ,O10 for i = 1, 2, . . . , k − 1. We apply induction on the number of operations
performed to construct T. It can be seen that if k = 1, the result holds. Suppose that the result holds for
each tree T ∈ T which can be obtained from a sequence of operations of length k − 1 and let T′ = Tk−1.
By the induction hypothesis, we have γr2(T′) = γt(T′). Since T = Tk is obtained by one of the Operations
O1,O2, . . . ,O10 from T′, we conclude from above Lemmas that γr2(T) = γt(T).

Observation 2.15. If T is a double star, then γr2(T) , γt(T).

Theorem 2.16. Let T be a tree of order n ≥ 2. Then γr2(T) = γt(T) if and only if T ∈ T .

Proof. The sufficiency follows from Theorem 2.14. In order to prove the necessity we proceed by induction
on n. If n = 2, 3, then the only trees T of order 2, 3 and γr2(T) = γt(T) are P2,P3 ∈ T . Let n ≥ 4 and let the
statement holds for all trees of order less than n. Assume that T is a tree of order n with γr2(T) = γt(T). If
diam(T) = 2 then T is a star and T can be obtained from P3 by applying Operation O1 and so T ∈ T . Let
diam(T) ≥ 3. By Observation 2.15, we have diam(T) ≥ 4.

Let v1v2 . . . vk (k ≥ 5) be a diametral path in T such that |Lv2 | is as large as possible and root T at vk. Also
suppose among paths with this property we choose a path such that |Lv3 | is as large as possible. We consider
two cases.
Case 1. deg(v2) ≥ 3.
We claim that deg(v3) = 2. Assume, to the contrary, that deg(v3) ≥ 3. We distinguish four subcases.

Subcase 1.1. v3 is a strong support vertex or is adjacent to a strong support vertex other than v2, v4.
Let T′ = T − Tv2 . Then any γt(T′)-set containing no leaves contains v3 and such a γt(T′)-set can be extended
to a TDS of T by adding v2 and so γt(T) ≤ γt(T′) + 1. Suppose now f is a γr2(T)-function. We may assume
that f assigns {1, 2} to each strong support vertex. Hence the function f , restricted to T′ is a 2RDF and so
γr2(T) ≥ γr2(T′) + 2. Thus γt(T′) + 2 ≤ γr2(T′) + 2 ≤ γr2(T) = γt(T) ≤ γt(T′) + 1 which is a contradiction.

Subcase 1.2. v3 is adjacent to a support vertex of degree 2 other than v4.
Let T′ = T − Tv2 . As above we have γt(T) ≤ γt(T′) + 1. Let f be a γr2(T)-function that assigns {1, 2} to each
strong support vertex. By Observation 1.1, we may assume that f (v3) , ∅. Then the function f , restricted
to T′ is a 2RDF and so γr2(T) ≥ γr2(T′) + 2. Now we get a contradiction as above.

Subcase 1.3. deg(v3) = 3 and v3 is adjacent to a leaf u.
Let T′ = T−Tv3 . Then any γt(T′)-set can be extended to a TDS of T by adding v3, v2 and so γt(T) ≤ γt(T′) + 2.
Let f be a γr2(T)-function that assigns {1, 2} to each strong support vertex. Clearly | f (v3)| + | f (u)| ≥ 1. If
| f (v3)| + | f (u)| ≥ 2, then the function 1 : V(T′) → P({1, 2}) defined by 1(v4) = {1} ∪ f (v4) and 1(z) = f (z) for
z ∈ V(T′)−{v4} is a 2RDF of T′ of weightω( f )−3 and so γr2(T) ≥ γr2(T′)+3. If | f (v3)|+ | f (u)| = 1, then clearly
f (v3) = ∅ and the function f , restricted to T′ is a 2RDF of T′ of weight ω( f ) − 3 and so γr2(T) ≥ γr2(T′) + 3.
Thus γt(T′) + 3 ≤ γr2(T′) + 3 ≤ γr2(T) = γt(T) ≤ γt(T′) + 2 which is a contradiction.

