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Abstract. The aim of the current paper is introducing a generalization of Darbo’s fixed point theorem based
on SR−functions. In comparison with simulation function, SR−functions are able to cover the Meir-Keeler
functions. Thus, the integral equations which are related to L−functions can be solved by our results. In
the sequel, we find a solution for an integral equation to support our results.

1. Introduction and Preliminaries

In 1969, Meir and Keeler [9] introduced a generalization of Banach contraction principle and many
authors such as Suzuki [12, 13], Lim [8] studied such type of contractions in detail. In the way of studying
Meir-Keeler contraction many problems were raised which have been remained open up to now (for more
details see [8, 12, 13]). Throughout this paper, let R denotes the set of all real numbers, N denotes the set
of all natural numbers and Let C denotes the set of all complex numbers.

Definition 1.1. Let (X, d) be a metric space and let T : X → X be a mapping. We say that T is a Meir-Keeler
contraction whenever, for all ε > 0 there exists δ > 0 such that, for all x, y ∈ X which

ε ≤ d(x, y) < ε + δ implies d(Tx,Ty) < ε.

Meir and Keeler [9] proved that every Meir-Keeler contraction on a complete metric space has a unique
fixed point.

In 2015, Khojasteh et al. first introduced the concept of simulation function in order to generalize and
unify some recent results in fixed point theory and continued and investigated by Karapinar later (for more
details we refer to [5, 6, 11]) as follows:

Definition 1.2. ([7]) A simulation function is a mapping ζ : [0,∞) × [0,∞) → R which satisfies the following
conditions:
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(ζ1) ζ(t, s) < s − t for all t, s > 0,

(ζ2) if {tn}, {sn} be two sequences in (0,∞) such that lim
n→ ∞

tn = lim
n→ ∞

sn > 0, then

lim sup
n→ ∞

ζ(tn, sn) < 0.

Many examples of simulation functions can be found in [7].
Very recently, Roldán López de Hierro and Shahzad [10] introduced the following category of mappings

which are connected to extend the simulation functions:

Definition 1.3. Let A ⊆ R be a nonempty subset and let % : A × A → R be a function. We say that % is an
R-function if it satisfies the following two conditions:

(%1) If {an} ⊂ (0,∞) ∩ A be a sequence such that %(an+1, an) > 0, for all n ∈N, then {an} → 0.

(%2) If {an}, {bn} ⊂ (0,∞) ∩ A be two sequences which converge to the same limit L ≥ 0 such that L < an and
%(an, bn) > 0, for all n ∈N, then L = 0.

We denote by RA, the family of all R-functions whose domain is A × A.

In some cases, for given a function % : A × A→ R, we will also consider the following property.

(%3) If {an}, {bn} ⊂ (0,∞) ∩ A be two sequences such that {bn} → 0 and %(an, bn) > 0, for all n ∈ N, then
{an} → 0.

Definition 1.4. ([8]) A function φ : [0,∞)→ [0,∞) is called an L-function if

(a) φ(0) = 0,

(b) φ(t) > 0 for all t > 0,

(c) for all ε > 0, there exists δ > 0 such that φ(t) ≤ ε, for all t ∈ [ε, ε + δ].

Let E be a Banach space over R (or C) with respect to a certain norm ‖ . ‖. For any subsets X and Y of E,
we have the following notations:

(1). X̄ denotes the closure of X,

(2). conv(X) denotes the convex hull of X,

(3). P(X) denotes the set of nonempty subsets of X,

(4). X + Y and λX, (λ ∈ R) stand for algebraic operations on sets X and Y.

We denote by BE the family of all nonempty bounded subsets of E. Finally, if X is a nonempty subset of E
and T : X→ X is a given operator, we denote by Fix(T) the set of fixed points of T, that is,

Fix(T) = {x ∈ X : Tx = x}.

Banaś and Goebel [2] introduced the following axiomatic definition for measure of noncompactness.

Definition 1.5. Let µ : BE → [0,∞) be a given mapping. We say that µ is a BG-measure of noncompactness (in the
sense of Banaś and Gobel) on E if the following conditions are satisfied:

(i). For every X ∈ BE, µ(X) = 0 if and only if X is precompact, i.e. Kerµ , ∅.

(ii). For every pair (X,Y) ∈ BE × BE, we have

X ⊆ Y ⇒ µ(X) ≤ µ(Y).
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(iii). For every X ∈ BE, we have

µ(X̄) = µ(X) = µ(conv(X)).

