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Pseudo Almost Automorphic Mild Solution of Nonautonomous
Stochastic Functional Integro-differential Equations

Zhinan Xia? Dingjiang Wang?

?Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China

Abstract. In this paper, we propose a new class of stochastic process called (i, v)-pseudo almost auto-
morphic in p-mean, which generalize in a natural fashion the concept of square-mean almost automorphy
and its various extensions. As application, we establish the existence, uniqueness of (i, v)-pseudo almost
automorphic in p-distribution mild solution to nonautonomous stochastic functional integro-differential
equations. Finally, an example is given to illustrate the significance of the main findings.

1. Introduction

The concept of square-mean almost automorphy, introduced by Fu and Liu [20] is related to and more
general than square-mean almost periodicity. Since then, this work is generalized into square-mean pseudo
almost automorphy and square-mean weighted pseudo almost automorphy by Chen and Lin [10, 11], p-th
mean pseudo almost automorphy (p > 2) by Bezandry and Diagana [5], square-mean p-pseudo almost
automorphy by Diop et al [15], almost automorphy in distribution sense by Liu and Sun [26], weighted
pseudo almost automorphy in distribution sense by Li [24]. For more details about almost automorphy in
square-mean sense or in distribution sense, its various extensions and applications in stochastic differential
equations, one can see [3, 7, 9, 27, 30, 31] for more details.

So far, most of the studies on almost automorphy for stochastic differential equations are concerned
in square-mean sense, except for [3, 8, 16, 17, 19, 24, 26, 33]. In this paper, we introduce the concept
of (u,v)-pseudo almost automorphy in p-distribution by measure theory (p > 2), which generalize the
concepts of almost automorphy in distribution and its various extensions. Stochastic integro-differential
equations play a crucial role in qualitative theory of differential equations due to their application to
physics, engineering, mechanics, population dynamics, and other subjects. By measure theory, this paper
deals with existence, uniqueness of (i, v)-pseudo almost automorphic in p-distribution mild solution to
nonautonomous stochastic functional integro-differential equations:

t t

Y'(t) = A(B)Y () + F(t, YD) + f Ki(t = $)g(s, Y(s))dW(s) + f Ko(t—s)h(s, Y(s))ds, teR,  (1.1)
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where A(t) : D(A@) ¢ LP(P,H) — LP(P,H) is a densely defined closed (possibly unbounded) linear
operator, Kj, K, are convolution-type kernels in L}(0, ). f,h: R X LP(P,H) — LF(P,H), g : R x LP(P,H) —
LP(P,L(H, H)) are jointly continuous functions. W(t) is Q-Wiener process with values in H.

Recently, in the case of A(t) = A and p = 2, Bezanary [4] investigate the existence, uniqueness of square-
mean almost periodic mild solutions to (1.1), and further generalized into (i, v)-pseudo almost automorphy
in distribution by Xia [32]. If p = 2, Li study the existence, uniqueness of square-mean almost periodic
mild solutions to (1.1) in [23], and further generalized to square-mean almost automorphic mild solutions
in [25]. But for almost automorphy in distribution, particularly for the (i, v)-pseudo almost automorphy in
p-distribution (p > 2) to (1.1), it is an untreated topic. This is one of the key motivations of this study.

The paper is organized as follows. In Section 2, some notations and preliminary results are presented
and the definition, properties of (u, v)-pseudo almost automorphy in p-distribution are given. Sections 3 is
devoted to the existence, uniqueness of (u, v)-pseudo almost automorphic in p-distribution mild solution
to (1.1). In Section 4, an application to the stochastic functional integro-differential equations is given.

2. Preliminaries and basic results

Throughout the paper, N, Z, R, and C stand for the set of natural numbers, integers, real numbers,
and complex numbers, respectively. For A being a linear operator, D(A), p(A), R(A, A), 6(A) stand for the
domain, the resolvent set, the resolvent and spectrum of A. We assume that (H, || -||) is real separable Hilbert
spaces. L(H, H) is the space of all bounded linear operators from H to H. We assume that (2,7, P) is a
probability space, and for p > 2, L7(P, H) stands for the space of all H-valued random variables Y such that

1/p
E|Y|F = fllYllde < oo.ForY € LP(P,H), let||Y]|, := (fllYllde] , then L7 (P, H) is a Hilbert space equipped
Q Q
with the norm || - |,..