Thus deg(v3) = 2. Assume that T′ = T − Tv3 . Let f be a γr2(T)-function that assigns {1, 2} to each strong
support vertex. Then the function 1 : V(T′) → P({1, 2}) defined by 1(v4) = f (v3) ∪ f (v4) and 1(z) = f (z) for
z ∈ V(T′)−{v4} is a 2RDF of T′ of weightω( f )−2 and so γr2(T) ≥ γr2(T′)+2. On the other hand, any γt(T′)-set
can be extended to a TDS of T by adding v3, v2 and so γt(T) ≤ γt(T′) + 2. It follows from Observation 1.3 that
γr2(T′) = γt(T′) and by the induction hypothesis we have T′ ∈ T . Now we show that v4 ∈W1

T′ . Assume, to
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the contrary, that γt(T′, v4) < γt(T′). Let S ⊆ V(T′) be a set of vertices of size γt(T′, v4) such that each vertex
w ∈ V(T′) − {v4} has a neighbor in S. Then S ∪ {v2, v3} is a total dominating set of T of size less than γt(T)
which is a contradiction. Thus v4 ∈W1

T′ and so T ∈ T since it can be obtained from T′ by Operation O2.
Case 2. deg(v2) = 2.
By the choice of diametral path, we may assume that every end-support vertex on a diametral path has
degree 2. In particular, deg(vk−1) = 2. We consider the following subcases.

Subcase 2.1. deg(v3) ≥ 3 and there is a pendant path v3z2z1 in T where z2 < {v2, v4}.
Then deg(z2) = 2 and deg(z1) = 1. Let T′ = T−Tv2 . Clearly any γt(T′)-set containing no leaf can be extended
to a TDS of T by adding v2 and so γt(T) ≤ γt(T′) + 1. Applying Observation 1.1, it is easy to see that
γr2(T) ≥ γr2(T′) + 1 and so γt(T′) = γr2(T′) by Observation 1.3. It follows from the induction hypothesis that
T′ ∈ T . Now since T can be obtained from T′ by Operation O3, we deduce that T ∈ T .

Subcase 2.2. deg(v3) ≥ 4 and all neighbors of v3 with exception v2, v4, are leaves.
Let T′ = T − Tv2 . Suppose f is a γr2(T)-function that assigns {1, 2} to each strong support vertex. By
Observation 1.1, we may assume that f (v1) = {1}. Then the function f , restricted to T′ is a 2RDF of T′ of
weight at most ω( f ) − 1 and so γr2(T) ≥ γr2(T′) + 1. On the other hand, any γt(T′)-set can be extended
to a TDS of T by adding v2 and so γt(T) ≤ γt(T′) + 1. By Observation 1.3, we obtain γt(T′) = γr2(T′). It
follows from the induction hypothesis that T′ ∈ T . Next we show that v3 ∈ W1

T′ . Assume, to the contrary,
that γt(T′, v3) < γt(T′) and let S ⊆ V(T′) be a set of vertices of T′ of size γt(T′, v3) such that each vertex
w ∈ V(T′) − {v3} has a neighbor in S. We note that v3 ∈ S. Then S ∪ {v2} is a total dominating set of T of size
less than γt(T) which is a contradiction. Thus v3 ∈ W1

T′ and so T can be obtained from T′ by Operation O9.
Therefore, T ∈ T .

Subcase 2.3. deg(v3) = 3 and v3 is adjacent to a leaf u.
Since deg(vk−1) = 2, we have diam(T) ≥ 5. We show that this case is impossible. Consider the following.

• deg(v4) = 2.
Let T′ = T−Tv4 . Clearly, any γt(T′)-set can be extended to a TDS of T by adding v2, v3 and hence γt(T) ≤
γt(T′)+2. On the other hand, if f is a γr2(T)-function, then obviously | f (u)|+ | f (v3)|+ | f (v2)|+ | f (v1)| ≥ 3
and the function 1 : V(T′)→ P({1, 2}) defined by 1(v5) = f (v5)∪ f (v4) and 1(z) = f (z) for z ∈ V(T′)−{v5},
is a 2RDF of T′ of weight at most γr2(T) − 3. Therefore

γt(T) = γr2(T) ≥ γr2(T′) + 3 > γt(T′) + 2 ≥ γt(T)

which is a contradiction.