(iv). For every pair (X,Y) ∈ BE × BE and λ ∈ (0, 1), we have

µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y).

(v). If {Xn} ⊆ BE is a decreasing sequence of closed sets such that µ(Xn) → 0 as n → ∞, then X∞ :=
⋂
∞

n=1 Xn is
nonempty.

Theorem 1.6. (Schauder) Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Then every
continuous and compact map T : Ω→ Ω has at least one fixed point in Ω.

Theorem 1.7. (Darbo)Let Ω be a nonempty, closed, bounded and convex subset of the Banach space E, µ be a
measure of noncompactness on E and T : Ω → Ω be a continuous function. Assume that there exists a constant
k ∈ (0, 1) such that

µ(TX) ≤ kµ(X),

for any nonempty subset X ∈ Ω. Then T has a fixed point in Ω.

In current research, we introduce a generalization of Darbo’s fixed point theorem via R-functions. In
comparison with recent results such as Jleli et al. [4] and Chen and Tang [1], our results are more generalized
than others. Taking in account that

(a) every simulation function is an R-function which also verifies (%3) [10],

(b) there is a Meir-Keeler contraction which is not Z−contraction [3],

(c) every Meir and Keeler contraction is an R−contraction [10],

one can conclude that the results of [1] can’t cover Meir and Keeler contractions. Also, (b) yields that the
results of [4] is an special case of our results. Therefore, we decide to introduce a generalization of Darbo’s
fixed point theorem based on SR−functions from which Meir-Keeler functions and R−functions are covered
and it is more generalized than previous results.

2. Main Results

In this section, we introduce SRµ−contractions in order to generalize Darbo’s fixed point theorem.

Definition 2.1. Let A ⊆ R be a nonempty subset and let % : A × A → R be a function. We say that % is an
SR-function if it satisfies the following condition:

(SR) If {an} ⊂ (0,∞) ∩ A be a sequence such that %(an+1, an) > 0, for all n ∈N, then {an} → 0.

We denote by SRA, the family of all SR-functions whose domain is A × A.

Note that RA ⊆ SRA and this shows that the class of functions in SRA is much larger than RA.

Definition 2.2. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let T : Ω → Ω
be a continuous operator. We say that T is SRµ-contraction if there exists an SR-function % : A × A → R such that
ran(d) ⊆ A and

%(µ(T(X)), µ(X)) ≥ 0, (1)

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness.
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Theorem 2.3. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator. If T is a SRµ-contraction with respect to % : A × A→ R, then T has at least one fixed point in
Ω.

Proof. Consider the sequence {Ωn} ⊆ E which is defined by

Ω0 := Ω, Ωn+1 := conv(TΩn), (2)

for all n ∈N. Applying induction, we observe easily that

Ωn+1 ⊆ Ωn, (3)

for all n ∈ N. If there is an n0 ∈ N such that µ(Ωn0 ) = 0, then (i) in Definition 1.5 yields Ωn0 is compact.
Since T(Ωn0 ) ⊆ Ωn0 (from 3), Schauders’ fixed point theorem implies desired result. So, without loss of the
generality, we can assume that µ(Ωn) > 0 for all n ∈ N. Since µ(TΩn) = µ(conv(TΩn)) = µ(Ωn+1) > 0 by
applying (%1) of Definition 1.3 we have

%(µ(Ωn+1), µ(Ωn)) = %(µ(Conv(TΩn)), µ(Ωn)) = %(µ(TΩn), µ(Ωn)) ≥ 0. (4)

So lim
n→∞
{µ(Ωn)} → 0.

Since µ(Ωn+1) ≤ µ(Ωn) thus {µ(Ωn)} is a decreasing sequence by applying (v) in Definition 1.5 we have
Ω∞ :=

⋂
∞

n=1 Ωn is nonempty. On the other hand, µ(Ω∞) ≤ µ(Ωn) and it means that µ(Ω∞) = 0. Hence,
Ω∞ ∈ Ker(µ) means Ω∞ is compact. Moreover, for every n ∈N, we have Ω∞ ⊆ Ωn. Since T(Ωn) ⊆ Ωn

TΩ∞ ⊆ TΩn ⊆ Ωn,

for all n ∈ N. Thus, T(Ω∞) ⊂ Ω∞. Therefore, T : Ω∞ → Ω∞ is well defined. Applying Schauders’ fixed
point theorem on the mapping T, one can obtain desired result.

3. Corollaries

The following Corollaries are various generalizations of Darbo’s fixed point theorem.