Definition 2.1. A stochastic process Y : R — LP(P, H) is said to be £F-bounded if there exists a constant M >
Osuch thatE||Y ()| = f IY()|PdP < M forallt € R. Yissaid to be £P-continuous if ltim E[Y(t)-Y(s)|]F = 0 for
—8S

Q
any s € R. Denoted by SBC(R, LF(P, H)) the collection of all the £7-bounded and £P-continuous processes.
It is a Banach space equipped with the norm [|Y|e = sup(]ElIY(t)lI”)l/ P,

teR

Definition 2.2. [5] An £7-continuous process Y : R — LF(P, H)is said to be p-mean almost automorphic if for
every sequence of real numbers {s,}, there exists a subsequence {s,,} and a stochastic process Y : R — LP(P, H)
such that _ _

Lim E|[Y(t+5,) = YOI =0 and  lim BJIY(t —s,) = Y(HIP = 0

hold for each t € IR. The collection of all p-mean almost automorphic processes Y : R — LF(P, H) is denoted
by SAA(R, L7(P,H)). Note that if p = 2, 2-mean almost automorphic stochastic is called square-mean almost
automorphic stochastic which defined in [20].

Definition 2.3. An [P-continuous stochastic process f(t,s) : R x R — LF(P,H) is said to be p-mean bi-
almost automorphic if for every sequence of real numbers {s},}, there exists a subsequence {s,} and a

stochastic process f : R X R — LP(P, H) such that

Hm E|[f(t + S, + 5u) — £(£,5)IP = 0and Km E|[f(t — su,5 — s0) — f(£,s)|P = 0
hold for each t,s € R. The collection of all p-mean bi-almost automorphic processes f : R x R — LF(P, H)
is denoted by bSAA(R x R, LF(P, H)). Note that if p = 2, it is square-mean bi-almost automorphic process
which defined in [11].

Next, we introduce the concepts of (u,v)-pseudo almost automorphy in p-mean, and p-distribution,
respectively. B denotes the Lebesgue o-field of IR, M stands for the set of all positive measure y on B
satisfying u(IR) = co and p([a, b]) < co foralla,b € R (a < b).
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Definition 2.4. [6] Let u,v € M, the measure i and v are said to be equivalent (i.e., u ~ v) if there exist
constants ¢, c; > 0 and a bounded interval Q C R (eventually @) such that cgv(A) < u(A) < c1v(A) for all
A € Bsatisfying ANQ =0.

Let u,v € M, define the (u, v)-ergodic space
SPAANR, LP(P,H), 1, v) ={Y € SBC(R, LF(P,H)) :

1
im — P -
Vh_)rg - (— f[‘_m E|Y(®)Pdu(t) 0}.

Definition 2.5. Let u, v € M. A stochastic process f : R — LP(P, H) is said to be p-mean (u, v)-pseudo almost
automorphicifitcanbe decomposed as f = g+¢, whereg € SAA(R, LF(P,H))and ¢ € SPAA)R, LF (P, H), i, v).
The collection of all p-mean (i, v)-pseudo almost automorphic processes is denoted by SPAA(R, L7 (P, H), u, v).

Remark2.1. (i) If u ~ v and p,v are the Lebesgue measures, then p-mean (u, v)-pseudo almost automor-
phic process SPAA(R, LF(P, H), u, v) is p-mean pseudo almost automorphic process SPAA(R, LV (P, H))
[5]. Particularly, if p = 2 in SPAA(R, £LF(P, H)), it is square-mean pseudo almost automorphic process
SPAA(R, £L*(P, H)) [10].

(i) If p =2, let p(t) > 0 a.e. on R for the Lebesgue measure. y, v denote the positive measure defined by
uA) =v(A) = fA p(t)dt for A € B, where dt denotes the Lebesgue measure on R, then p-mean (u, v)-
pseudo almost automorphic process PAA(R, LF(P, H), i, v) is square-mean weighted pseudo almost
automorphic process SWPAA(R, L%(P, H), p) defined in [11].