• v4 is a strong support vertex.
Let T′ = T − Tv3 . Clearly, any γt(T′)-set can be extended to a TDS of T by adding v2, v3 and the
restriction of any γr2(T)-function assigning {1, 2} to each strong support vertex to T′, is a 2RDF of
T′ of weight at most γr2(T) − 3. Therefore γt(T) ≤ γt(T′) + 2 and γr2(T) ≥ γr2(T′) + 3 and we get a
contradiction as above.

• v4 is adjacent to an end support vertex.
Let T′ = T − Tv3 . It is not hard to see that γt(T) ≤ γt(T′) + 2 and γr2(T) ≥ γr2(T′) + 3 and this leads to a
contradiction.

• v4 has a neighbor z3 other than v3, v5 such that Tz3 = Tv3 .
Let T′ = T − Tv3 . As above we have γt(T) ≤ γt(T′) + 2. Now let f be a γr2(T)-function. Then
obviously

∑
z∈V(Tv3 ) | f (z)| ≥ 3 and

∑
z∈V(Tz3 ) | f (z)| ≥ 3. Define 1 : V(T′)→ P({1, 2}) by 1(v1) = {1}, 1(v3) =

{1, 2}, 1(v2) = 1(u) = ∅ and 1(z) = f (z) for z ∈ V(T′). It is easy to see that 1 is a γr2(T)-function and the
restriction of 1 to T′ is a 2RDF of T′ of weight at most γr2(T) − 3. Thus γr2(T) ≥ γr2(T′) + 3 and we
obtain a contradiction as above.

• deg(v4) = 3 and v4 is adjacent to a leaf w where w , v5.
Let T′ = T − Tv4 . Clearly any γt(T′)-set can be extended to a TDS of T by adding v2, v3, v4 and hence
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γt(T) ≤ γt(T′) + 3. Now let f be a γr2(T)-function. It is easy to verify that
∑

z∈V(Tv4 ) | f (z)| ≥ 5 when
f (v4) , ∅. Define 1 : V(T′)→ P({1, 2}) by 1 = f when f (v4) = ∅ and by 1(v5) = f (v5)∪{1} and 1(z) = f (z)
for z ∈ V(T′) − {v5}. It is easy to see that 1 is a 2RDF of T′ of weight at most γr2(T) − 4 and this implies
that γr2(T) ≥ γr2(T′) + 4. This leads to a contradiction as above.

• deg(v4) = 3 and there is a pendant path v4z3z2z1 where z3 , v5.
Let T′ = T − Tv4 . Clearly any γt(T′)-set can be extended to a TDS of T by adding v2, v3, z3, z2 and
hence γt(T) ≤ γt(T′) + 4. Now let f be a γr2(T)-function. It is easy to see that

∑
z∈V(Tv3 ) | f (z)| ≥ 3 and∑

z∈V(Tz3 ) | f (z)| ≥ 2. Define 1 : V(T′)→ P({1, 2}) by 1(v5) = f (v5)∪ f (v4) and 1(z) = f (z) for z ∈ V(T′)−{v5}.
It is easy to see that 1 is a 2RDF of T′ of weight at most γr2(T) − 5 and so γr2(T) ≥ γr2(T′) + 5. Again
we get a contradiction.

• There are two pendant paths v4z3z2z1 and v4y3y2y1 where v5 < {y3, z3}.
Let T′ = T − Tv3 . Clearly γt(T) ≤ γt(T′) + 2. Now let f be a γr2(T)-function. It is easy to see
that

∑
z∈V(Tv3 ) | f (z)| ≥ 3,

∑
z∈V(Ty3 ) | f (z)| ≥ 2 and

∑
z∈V(Tz3 ) | f (z)| ≥ 2. Define 1 : V(T) → P({1, 2}) by

1(y1) = {1}, 1(y3) = {2}, 1(z1) = {2}, 1(z3) = {1}, 1(y2) = 1(z2) = ∅ and 1(z) = f (z) otherwise. It is easy
to see that 1 is a γr2(T)-function and the function 1 restricted to T′ is a 2RDF of T′ of weight at most
γr2(T) − 3. Hence γr2(T) ≥ γr2(T′) + 3 and we get a contradiction again.