Corollary 3.1. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which satisfies the following condition

µ(TX) < ϕ(µ(X)),

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness and ϕ : [0,+∞)→ [0,+∞) be
an L−function in a sense of Definition 1.4. Then T has at least one fixed point in Ω.

Proof. Consider %(t, s) = ϕ(s) − t. It is sufficient to show that (SR) holds.

(SR) : Let {an} ⊂ (0,+∞) be a sequence and let %(an+1, an) > 0. Then

0 < %(an+1, an) = ϕ(an) − an+1.

It means that,

an+1 < ϕ(an) ≤ an. (5)

Therefore, {an} is a non-increasing sequence, so it converges to L ≥ 0. On the contrary, suppose that
L > 0. By considering ε = L, there exists δ > 0 such that, for all t ∈ [L,L + δ), ϕ(t) ≤ ε. Since an → L,
there exists n0 > 0 such that L < an0 < L + δ. Therefore, an0+1 < ϕ(an0 ) ≤ L and this is a contradiction.
So L = 0.
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Lim [8] shows that every Mair Keeler contraction is equivalent to a contraction induced by an L−function.
In other words, let T : X→ X be a mapping. Then T fulfills (MK) property:

(MK): For all ε > 0 there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ ⇒ d(Tx,Ty) < ε,

if and only if, there exists an L−function ϕ : [0,+∞)→ [0,+∞) such that

d(Tx,Ty) ≤ ϕ(d(x, y)).

Applying Corollary 3.1 and the fact that ϕ is an L−funtion, the following corollary can be verified which is
the generalization of Darbo’s fixed point theorem of Meir-Keeler type.

Corollary 3.2. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which fulfills the following condition:

For all ε > 0 there exists δ > 0 such that

ε ≤ µ(X) < ε + δ ⇒ µ(TX) < ε,

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness. Then T has at least one fixed
point in Ω.

Corollary 3.3. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator satisfied with the following condition

µ(TX) < ϕ(µ(X))µ(X),

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness and ϕ : [0,+∞)→ [0, 1) is a
mapping such that lim supt→s+ ϕ(t) < 1, for all s ∈ (0,+∞). Then T has at least one fixed point in Ω.

Proof. Define %(t, s) = sϕ(s) − t. It is sufficient to show that (SR) holds.

(SR) : Let {an} ⊂ (0,+∞) be a sequence and %(an+1, an) > 0. Then

0 < %(an+1, an) = anϕ(an) − an+1.

It means that,

an+1

an
< ϕ(an). (6)

Taking limit on both sides of (6), we have

lim sup
n→∞

an+1

an
< lim sup

n→∞
ϕ(an) < 1.

By Ratio test,
∑
∞

n=1 an < ∞ and it concludes that limn→∞ an = 0.

Corollary 3.4. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which satisfies the following condition

µ(TX) < ϕ(µ(X))µ(X),

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness and ϕ : [0,+∞)→ [0, 1) be a
mapping such that for each sequence {tn} ⊂ [0,+∞),

(Ge) lim
n→∞

ϕ(tn) = 1 implies lim
n→∞

tn = 0.

Then T has at least one fixed point in Ω.
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Proof. Define %(t, s) = sϕ(s) − t. It is sufficient to show that (SR) holds.

(SR) : Let {an} ⊂ (0,+∞) be a sequence such that %(an+1, an) > 0. Therefore,

0 < %(an+1, an) = ϕ(an)an − an+1.

Since an > 0 and ϕ(an) < 1, one can see easily

an+1 < ϕ(an)an < an.

Hence, an is a strictly decreasing sequence of nonnegative real numbers and so converges to L ≥ 0.
On the contrary, assume that L > 0. Therefore,

0 < L < an+1 < ϕ(an)an < an. (7)

Taking limit on both sides of (7), one deduce that lim
n→ ∞

ϕ(an) = 1. Since ϕ satisfies in (Ge), so
L = lim

n→ ∞
an = 0 which it contradicts L > 0. So L = 0.

Corollary 3.5. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which it satisfies the following condition

ζ(µ(TX), µ(X)) ≥ 0,

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness and ζ be a simulation function.
Then T has at least one fixed point in Ω.

Proof. Define %(t, s) = ζ(t, s). It is sufficient to show that (SR) holds.

