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The Forward Order Laws for {1, 2,3}- and {1, 2, 4}-inverses
of a Three Matrix Products

Zhongshan Liu?, Zhiping Xiong?®

#School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, P.R.China

Abstract. In this article, we study the forward order laws for {1,2, 3}- and {1, 2, 4}-inverses of a product of
three matrices by using the maximal and minimal ranks of the generalized Schur complement. The necessary
and sufficient conditions for A;{1,2,3}A,{1,2,3}A5{1, 2,3} C (A14245){1,2,3}and A{1,2,4}A>{1,2,4}A5{1, 2,4}
C (A1A42A5){1, 2,4} are presented.

1. Introduction

Throughout this paper C"" and C™ denote the set of m X n complex matrices and m-dimensional
complex vectors, respectively. The identity matrix in C"™" is denoted by I,, and O« is the m X n matrix of
all zero entries (if no confusion occurs, we will drop the subscript). For any matrix A € C"™*, let r(A), A,
R(A) and N(A) denote the rank, the conjugate transpose, the range space (or column space) and the null
space of A, respectively.

The Moore-Penrose inverse of A € C™" denoted by AY, is the unique element X € C"™" which satisfies
the following four Penrose equations [6] :

(1) AXA=A, 2)XAX=X, (3)(AX)' = AX, (4)(XA)" = XA. (1.1)

Let® # C € {1,2,3,4}. Then A¢ denotes the set of all matrices X which satisfy (i) fori € C. Any X € A¢is called
an C-inverse of A. As usually, X is called a {1, 3}-inverse or a least squares g-inverse of A if it is an element
of A{1,3} and X is called a {1, 4}-inverse or a minimum norm g-inverse of A if it is an element of A{1,4}.
similarly, X is called a {1, 2, 3}-inverse of A if it is an element of A{1,2,3} and X is called a {1, 2, 4}-inverse of
A if it is an element of A{1,2,4}. The unique {1, 2, 3,4}-inverse of A is called the Moore-Penrose inverse of
A. We refer the reader to [1, 13] for basic results on the generalized inverses.

Theory and computations of the reverse order laws for generalized inverses of matrix product are
important subjects in many branches of applied science, such as non-linear control theory, matrix theory,
matrix algebra, see [6, 8, 9, 13]. One of the core problems in reverse order laws is to find the necessary
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and sufficient conditions for the reverse order laws for the generalized inverse of matrix product and it has
attracted considerable attention, see [1,2,7,9, 18, 19].

In 1996, Grevill [3] first gave a necessary and sufficient condition for the reverse order law (AB)" = B'A.
Since then, more equivalent conditions for the reverse order laws for generalized inverses of matrix product
havebeen derived. Hartwig [4] and Tian [10, 11] studied the reverse order laws for Moore-Penrose inverse of
three and multiple matrix product, respectively. Using the Product Singular Value Decomposition (PSVD),
Wei [14] and De Pierro and Wei [2], studied necessary and sufficient conditions for B{1}A{1} € (AB){1} and
B{1,2}A{1,2} € (AB){1,2}. With the same method, Wei [2, 15], Wei and Guo [16] studied the equivalent
conditions for the reverse order laws of {1}-inverses, {1,2}-inverses, {1,3}-inverses and {1, 4}-inverses of
multiple matrix products. During the recent years, Zheng and Xiong [18, 19] studied the reverse order laws
for {1, 2, 3}-inverses and {1, 2, 4}-inverses of multiple products. For other interesting results on this subject
see[1,2,8,9,14].

In 2007, Xiong and Zheng [17] studied the forward order law for the generalized inverse of multiple
matrix products, by using the maximal rank of generalized Schur complement. With the same thread, in
this paper we obtain the necessary and sufficient conditions for one side inclusion

A1{1,2,3}A,(1,2,3}A5(1, 2, 3} € (A1A243){1,2, 3} (1.2)
and
Al{1r214}A2{11214}A3{112/ 4} c (A1A2A3){1r 2! 4} (13)

To our knowledge, there is no article yet discussing the forward order laws for these two generalized
inverses in the literature.