(i) If p = 2 and p ~ v, p-mean (u,v)-pseudo almost automorphic process SPAA(R, LF(P,H), u,v) is
square-mean p-pseudo almost automorphic process SPAA(R, L2(P, H), u) [15].

In this paper, we formulate the following hypotheses:

plerr)

(A1) Let y,v € Msuch that hr,IL SUP ST .

(Az) For all T € IR, there exist § > 0 and a bounded interval I such that u({a + 7,a € A}) < u(A)if A €
B satisfies ANT = 0.

Similar as the proof of [13], one has

Lemma2.1. Let u, v € Msatisfy the condition (Az), then SPAAyR, LP(P, H), u, v) is translation invariant, therefore
SPAA(R, LP(P,H), u,v) is also translation invariant.

Lemma 2.2. Let u,v € M satisfy (A1), (Az), then SPAA(R, LP(P,H), u,v) is a Banach space with the supremum
norm || - [leo-

Now, we introduce the concept of (i, v)-pseudo almost automorphy in p-distribution. Let P(LF(P, H))
be the space of all Borel probability measures on L7 (P, H) endowed with the metric:

dpr(y, v) := sup {'ffdﬂ_ffdv

where f are Lipschitz continuous real-valued functions on L7 (P, H) with the norms

£l = maxiifll, iflkol, 1A = sup L2 o up 1o

7
x#y llx =l xeL?(P.H)

: ”f”BL < 1}/ wve P(LP(P,H))’

We denote by law(Y(t)) the p-distribution of the random variable Y(t), by [3], we say that Y has almost
automorphic in one-dimensional p-distribution if the mapping t — law(Y(t)) from R to (P(L(P, H)), dpL) is
almost automorphic.
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Definition 2.6. [3] An LF-continuous stochastic process Y is almost automorphic in p-distribution:
(1) If the mapping t — law(Y(t + -)) from R to P(C(IR, LF(P, H))) is almost automorphic.
(@) If p > 0, the family (||Y(f)|P)er is uniformly integrable.

Remark 2.2. Note thatif p = 2, then similar definition for almost periodicity are defined in [29], that is almost
periodicity in one-dimensional distribution, almost periodicity in distribution, one can see [29] for more
details.

Definition 2.7. Let y,v € M. A stochastic process X : R — LP(P,H) is said to be (u,v)-pseudo almost
automorphic in p-distribution if it can be decomposed as X = Y + Z, where Y is almost automorphic in
p-distribution and Z € SPAA R, LP(P, H), 1, v).

3. Stochastic Functional Integro-differential Equations

In this section, we investigate the existence, uniqueness of (u,v)-pseudo almost automorphic in p-
distribution mild solution to (1.1). First, we make the following assumptions:

(H1) There exists constants Ay > 0,0 € (g, n),z,ZVI >0and g,y € (0,1) with g + y > 1 such that

M
1+ (A

Lo U {0} C p(A(t) — Ao),  [IR(A, A(F) = Ag)ll <

and
I(A(t) = Ao)R(A, A(t) — Ag)[R(Ao, A(t)) — R(Ao, AG)]II < LIt — sIPIA| ™

fort,s e R,Zg ={A € C\ {0} : argA| < O}.
(H2) A(t) : D(A() ¢ LP(P,H) — LP(P,H) is a family of densely defined closed linear operators which

generates a uniformly exponentially stable evolution family (U(%, s))s, that is, there exist constants
M > 0,6 > 0such that ||U(t,s)|| < Me 279, —co <5 < t < +00.

(H3) U(t,s)x € bSAA(R X R, LP(P, H)) uniformly for all x € B, where B is any bounded subset of £LF(P, H).
(Hy) Kj,K; are convolution-type kernels in L2(0, o) and L(0, o), respectively.

(Hs) stuﬂg) E|lf(t,0)|IF < oo, stuﬁl{) Ellg(t, 0)||’Z(H,H) < o0, stuﬁl{o E|lf(h,0)|F < oo, and there exists a constant L > 0
€ € €

such that
E[lf(t,Y) - f(t, Z2)IF < L-E[Y - Z|P,
Ellg(t, Y) — g(t, Z)Ilf(H,H) <L-ElY-Z|F,
E[h(t,Y) - h(t, 2)IP < L-E|lY - Z|P,

forallte R, Y,Z € LP(P,H).