(SR) : Let {an} ⊂ (0,+∞) be a sequence and let ζ(an+1, an) > 0. Therefore, 0 < ζ(an+1, an) < an − an+1. Hence
{an} is a strictly decreasing sequence, so it converges to L ≥ 0. On the contrary, suppose that L > 0.
Let tn = an+1 and sn = an. Then {tn} and {sn} are convergent to L and tn < sn. By condition (ζ3) we have

0 ≤ lim sup
n→ ∞

ζ(an+1, an) = lim sup
n→ ∞

ζ(tn, sn) < 0,

and this is a contradiction. So L = 0.

Corollary 3.6. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which it satisfies the following condition

ψ(µ(TX)) < ψ(µ(X)) − ϕ(µ(X)),

for each nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness and ψ,ϕ : [0,∞) → [0,∞)
be two functions such that ψ is nondecreasing and continuous from the right and ϕ is lower semi continuous and
ϕ−1({0}) = {0}. Then T has at least one fixed point in Ω.

Proof. First of all, we show that, for t, s ∈ [0,∞),

s > 0, %ψ,ϕ ≥ 0 ⇒ t < s, (8)

Let %ψ,ϕ(t, s) ≥ 0 and t ≥ s, we are going to show that s = 0. As ψ is nondecreasing,

ψ(s) ≤ ψ(t) ≤ ψ(s) − ϕ(s) ≤ ψ(s),

which implies that, ϕ(s) = 0. Hence s = 0 and this is a contradiction. So we have t < s. Defining
%ϕ,ψ(t, s) = ψ(s) − ϕ(s) − ψ(t). It is sufficient to show that (SR) holds.
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(SR) : Let {an} ⊂ (0,+∞) be a sequence and let %ψ,ϕ(an+1, an) > 0. By (8), an+1 < an. Hence {an} is a strictly
decreasing sequence so converges to L ≥ 0. Then L < an, for all n ∈ N. On the contrary, suppose that
L > 0. Therefore,

0 < %ψ,ϕ(an+1, an) = ψ(an) − ϕ(an) − ψ(an+1),

and so, 0 ≤ ϕ(an) < ψ(an)−ψ(an+1). Sinceψ is continuous from the right and limn→∞ an = L, we deduce
that limn→∞ ϕ(an) = 0. Since ϕ is lower semi−continuous,

0 ≤ ϕ(L) ≤ lim inf
r→L

ϕ(r) = lim
n→∞

ϕ(an) = 0.

Hence ϕ(L) = 0, so L = 0.

Corollary 3.7. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which is satisfies the following condition

µ(TX) <
µ(X)

µ(TX) + 1
,

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness. Then T is a Rµ-contraction.

Proof. In order to prove the result, consider %(t, s) = s
t+1 − t. So we have to show that (SR) holds.

(SR) : Let {an} ⊂ (0,+∞) be a sequence and let %(an+1, an) > 0. It means that

0 < %(an+1, an) =
an

an+1 + 1
− an+1.

Hence,

0 < an+1 <
an

an+1 + 1
.

Therefore,

0 <
an+1

an
<

1
an+1 + 1

< 1.

Suppose that limn→∞ an = r. If r > 0, we deduce that

0 < lim
n→∞

an+1

an
= 1 ≤

1
r + 1

< 1,

which is a contradiction. So limn→∞ an = 0.

Corollary 3.8. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which it satisfies the following condition

µ(TX) <
µ(X)
eµ(TX)

,

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness. Then T is a Rµ-contraction.

Proof. Let %(t, s) = s
et − t. It is sufficient to show that (SR) holds.
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(SR) : Let {an} ⊂ (0,+∞) be a sequence and let %(an+1, an) > 0. It means that

0 < %(an+1, an) =
an

ean+1
− an+1.

Hence,

0 < an+1 <
an

ean+1
.

Therefore,

0 <
an+1

an
<

1
ean+1

< 1. (9)

Suppose that {an} → r. If r > 0, then taking limit from both side of (9), we deduce that

0 < lim
n→∞

an+1

an
= 1 ≤

1
er < 1,

which is a contradiction. So {an} → 0.

Corollary 3.9. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Let T : Ω → Ω be a
continuous operator which it satisfies with the following condition

µ(TX) ≤ ln(µ(X) + 1),

for any nonempty subset X of Ω, where µ is an arbitrary measure of non-compactness. Then T is a Rµ-contraction.

Proof. Consider %(t, s) = ln(s + 1) − t. It is sufficient to show that (SR) holds.