The main tools of the later discussion are the following lemmas.

Lemma 1.1 [12] Let A € C"™" ,B € C"™*, C € C*" and D € C**. Then

A*A A'B A*B
_ 123)BY = mi _
max r(D-CA B) = mm{ r( C D ) r(A), r( D )}, (1.4)
. . . A O
min (D — CAY?¥B) =r A4 AB) L AB o aBl. (1.5)
A123) C D D
CcC D
Lemma 1.2 [1] Let A € C"™", X € C"™™, then
XeAl1,2,3} = A'AX =A" and r(X)=r(A), (1.6)
X e All,2,4}) & XAA"=A" and r(X) =r(A). (1.7)
Lemma 1.3 [5] Let A € C"™", B € C" and C € C"*", then
r(A, B)=r(A)+r(EaB) = r(B) + r(EsA), (1.8)
A
r(c) =1(A) + r(CF4) = v(C) + r(AF¢). (1.9

where the projectors Ex =1 — AA', Eg =1-BB', F4 =1-A'A, Fc =1-C'C.
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2. The necessary and sufficient conditions for inclusion (1.2).

In this section, we will present some necessary and sufficient conditions for one side include (1.2), by
using the maximal and minimal ranks of some generalized Schur complement forms. Let

Sy = S = (A1A243)" — (A1A2A3) A1 A2 A3 X1 Xo X3 =y — ' uX1Xo X3 (2.10)

where A; € C"™", X; € Ai{1,2,3},i=1,2,3, and u = A1A2As. For the convenience of readers, we first give a
brief outline of the basic idea. From the formula (1.6) in Lemma 1.2, we know that the inclusion (1.2) holds
if and only if

WuXaXoXs =y and r(X1X2X3) = r(p)

hold for any X; € A;{1,2,3},i=1,2,3, and u = A1A2A3, which are respectively equivalent to the following
two identities

nax r(p — ppXiXoX3) =0 (2.11)
and
. r(X1X2Xs3) = i r(X1X2X3) = r(p). (2.12)

To begin with, some useful results are introduced, which presenting the necessary and sufficient conditions
for inclusion (1.2).
Lemma 2.1 Let A; € C"™", X; € Ai{1,2,3},i=1,2,3, and u = A1A»As. Then

f— uuXi Xo X
nax " = puXiXaX3)

T’(H*H—,U*A3A2A1, WA3AEs, WA3E,, ,u*EA3)

*

pu— wAsAAL WAsAy PAs s
o) A 0O O
o a i ol Z; r(A;). (2.13)
@) 0] o 4) ~

Il
-

Proof. According to Lemma 1.3 and Lemma 1.1 (1.4) with A = A3, B=1,,, C = p*'uX1 X, and D = u*, we
have

max r(p" — p'uXi X2 X3)
3

- i, ()

= min{ r(y*luxlx(z A, if’) - 1(A3z), r(ﬁ?)}

= r(y*yXng - UAs, y*EAB)

= HpwuXiXa(ln, O)=(wAs, —En,)), (2.14)
where the third equality hold as

L I N R O

puXiXs u WuXiXs —WA; pruXa Xy — WA, iz

and

(@] " .
s ) =T = ) < ) <
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and

O Al . X .
r(y*,uxlxz - WA #9) = r(# uX1Xs — w'As, u EA3) + 1(A3).

Againby Lemma1.3and Lemma1.1(1.4) withA = A, B = (Im, O),C = p'uXyandD = (y*A3, —y*EAS),
we obtain

max r(p’ — i X1 X, X3)
= max wpuXaXa (L, O)—(wAs, —uEay))

(M4 oA, O A, 0
= * * * - A 7 * 2 *
mm{r(u uXy phs —p EAs) ) r(# Ay —u EAs)}

o) A O
r(#*yxl _ ,U*A3A2 [Ll*A3 _lux-EAs) r(AZ)

= (wixi-ptat whs WE)Fo 4 o)

= r(#*uxl—H*AsAz, WA3E4,, —M*EAS)