(He) f = fi+ fo,h =h1+hy € SPAARX LV(P,H), LF(P,H), , v), where fi,hy € SAAR X LP(P, H), LV (P, H)),
fZ/ hZ € SPAAO(RXLP(P/ H)/ LP(R H)/ u, V)' g=q1t+g2 € SPAA(RXLP(P/ H)/ LP(P/ L(H/ H))/ U, V)/ where
71 € SAAR x LP(P, H), LF(P,L(H, H))), g2 € SPAA)(R x LF(P,H), LF(P,L(H, H)), u, v).

Remark 3.1. (H;) is usually called “Acquistapace-Terreni” conditions, which was introduced in [1] and
widely used to study nonautonomous differential equations [1, 2, 14, 18, 21]. If (H;) holds, there exists a
unique evolution family (U(t, s))»s, which governs the homogeneous version of (1.1) [2].

Before starting our main results, we recall the definition of the mild solution to (1.1).
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Definition 3.1. [23] An F;-progressively measurable stochastic process {Y(#)}r is called a mild solution to
(1.1) if it satisfies the corresponding stochastic integral equation:

¢ ¢
Y(t) = U(t,a)Y(a) +f U(t,s)f(s, Y(s))ds + f u(t, o) le(o —5)g(s, Y(s))dW(s)do

t o
+ f U(t, o) f Ky(o = s)h(s, Y(s))dsdo, (3.1)
forallt > a and each a € R.

3.1. Almost automorphy in p-distribution

In this subsection, assume that f € SAA(R x LP(P,H), LF(P, H)), h € SAAR x LP(P,H), LF(P,H)), g €
AAR x LP(P, H), LF(P,L(H, H))), and investigate the existence, uniqueness of almost automorphic in p-
distribution mild solution to (1.1).

Theorem 3.1. Let (A1)-(Az) and (Hi)-(Hs) be satisfied, and f,h € SAA(R x LP(P,H), LP(P,H)), g € SAA(R %
LP(P,H), LP(P,L(H, H))), then (1.1) has a unique mild solution in SBC(R, L¥ (P, H)) if

© := 3 ILMPS (1+ Cy(tr QY 2IKA IS + Ko, ) < 1.
Furthermore, this unique mild solution is almost automorphic in p-distribution if
8 = 3¥2LMPS (1 + Cy(trQP K + (Ko, ) < 1.

Proof. Note that

¢ ¢
Y(t) = j: U(t,s)f(s, Y(s))ds + j: u(t, o) Ki(o —s)g(s, Y(s))dW(s)do

t o -
+f U(t,o)f Ky (o — s)h(s, Y(s))dsda, (3.2)

is well defined and satisfies (3.1). Hence Y is a mild solution to (1.1).
Define the operator ¥ by

t t o
TY(t):f U(t,s)f(s,Y(s))ds+f U(t,o)f Ki(o —5s)g(s, Y(s))dW(s)do

t 0
+ f U(t, o) f Ky(o = s)h(s, Y(s))dsdo

= (FaY)(®) + (F2Y)(D) + (F3Y)(1),

where

t
(FNE) = [ Ult,s)f(s, Y(s))ds,

00

t o
(F2Y)(t) = j: u(t, o) j: Ki(o = s)g(s, Y(s))dW(s)do,

(FY)(t) = I U, o) f ’ Ka(o — )h(s, Y(s))dsdo.

It is not difficult to see that ¥ maps SBC(IR, LF(P, H)) into itself.

(1) ¥ has a unique fixed point in SBC(R, £LF(P, H)).
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For Y1,Y> € SBC(R, LF(P, H)), t € R,
EI(FY1)(®) = (FY2)OIF < 3FEINF YD) — (FY2)OIF + 3 EIl(F2Y)(E) - (FY2) O
+3ENFY 1)) ~ (FY2)OIF =11+ I + Is.
o 1.
By Holder inequality, one has
t

EI(FY1)(0) — (FY) O < MPE ( f

—00

p
e I|f(s, Y1(6) - fGs, Yz(S))IIdS)

p-1
<M ( f t e-5<f—5>ds) ( f t e 2| £(s, Y1()) — f(s, Ya(s))|IPds

o0 0

< LMPS™P - sup EE||Y1(s) — Ya(s)IIP.
seR

o I 2.
By Holder inequality and [28, Lemma 2.2], 7, can be estimated as follows:

E[[(F2Y1)(8) = (FY2)OIF

P

da]
t p-1 t g

<M ( f e—6<f—o>do) ( f oot f K10 = 9)[g(s, Y1(5)) = g(s, Ya(s)IW(S)

P
da)

t o
<E [f Me—ﬁ(t—ﬁ) . Hf Kl(a - S)[g(s, Yl(s)) - g(s, YZ(S))]dW(S)

p
da)

0

< MY ( f eI ” f " Ki(o = $)[g(s, Y1(5)) - g6, Ya(s)AW(S)

0

t 0
<MSPC, - ( f eI [trQ f IKi(0 = s)IP~*7IIKi (o = s)II*7

X 1, Y1) = 965, Yo By pds] do)
t i p/2-1
SM%WC”(WQ)WZ‘U e [ f ||K1(o—s)||2ds]

x[ _ ||1<1(o—s>||2-1E||g<s,Y1(s)>—g(s,Yz(s>)||’;(H,H)ds]da)

< LMPSCy(trQ) K I} - sup E[Y1(5) = Y21,
S€E

where C, > 0is a constantand C; = 1if p = 2.
o 15
By Holder inequality, we have
Ell(F3Y1)(#) = (FsY2)OIF

t o p
SIE[ f Me—‘s(f—ff).H f Ky (o = s)[h(s, Y1(s)) = h(s, Y2(s))]ds da]

t p-1 t o
<M ( f e‘é(t“’)do) ( f e 00 ]EH f Ko (o = s)h(s, Y1(s)) = h(s, Ya(s))ds

(o) (o)

p
do)

1238
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t o p-1 o
< MPO!F (f e 0=) [f lIK2(0 - S)||d5] [f IK2(0 = s)II - EllA(s, Y1(s)) — h(s, Yz(S))deS] dﬁ]

< LMPSPIIK I, - sup E[[Y1(s) = Ya(s)I.
se

Hence, it follow that, for each t € R

E[I(FY1)(t) = (FY2)OIF < O - sup E[[Y1(s) = Ya(s)IF.
seR

Since O < 1, we conclude that ¥ is a contraction operator, hence there exists a unique mild solution to (1.1)
in SBC(R, LF(P, H)).

(if) Almost automorphy in p-distribution of mild solution.

Since f,h € SAA(Rx LP(P,H), L (P, H)), g € SAA(RX LP(P,H), LF(P,L(H, H)), thus for every sequence of
real numbers {s;,}, there exists a subsequence {s,} and a stochastic processes f,h : R x LP(P,H) — LF(P, H),
and g: R x LP(P,H) — LP(P,L(H, H)) such that

lim E||f(t + 5., Y) = f(, VI =0 and  lim E||[f(t—s., Y) - f(t, VIP = 0. (3.3)
lim Ellg(t +5,,Y) = 5, Iy, =0 and  lim EIG( = s, Y) = g(t, VI ) = 0. (3.4)
lim Eljh(t + 5., Y) = h(t, V)P =0  and  Lim EJJa(t — s, Y) = h(t, V)| = 0. (3.5)
n—o0 n—oo

foreacht€ R, Y € B.
Since U(t, s)x € bSAA(R x R, LF(P, H)) uniformly for all x € B by (H3), hence for every sequence of real

numbers {s;}, there exists a evolution family ﬁ(t, s) such that for each t € R,

lim E|U(t + s, 5 + p)x — U(t, )x|lP =0,  Lim EJJU(t — 5,5 — s,)x — U(t, 5)x|P = 0 (3.6)

n—oo

hold for each t,s € R and x € B. Furthermore, from (3.6) and (H;), one has
E||U(t s)x|lP < 2P E|IU(t, 5)x — U(t + s, 5 + Su)x|P + 2P EJIU(E + 5y, s + 50)x]P
< 2 2P I MPe PSR x| (3.7)

forallt > sand x € B. _
Let W, (s) := W(s +s,) — W(s,), for each s € R. It is easy to show that W, is a Q-Wiener process with the
same distribution as W, then

Y(t+s,)
t+s;, t+5, 0
= f U(t + s4,5)f(s, Y(s))ds + f U(t +5,,0) f Ki(o —s)g(s, Y(s))dW(s)do

t+s, g
+ f U(t + sy, 0) f Ky (o = s)h(s, Y(s))dsdo

00

t

= f U(t + 51,5+ 54) f(5 + 5n, Y(s +54))ds

[

t
+ f U(t +s,,0+5sy,) Ki(o = 5)g(s + sy, Y(s + 5,))dWy,(s)do

00 —00

t
+ f U(t +s,,0+5sy,) Ky(o — s)h(s + s, Y(s + s,))dsdo.