(SR) : Let {an} ⊂ (0,+∞) be a sequence and let %(an+1, an) > 0. It means that

0 < %(an+1, an) = ln(an + 1) − an+1.

Thus,

0 < an+1 < ln(an + 1).

Therefore,

0 <
an+1

an
<

ln(an + 1)
an

< 1.

Suppose that limn→∞ an = r. If r > 0, then we deduce that

0 < lim
n→∞

an+1

an
= 1 ≤

ln(r + 1)
r

< 1,

which is a contradiction. So limn→∞ an = 0.

Example 3.10. If Φ : [0,∞) → [0,∞) be a function such that
∫ ε

0 Φ(u)du exists and for all
∫ ε

0 Φ(u)du > ε, for each
ε > 0 and define % f : [0,∞) × [0,∞)→ R by

% f (t, s) = s −
∫ t

0
Φ(u)du,

for all s, t ∈ [0,∞). Then % f is an SR-function.
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Proof. It is sufficient to show that (SR) holds.

(SR) : Let {an} ⊂ (0,+∞) be a sequence and let % f (an+1, an) > 0, for all n ∈N. It means that

0 < % f (an+1, an) = an −

∫ an+1

0
Φ(u)du.

Thus, ∫ an+1

0
Φ(u)du < an.

Therefore,

0 < ε <
∫ an+1

0
Φ(u)du < an.

Letting n tends to infinity, we deduce limn→∞ an = 0.

4. Applications

In the sequel, we denote by BC(R+) the family of all bounded and continuous real function on R+ in
which R+ is considered as (0,+∞). The Banach space BC(R+) is endowed with the following norm:

‖ u ‖= sup{|u(t)| : t > 0}.

Now define the measure of non-compactness on BC(R+). Assume a nonempty, bounded subset U of BC(R+)
and a positive number L > 0. We denote by ζL(u, ε), the modulus of continuity for the function u on [0,L],
where u ∈ U and ε > 0:

ζL(u, ε) = sup{|u(t) − u(s)| : t, s ∈ [0,L], |t − s| ≤ ε}.

Also assume that

ζL(U, ε) = sup{ζL(u, ε) : u ∈ U},

ζ0
L(U) = lim

ε→0
ζL(U, ε),

and

ζ0(U) = lim
L→∞

ζ0
L(U).

Moreover, we have

U(t) = {u(t) : u ∈ U},

for all t ∈ R+ and

µ(U) = ζ0(U) + lim sup
t→∞

diamU(t),

and

diamU(t) = sup{|u(t) − v(t)| : u, v ∈ U}.

In [1] the authors have shown that the function µ is a measure of non-compactness in the BC(R+).
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Theorem 4.1. Let

u(t) = ∆(t,u(t)) +

∫ t

0
Γ(t, s,u(s))ds, (10)

for all t ∈ R+ where ∆ satisfies the following four conditions:

(i) : ∆ : R+
→ R+ is a continuous function and the function t→ ∆(t, 0) is a member of BC(R+).

(ii) : |∆(t,u) − ∆(t, v)| ≤ φ(|u − v|) for all u, v ∈ R where φ : [0,∞)→ [0,∞) is an L−function.

(iii) : The function Γ : R+
×R+

×R→ R is a continuous and there exist two continuous functions m,n : R+
→ R+

such that

lim
t→∞

m(t)
∫ t

0
n(s)ds = 0,

and

|Γ(t, s,u)| ≤ m(t)n(s),

for any t, s ∈ R+ such that s ≤ t and for each u ∈ R.

(iv) : There exists a positive solution % ∈ RA and r0 such that the following inequality holds:

%(r0, r0) + Z ≤ 0,

where Z is a constant defined by

Z = sup{|∆(t, 0)| + m(t)
∫ t

0
n(s)ds : t ≥ 0}.

Then (10) has at least one solution in the BC(R+).

Proof. Firstly, we define operator T on BC(R+) by

(Tu)(t) = ∆(t,u(t)) +

∫ t

0
Γ(t, s,u(s))ds f or t ∈ R+.

The function Tu is continuous on R+. Divide the proof into four steps:

Step (1): We show that T : BC(R+)→ BC(R+). For an arbitrarily fixed function u ∈ BC(R+), we get

|(Tu)(t)| = |∆(t,u(t)) − ∆(t, 0) + ∆(t, 0) +
∫ t

0 Γ(t, s,u(s))ds|
≤ |∆(t,u(t)) − ∆(t, 0)| + |∆(t, 0)| + |

∫ t

0 Γ(t, s,u(s))ds|
≤ φ(|u(t)|) + |∆(t, 0)| + m(t)

∫ t

0 n(s)ds
= φ(|u(t)|) + |∆(t, 0)| + c(t),

where

c(t) = m(t)
∫ t

0
n(s)ds.