= f(uwpuXi(ln, O, O)—(wAsAy, —wAsEs, wEa)), (2.15)
where the third equality hold as
AAy A o) 0 A 0 o) A 0
r{ . + % =1l . % % % <rl . * +r{ . *
puXy wAs —uEa, WXy —uAzAy @Az —pEa, pruXy — wrAzAy WAs —pEa,

and

@) * *
' ( s S A2) = s — i AsAs) < 1) < r(As)
and
O A; O _— * _ * * _ * .
7’(”*‘“}{1 _ IJ*A3A2 H*A:S _IJ*EA:;) = r(AZ) + 7’( (1“ !.le u A3A2/ u A3/ u EA3) F(O, A;, O))
Again by Lemma 1.3 and Lemma 1.1 (1.4) with A = A, B = (Im, O, O), C=y'uand
D =(wAsA;, —uwAsEn, wEns) wehave

KX r(p — p uX1XoX3)

= rr;(el\x r(y*yXl (Im, O, O)—(p*AgAz, —UA3Eq,, ‘u*EAS))

. AT A A’ (@) (@)
= 1 1 — A
mm{ r( WU WAy —wAsEs, EA3) (A1),

A A 0 0
WAsAy —pAsEa, WEa,
0 A 0 0
_ A
r (u*u - WA3AAT WA3Ay —utAzEy, F‘*EAs) )

= r((y*y—y*AgAzAl, WAsAy, —uAsEa,, y*EA3)-F(O A O O))
, AL, O,

= r([,l*y - ‘u*A3A2A1, }l*A3A2EA1, [u*A3EA2, y*EAs), (2.16)
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where the third equality hold as

(M A o) 0\_, o) A o) o)
Wu  @AsAy —pAsEs, WEa, Wi = @ AsAsAr @rAsAy —AsEs,  WE4,

and

. 0 A 0 0\_, 0 A 0 0
Wu—WwAsA AL WAsAy —WAsEs,  WEA | T\l — W AsALA WAsAy —WAsEs, WEa,

and

O . .
V(H*y _ H*A3A2A1) =r(u'u — pA3AA ) < r(p) < r(Aq).

Combing (2.16) with the formula (1.9) in Lemma 1.3, we finally have

X X0 X
nax r(u — p uX1XaXs)

r (.U*H — WA3AA, WAAE., WA3Es, [U*EAs)
Wu—wAsAA WAsAy WrAs )
0] A O O
1 _ .
0 0O A O Z r(Ap). o
@ 0 o 4

Il
-

Next Lemma gives the expression in the ranks of the known matrices for

max (X1 X2X3).
X1,X2,X3
Xi€Ai{1,2,3)

Lemma 2.2 Let A; € C™", X; € Ai{1,2,3},i=1,2,3. Then

max (XX, X3) = min{ (A1), 1(A2), r(As)}. (2.17)

1,42,A3

Proof. By the formula (1.4) in Lemma 1.1 with A = A3, B = I, C = X1X; and D = O, we have

n}(ax (X1 X2 X3)
. ALAz Al Az
3 3] — 3
mm{ r(Xle O) r(As), r(o)}

min{ 1(y %, §)- 4o, v

min{ 1(X;Xz), r(As)}. (2.18)
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Again by the formula (1.4) in Lemma 1.1 with A = Ay, B =1, C = X; and D = O, we have

max T(Xl X2X3)

= min max (X1 X), 7’(A3)}

ol

{mm{r(A 02 G)- e, o (§)) o)
({5 oo} o
-

I
3.

in

I
3.
5

I
=3

in{ min r(Xl) V(Az)} T’(As)}

= min{ (X)), rA2), r(As)}. (2.19)
Since X; € A1{1,2,3}, we have r(X;) = r(A1). Then by (2.19), we have

max (X1 X2Xs) = min{ r(A1), r(A), r(As3)}. o

X1,X2,Xs5

We now give the expression in the ranks of the known matrices for the following minimal rank problem:

min T(X1X2X3).
X1,X5,X3
X,’GA,’{LZ,3]