Considering Subcases 2.1, 2.2 and 2.3, we may assume that deg(v3) = 2. If there exists a path v4z3z2z1
where z4 < {v3, v5} in T, then by the choice of diametral path, we have deg(z3) = deg(z2) = 2. If diam(T) = 4,
then T = P5 and T ∈ T since it can be obtained from P3 by OperationO3. Hence, we assume that diam(T) ≥ 5.
We proceed with more cases.

Subcase 2.4. deg(v4) = 2.
Let T′ = T − Tv4 . Clearly, every γt(T′)-set can be extended to a TDS of T by adding the vertices v2, v3 and
so γt(T) ≤ γt(T′) + 2. Next we show that γr2(T) ≥ γr2(T′) + 2. Let f be a γr2(T)-function. By Observation
1.1, we may assume that f (v1) = {1} and 2 ∈ f (v3). If f (v3) = {1, 2}, then define 1 : V(T′) → P({1, 2}) by
1(v5) = f (v5) ∪ {1} and 1(z) = f (z) for z ∈ V(T′) − {v5}, and if f (v3) = {2}, then define 1 : V(T′) → P({1, 2})
by 1(v5) = f (v5) ∪ f (v4) and 1(z) = f (z) for z ∈ V(T′) − {v5}. Obviously, 1 is a 2RDF of T′ of weight ω( f ) − 2
and so γr2(T) ≥ γr2(T′) + 2. It follows from Observation 1.3 that γr2(T′) = γt(T′) and hence T′ ∈ T . Now, we
show that v5 ∈ W2

T′ . Let f be a γr2(T)-function and assume that f (v1) = {1} and 2 ∈ f (v3). If
∑4

i=1 | f (vi)| ≥ 3,
then the function 1 defined above, is a γr2(T′)-function with 1(v5) , ∅. If

∑4
i=1 | f (vi)| = 2, then we must have

f (v1) = {1}, f (v3) = {2}, f (v2) = f (v4) = ∅ and to rainbowly dominate v4, we must have f (v5) = {1}. Thus the
function f , restricted to T′ is a γr2(T′)-function with f (v5) , ∅. Thus v5 ∈ W2

T′ and since T can be obtained
from T′ by Operation O8, we obtain that T ∈ T .

Subcase 2.5. v4 is a strong support vertex.
Let T′ = T − v1. Then any γt(T′)-set containing no leaves can be extended to a TDS of T by adding v2 and
so γt(T) ≤ γt(T′) + 1. Now we show that γr2(T) ≥ γr2(T′) + 1. Let f be a γr2(T)-function that assigns {1, 2}
to each strong support vertex. By Observation 1.1, we may assume that f (v1) = 1 and 2 ∈ f (v3). Then the
function 1 : V(T′) → P({1, 2}) defined by 1(v2) = {1}, 1(v3) = ∅ and 1(z) = f (z) for z ∈ V(T′) − {v2, v3} is a
2RDF of T′ of weight ω( f ) − 1 and so γr2(T) ≥ γr2(T′) + 1. By Observation 1.3, γt(T′) = γr2(T′) and by the
induction hypothesis on T′ we have T′ ∈ T . Therefore T ∈ T , since it is obtained from T′ by Operation O5.

Subcase 2.6. v4 is adjacent to a support vertex y.
Then clearly the depth of y is 1. Let T′ = T − Tv3 . It is not hard to see that γt(T) = γt(T′) + 2 and
γr2(T) = γr2(T′) + 2. This yields γr2(T′) = γt(T′) and hence T′ ∈ T . Now T can be obtained from T′ by
Operation O4.