Since by (ii) the function φ is non-decreasing, so

‖Tu‖ ≤ φ(‖u‖) + Z,

where Z was defined in (iv). So

T : BC(R+)→ BC(R+).
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Step (2): Next, we show that T is continuous on Br0 where r0 is the constant which was appeared in (iv). It is
clear that there exists % ∈ RA such that %(t, s) = φ(s) − t, for all t, s > 0. By (iv) we can infer that T is a
self mapping from Br0 into itself. Consider the arbitrary number ε > 0. Then, for u, v ∈ Br0 such that
‖u − v‖ ≤ ε we have

|(Tu)(t) − (Tv)(t)| ≤ φ(|u(t) − v(t)|) +
∫ t

0 |Γ(t, s,u(s)) − Γ(t, s, v(s))|ds
≤ φ(|u(t) − v(t)|) +

∫ t

0 |Γ(t, s,u(s))|ds −
∫ t

0 |Γ(t, s, v(s))|ds
≤ φ(ε) + 2c(t),

(11)

for all t ∈ R+. Also by (iii) we conclude that there exists a number L > 0 such that

2m(t)
∫ t

0
n(s)ds ≤ ε, (12)

for all t ≥ L. Since ϕ is an L−function, considering (11) and (12) together, we have

|(Tu)(t) − (Tv)(t)| ≤ ε. (13)

Now define

ζL(Γ, ε) = sup{|Γ(t, s,u) − Γ(t, s, v)| : t, s ∈ [0,L],u, v ∈ [−r0, r0], |u − v| ≤ ε}.

Since the function Γ(t, s,u) is uniformly continuous on [0,L] × [0,L] × [−r0, r0], we obtain ζL(Γ, ε)→ 0
as n→∞. Now for an arbitrarily fixed t ∈ [0,L] and taking into account (11), we get

|(Tu)(t) − (Tv)(t)| ≤ ζ(ε)
∫ L

0
ζL(1, ε)ds = φ(ε) + LζL(1, ε). (14)

Finally, by combining (13) and (14) on the base of the above established fact concerning the quantity
ζL(Γ, ε), we conclude that the operator T is continuous on the ball Br0 .

Step (3): Fix numbers ε > 0 and L > 0. We choose arbitrarily nonempty subset U of the ball Br0 and t, s ∈ [0,L]
such that |t − s| ≤ ε. Without loss of generality, assume that s < t. Then

|(Tu)(t) − (Tu)(s)| ≤ |∆(t,u(t)) − ∆(s,u(s))| + |
∫ t

0 Γ(t, α,u(α))dα −
∫ s

0 Γ(s, α,u(α))dα|
≤ |∆(t,u(t)) − ∆(s,u(t)) + ∆(s,u(t)) − ∆(s,u(s))|
+ |

∫ t

0 Γ(t, α,u(α))dα −
∫ t

0 Γ(s, α,u(α))dα|
+ |

∫ t

0 Γ(s, α,u(α))dα −
∫ s

0 Γ(s, α,u(α))dα|
≤ ζ1

L(∆, ε) + φ(|u(t) − u(s)|) +
∫ t

0 |Γ(t, α,u(α))dα − Γ(s, α,u(α))dα|
+

∫ t

s |Γ(s, α,u(α))|dα
≤ ζ1

L(∆, ε) + φ(ζL(u, ε)) +
∫ t

0 ζ
1(Γ, ε)dα + m(s)

∫ t

s n(α)dα
≤ ζ1

L(∆, ε) + φ(φL(u, ε)) + Lζ1
L(Γ, ε) + ε sup{m(s)n(t) : t, s ∈ [0,L]},

(15)

for all u ∈ U, where

ζ1
L(∆, ε) = sup{|∆(t,u) − ∆(s,u)| : t, s ∈ [0,L],u ∈ [−r0, r0], |t − s| ≤ ε},

and

ζ1
L(Γ, ε) = sup{|Γ(t, α,u) − Γ(s, α,u)| : t, s, α ∈ [0,L],u ∈ [−r0, r0], |t − s| ≤ ε}.