Lemma 2.3 Let A; € C"™", X; € A;{1,2,3},i=1,2,3. Then

Xf?()l(lzn Y T(Xl X2X3)

= 1r(A3) - r<A3EA2, A3A2EA1)

3 A3 A3A2
= Z rA)—r|A, O (2.20)
i=1 O A

Proof. Using the formula (1.5) in Lemma 1.1 with A = Ay, B = X,X3, C = [, and D = O, we have

rr)l(in T(Xl X2X3)
1

X . Al O
_ (A AXeXs +r A X X3) -1 O AiXoXs
L O ! I, O
m

P(A X, X3). (2.21)
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By Lemma 1.3 and the formula (1.5) in Lemma 1.1 with A = Ay, B = X3, C = A] and D = O, we have
min 1(X1X2X3)
= min (A} X>X3)
X3

e a * A O
_ (A 2l A6X3)+7(A6X3)—r 0 A%
A0

A w97 o
(

= r(AAEs, A X3)+r(A1)—r(AZ)
1
= (4% (I, 0)-(O, —A;AZEA]))+7(A1)—r(if). (2.22)
1

Again by Lemma 1.3 and the formula (1.5) in Lemma 1.1 with A = A3, B = (Im, O), C = A} and
D= (O, —ASA2Eq, ), we have

min r(X;X>X
min (X1X2X3)

= min r(A X3 (I O) - (O, —A;AzEA])) + (A1) - r(ﬁz)
1

X3

A; O 0
ALAs Al 0 . 0 A,
= r( 0 A )+r( S )—r O A @) +r(A1)—r( )
A, O —AyAEs, O -AAE A A
2 2724 2254 Ay O —AASEs, 1
A\ (A 0
= r(Ar) + 1(A2) + 1(As) + 1(A2En) — [ 7) =2 e
e sy o) e () ( 00 )
_ Az AzArEx,
= r(A2)+r(A3)—r(A; 0 )
= r(As)—7(AsEa, AsAsEs). (2.23)

Combing (2.23) with the formula (1.9) in Lemma 1.3, we finally have
min F(X1X2X3)

Xng Xl

= 1(As) = r(AsEa,, AsArE,)
3 A3 A3A2

= Z}’ O O
i=1 O A*

From Lemmas 2.1, 2.2 and 2.3, we immediately obtain the following theorem by equations (2.11) and
(2.12).
Theorem 2.1 Let A; € C"™",i =1,2,3, and u = A1A2A3. Then the following statements are equivalent:

(1) Al {11 21 3}A2{11 2/ 3}A3{1/ 2r 3} c (A1A2A3){1, 2/ 3}/

@ r(w'u—uAsAAy, WAsAEs, WAEs, WEa)=0and
A3 AsA;
0

r(u) = min {r(A1), 1(A2), r(A3)} = Zr(A)
o A
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We now state more equivalent conditions for one side inclusion (1.2) without proofs since they are easy.
Corollary 2.1 Let A; e C"™",i =1,2,3, and u = A1A2As. Then the following statements are equivalent:
(1) Al {1/ 2/ 3}A2{11 2, 3}A3{1/ 2, 3} c (A1A2A3){1/ 2/ 3}/
(2) ‘IJ*!J - [.l*A3A2A1 =0 and ‘IJ*A:’,AzEAl =0 and ‘IJ*A3EA2 =0 and [J*EA3 = Oand

3 Az AzAz
() = min{r(A), r(A2), 1A} = R oAy = 1|4y O
i= A
1
(3) p'u=uAs3AA; and N(u*A3Az) O N(A]) and N(u*Asz) O N(A3) and N(u*) D N(A3) and
3 Az AzAz
) = min{r(4), 1(A2), 149} = R oAy -r|4; O
i= A*
1
Wi = @ AsAsAr (rAsAy WA W
A’ O 0] 3
1 — .
“) r o o A ol i:Zii’(Az) and
0 o O A
3 Az AsAp
) = min{r(dy), r(d2), rAs)f= R rA)-r|4; O
i= A*
1