Subcase 2.7. deg(v4) ≥ 4 and v4 is a support vertex.
By Cases 6,7 and 4, we may assume that v4 is adjacent to exactly one leaf, say u, and that there exists a
pendant path v4z3z2z1 in T where z3 < {v3, v5}. Let T′ = T−Tv3 . Clearly anyγt(T′)-set containing no leaves can
be extended to a TDS of T by adding v2, v3 and so γt(T) ≤ γt(T′) + 2. Now we show that γr2(T) ≥ γr2(T′) + 2.
Let f be a γr2(T)-function. By Observation 1.1, we may assume that f (v1) = f (z1) = {1}, 2 ∈ f (v2) and
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2 ∈ f (z2). If f (v4) , ∅, then the function f , restricted to T′ is a 2RDF of T of weight ω( f ) − 2. Assume that
f (v4) = ∅. Then we may assume without loss of generality that f (u) = {1}. Again the function f , restricted
to T′ is a 2RDF of T of weight ω( f ) − 2. Thus γr2(T) ≥ γr2(T′) + 2, and we deduce from Observation 1.3 that
γr2(T′) = γt(T′). By the induction hypothesis on T′, we have T′ ∈ T . Therefore T ∈ T , since it is obtained
from T′ by Operation O10.

Subcase 2.8. deg(v4) ≥ 3 and v4 is not a support vertex.
Considering Case 6, we may assume that Tv4 is an extended spider where v4 is the head of spider. Let
T′ = T − Tv4 and let deg(v4) = t + 1. Clearly any γt(T′)-set can be extended to a TDS of T by adding all
support vertices of Tv4 and all neighbors of v4 with exception v5 implying that γt(T) ≤ γt(T′) + 2t. Now
we show that γr2(T) ≥ γr2(T′) + 2t. Let f be a γr2(T)-function. By Observation 1.1, we may assume that f
assigns {1} to all leaves of Tv4 and {2} to all neighbors of v4 in Tv4 . Then the function 1 : V(T′) → P({1, 2})
defined by 1(v5) = f (v5)∪ f (v4) and 1(z) = f (z) for z ∈ V(T′)− {v5} is a 2RDF of T of weight at most ω( f )− 2t
and this implies that γr2(T) ≥ γr2(T′) + 2t. It follows from Observation 1.3 that γr2(T′) = γt(T′) and by the
induction hypothesis we have T′ ∈ T . Now T ∈ T , since it can be obtained from T′ by Operation O7.

Subcase 2.9. deg(v4) = 3 and v4 is adjacent to a leaf, say w.
Let T′ = T − Tv4 . First we show that γr2(T) ≥ γr2(T′) + 3. Let f be a γr2(T)-function. By Observation 1.1,
we may assume that f (v1) = {1} and 2 ∈ f (v3). If f (v4) = ∅, then | f (w)| ≥ 1 and the function f , restricted
to T′ is a 2RDF of T′ of weight ω( f ) − 3. Assume that f (v4) , ∅. Then we have | f (v4)| + | f (w)| ≥ 2 and the
function 1 : V(T′)→ P({1, 2}) defined by 1(v5) = f (v5) ∪ {1} and 1(z) = f (z) for z ∈ V(T′) − {v5} is a 2RDF of
T′ of weight at most ω( f ) − 3. This implies that γr2(T) ≥ γr2(T′) + 3. On the other hand, any γt(T′)-set can
be extended to a TDS of T by adding v2, v3, v4 and so γt(T) ≤ γt(T′) + 3. It follows from Observation 1.3 that
γt(T′) = γr2(T′) and by the induction hypothesis we have T′ ∈ T . Next we show that v5 ∈ W1

T′ . Assume, to
the contrary, that γt(T′, v5) < γt(T′). Let S ⊆ V(T′) be a set of vertices of T′ of size γt(T′, v5) such that each
vertex w ∈ V(T′) − {v5} has a neighbor in S. Then S ∪ {v2, v3, v4} is a total dominating set of T of weight
less than γt(T) which is a contradiction. Thus v5 ∈ W1

T′ and so T ∈ T , since it can be obtained from T′ by
Operation O6. This completes the proof.
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