By uniform continuity of the function ∆ and Γ, we deduce that ζL
1(∆, ε)→ 0 and ζ1

L(Γ, ε)→ 0 as ε→ 0.
Also, since the functions m = m(t) and n = n(t) are continuous on R+, we obtain

sup{m(s)n(t) : t, s ∈ [0,L]} < ∞,
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and by (15), we get

ζ0
L(TU) ≤ lim

ε→0
φ(ζL(U, ε)).

By right-continuity of the φ, observe that

ζ0
L(TU) ≤ ζ(ζ0

L(U)),

and, finally

ζ0(TU) ≤ φ(ζ0(U)). (16)

Step (4): Let u, v ∈ U be two arbitrary functions. Then for t ∈ R, we get

|(Tu)(t) − (Tv)(t)| ≤ |∆(t,u(t)) − ∆(t, v(t))| + |
∫ t

0 |Γ(t, s,u(s))|ds +
∫ s

0 |Γ(t, s, v(s))|ds
≤ φ(|u(t) − v(t)|) + 2m(t)

∫ t

0 n(s)ds
= φ(|u(t) − v(t)|) + 2c(t).

(17)

By (16), we derive that

diam(TU)(t) ≤ φ(diamU(t)) + 2c(t).

By right-continuity of the φ, observe that

lim sup
t→∞

diam(TU)(t) ≤ φ(lim sup
t→∞

diam(U)(t)). (18)

By combining (16),(17),(18) and assumption (iii), we have

ζ0(TU) + lim sup
t→∞

diam(TU)(t) ≤ φ(ζ0(U) + lim sup
t→∞

diam(U)(t)),

from which,

φ(ζ0(U) + lim sup
t→∞

diam(U)(t)) − ζ0(TU) + lim sup
t→∞

diam(TU)(t) ≥ 0.

So,

φ(µ(U)) − µ(TU) ≥ 0, (19)

Since %(t, s) = φ(s) − t, by (19), we have

%(µ(TU), µ(U)) ≥ 0. (20)

Finally, by (20) and applying Theorem 2.3, one can conclude desired result.

The following lemma plays a crucial role on finding a solution for an important functional integral equation
which appears in

Lemma 4.2. Let ϕ : [0,+∞)→ [0,+∞) be a function such that

ϕ(t) =


0 i f t = 0
3n+4
3n+6 x + 1

3(n+1)(n+2) i f t ∈ (0, 1] such that 1
n+1 ≤ t < 1

n f or some n ∈N
5
6 t i f t > 1.

Then



F. Zarinfar, F. Khojasteh, M. Vaezpour / Filomat 32:1 (2018), 55–69 67

(p1) ϕ is strictly increasing and continuous on [0,+∞),

(p2) ϕ is a Meir-Keeler function so it is an R−function. Thus, it is a SR−function.

Proof. (p1) : Clearly, ϕ(0) = 0 and ϕ′(s) > 0 for s ∈ (0, 1). Indeed, on each interval
(

1
n+1 ,

1
n

)
we have that

φ′(x) = (3n + 4)/(3n + 6) > 0, so ϕ is strictly increasing on
(

1
n+1 ,

1
n

)
, and as ϕ′(x) = 5/6 > 0 on (1,+∞),

then ϕ is strictly increasing on (1,+∞). Let show that ϕ is continuous in [0,+∞). On each point
x ∈ (0,+∞), ϕ is continuous because it is derivable at x. Moreover, if x = 1/n for some n ∈N, then

ϕ( 1
n ) = lim

x→( 1
n )−
ϕ(x) = lim

x→( 1
n )−

[
3n+4
3n+6 x + 1

3(n+1)(n+2)

]
= 3n+4

3n+6 .
1
n + 1

3(n+1)(n+2) = 3n+2
3n(n+1)

and on the other hand,

ϕ( 1
n ) = lim

x→( 1
n )+
ϕ(x) = lim

x→( 1
n )+

[
3(n−1)+4
3(n−1)+6 x + 1

3n(n+1)

]
=

3(n−1)+4
3(n−1)+6 .

1
n + 1

3n(n+1) = 3n+2
3n(n+1) .

This is also valid for n = 1 because the limit from the right takes the value 5/6. As a consequence,

lim
x→( 1

n )−
ϕ(x) = ϕ(

1
n

) = lim
x→( 1

n )+
ϕ(x)

andϕ is continuous at 1/n. The continuity at x = 0 follows from the fact thatϕ(x) < x for all x ∈ (0,+∞).
So ϕ is strictly increasing on [0,+∞).