Corollary 2.2 Let A; € C"™",i = 1,2. Then the following statements are equivalent:

(1) A{1,2,3}A5{1,2,3} C (A1A2){1,2,3};

@) r((A1A2)'AiAs = (AiA2) ArAr,  (A1A2)'AsEn, (A1A2)'En) =0 and
H(A1A2) = min {r(A1), 1(A2)} = il r(A) - r(ﬁj)

(3) (A1A2)'A1A; — (A1A2)*ArA; = O and (A1A;) AsE4, = O and (A1A2)'Ea, = O and
r(A142) = min {r(A1), r(A2)} = il A - r(ﬁj)

(4) (A1A2)"A1Ay = (A1A2) A2A1 and N((A142)" Az) o N(A;) and N((A142)") > N(43) and

r(A1Az) = min {r(A1), r(Ay)} = il r(A) - r(ﬁf);
= 1

(A1A2)' A1A; — (A1A2) A2A1 (A1A2)' Ay (A1AR))
5)r (@) Al O =Y r(A;) and
0 0 Ay ) =
. 2 Ay
r(A1Az) = min {r(A1), (Ar)} = ¥ rA)—r|7)
i=1 A

Notice that XAA" = A* and r(X) = r(A) are equivalent to the equations AA*X* = A* and r(X") = r(A"),
respectively. This implies that, by the formula (1.6) and (1.7) in Lemma 1.2, X € A{1, 2,4} if and only if
X* € A{1,2,3}. So we can get the necessary and sufficient conditions for (1.3) by a similar approach in the
previous section and hence provide the following results without the proof.

Theorem 2.2 Let A; e C"™",i =1,2,3, and u = A1A2A3. Then the following statements are equivalent:
(1) A1{1,2,4}A2{1,2,4}A5(1,2,4} C (A1A245){1,2,4};
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AsApAp’ — pp*
FA3A2A1}1*
@ T
FAl |u*

=0 and

4

. 3 A O A
() = min{r(4s), 1(A2), (A} = T r(A»—r(AZ;11 pe OZ)

(8) AsA A — pp = O and Fao,AsA1u* = O and Fa,A1p* = O and Fa,u* = O and

. 3 A O A
r(u) = min {r(4s), r(A2), r(Al)}:El r(A,-)—r( AAL e 02)

7

(4) A3ArA " = pp* and R(A2A117) € R(A%) and R(A1p%) € R(A}) and R(u*) € R(A}) and

. 3 A O A
r() = min{r(As), r(A), r(An} =L r(A»—r(AZ;11 a: OZ)

7

Az Ay —upt O O O
A2A1‘LK O O A; _ 3 }
5)r A o A, O|” i:):lr(Az) and
uw Al O O

- e A O A
r(y) = min {Y(A3), 1(Az), Y(Al)} = Ei HAi) — r(A2A1 AL O)‘
Corollary 2.3 Let A; € C"™",i = 1,2. Then the following statements are equivalent:
(1) Al {1/ 2/ 4}A2{1/ 2/ 4} Cc (AlAZ){li 2; 4}/

ArA1(A1A2)" — A1Ar(A1Ar)”
@) r F4,A1(A1Ay)
Fa, (A1A2)

2
r(Aie) = min{r(42), AN} = Lrd) - (A1, A3);

=0and

(3) A2A1(A1A2)* - AlAz(A]Az)* =0 and FAZAl(A1A2)* = O and FAl (AlAz)* = O and
2
HA14z) = min{r(Ay), (A1)} = ¥ r(A)—r(A1, A3);
i=1

(4) AzA1(A1A)" = AtAx(A1As) and R(A1(A1A2)") € R(A3) and R((A14,)") € R(A}) and
2
r(A1Az) = min {r(Ay), (A1)} = L r4) - (A, A3);
A A1(A1A2) — A1Ar(A1A) O O 2

(5) r Al(AlAz)* O A; = Z T’(Al') and
(A1) 4, 0) =

2
#(A14) = min {r(AQ), (A} = ;1 nA)—r(A, A3,
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