(p2) : We claim that ϕ satisfies in Meir-Keeler condition:

(MK) For every ε > (0,+∞) there exists δ > 0 such that ϕ(x) ≤ ε for all x ∈ [ε, ε + δ).

Let ε(0, 1] be arbitrary (the case ε > 1 is obvious because ϕ′(x) = 5
6 x if x ∈ (1 +∞). Then, there exists

n0 ∈N such that 1
n0+1 < ε ≤

1
n0
. We distinguish two cases:

– If 1
n0+1 < ε < 1

n0
, then ϕ is a continuous, derivable function at t = ε such that ϕ′(ε) < ε and

0 < ϕ′(ε) < 1. In fact, ϕ is affine on the interval ( 1
n0+1 ,

1
n0

). Let δ > 0 be such that

δ < min
{ε − ϕ(ε)
ϕ′(ε)

,
1
n0
− ε

}
.

Thus

[ε, ε + δ] ⊂
[
ε, ε +

1
n0
− ε

]
=

[
ε,

1
n0

]
⊂

( 1
n0 + 1

,
1
n0

]
As ϕ is affine on the interval, its derivation is constant. Therefore, for all x ∈ [ε, ε + δ],

ϕ′(ε) =
ϕ(x) − ϕ(ε)

x − ε
.

So, it means that,

ϕ(x) = ϕ(ε) + (x − ε)ϕ′(ε)
≤ ϕ(ε) + δϕ′(ε)
≤ ϕ(ε) +

ε−ϕ(ε)
ϕ′(ε) .ϕ

′(ε)
= ε.
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– Assume that ε = 1
n0

.
In this case

ε − ϕ(ε) = 1
n0
−

(
3n0+4
3n0+6 x + 1

3(n0+1)(n0+2)

)
= 1

3n0(n0+1)

= ε2

3(ε+1) > 0

Since ϕ is continuous and strictly increasing at ε, let δ > 0 be such that

ϕ(x) − ϕ(ε) = |ϕ(x) − ϕ(ε)| <
ε2

3(ε + 1)
f or all x ∈ [ε, ε + δ].

Henceforth, for all x ∈ [ε, ε + δ],

ϕ(x) < ϕ(ε) +
ε2

3(ε + 1)
= ϕ(ε) + ε − ϕ(ε) = ε.

Thus, in any case, ϕ satisfies in Meir-Keeler condition.

Example 4.3. Consider the following functional integral equation

u(t) = ϕ(|u(t)|) +

∫ t

0

se−2t
|u(s)|

u(s) + 5
ds (21)

where

ϕ(t) =


0 i f t = 0
3n+4
3n+6 x + 1

3(n+1)(n+2) i f t ∈ (0, 1] such that 1
n+1 ≤ t < 1

n f or some n ∈N
5
6 t i f t > 1.

We put

∆(t,u) = ϕ(u(t)) and Γ(t, s,u) =
se−2t
|u|

u + 5

We choose %(t, s) = ϕ(s) − t for all t, s > 0. By Lemma 4.2 ϕ is an L−function. Also, for arbitrarily fixed u, v ∈ R+

and for t > 0, we have

|∆(t,u) − ∆(t, v)| = |ϕ(u(t)) − ϕ(v(t))|
≤ ϕ(|u(t) − v(t)|)

So ∆ satisfies (ii). Obviously ∆ satisfies (i). Moreover, we get

|Γ(t, s,u)| ≤ se−2t f or all t, s ∈ R+ and u ∈ R

If we put m(t) = e−2t,n(s) = s, then assumption (iii) is satisfied. Also we have

lim
t→∞

m(t)
∫ t

0
n(s)ds = lim

t→∞
e−2t

∫ t

0
sds = 0.

Now, let us calculate the constant Z appearing in assumption (iv). We have

Z = sup{|∆(t, 0)| + m(t)
∫ t

0
n(s)ds : t ≥ 0} = sup{

1
2

t2e−2t : t ≥ 0} = 2e−4 = 0.036631
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Now, consider the inequality from (iv), having now the form

ϕ(r) + Z ≤ r

that is to say that %(r, r) + Z ≤ 0. If r ≥ 1 then we should have r ≥ 6Z, so r0 = 2 is sufficient. If 0 < r ≤ 1, then we
can choose

r0 ≥ max{r,
1

2n + 2
+

q(n + 2)
2
}

as a sufficient number. The case r = 0 is trivial. So, all conditions of Theorem 4.1 are satisfied. Hence, (21) has at
least one solution in BC(R+).
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