(o] —00
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Consider the process

Y. () = f U(t + 5p,5 4 54) f(S + 5p, Yn(s))ds

(o8]

+ f U(t +s,,0 +sy,) fa Ki(o = s)g(s + su, Yu(s))dW(s)do

(o)

t 0
+ f Ut +s,,0 +sy,) f Ky(o — s)h(s + s, Yu(s))dsdo.

It is easy to see that Y(t + 5,) has the same distribution as Y, (t) for each t € R.
Let Y(¢) satisfy the integral equation

t

t
Y(t) = I Ut s)f(s, Y(s))ds + f U(t,0) | Ki(o - 9)g(s, Y(s))dW(s)do

00 —00 —00

t 9 —
+ f U(t, o) f Ka(o — $)h(s, Y(s))dsdo.

Similar as the proof of [26], it is not difficult to see that Yis LP-bounded.
Note that

t P

¢
‘f U(t + 51,5+ 51) f(5 + 5p, Yu(s))ds — f a(t,s)f(s, Y(s))ds

—00

E|[Y,(t) = YOI <3''E

+31E

t o
‘f U(t + sy, 0 +sy,) f Ki(o = 5)g(s + su, Yu(s))dW(s)do

p

t g .
- f U(t, o) f Ki(o = s)g(s, Y(s))dW(s)do

(o8] (o)

+31E

t 0
‘f Ut +s,,0 +sy,) f Ky(o — s)h(s + s, Y, (s))dsdo

p

t 0 -
- f U(t, o) f Ky(o — s)h(s, Y(s))dsdo

(o8] (o8]

=J1+92+Ts.

* Ju
By Holder inequality, we have

P
J1 < 32E

‘ f U(t + $u,5 + ) f(S + S, Ya(s)) = f(5 + 50, Y(5))]ds

p
+3%2E

f U(t + 54,5+ 5,)[f(5 + 54, 17(5)) - ﬂs, Y(s))]ds

(o)

p
+3%2E

f [U(t + 5,5 +5s,) — a(t,s)]ﬂs, Y(s))ds

t p-1 t
< 32\ ( f e-‘W-S)ds) ( f eI f(s + 5, Yu(5)) — f(5 + 50, 17(s))||ﬂds)

00 00

t p-1 t
+ 32\ ( f e-(’(t—”ds) ( f e EIE| (s + s, Y(s)) — £(s, 17(5))||Pds)

o0 o0
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t p-1 t o
+32P-2( f e—vfl“‘S’ds) ( f SPEIE|[UE + 5,5 + 5,) — U(L,9)]f(5, Y(5))|IPds

(o)

< 3P2LMPS - sup EI|Y(s) - Y(s)I? + E}(1),
seR

where b € (0,pd) is some constant and
t

ENt) = 32MPs' P f e IE|[f(s + 54, Y(5)) — £(5, Y(5))IPds

—00

+ 372 [(p - )b P! f PEIEN[UE + 5,5 + 5) — Ut 5)] (5, Y(5))|[Pds.

By (3.3) and Lebesgue dominated convergence theorem, one has

lim t e IE|| f(s + 5, Y(5)) — f(5, Y(s))|IPds = 0. (3.8)

n—oo J

On the other hand, by (3.3) and the fact that sup E||f(s + s», ?(s))ll” < 400, one has
seR

ElIf(s, YO)P < 2P Ellf (s + 50, Y(5)) = £(5, YO)P + 2" Ellf (s + 50, YE)IF < My, (3.9)

where My > 0 is a constant. By (H>) and (3.7), one has

E LU + 5,5+ 5,) - Tt )1 Gs, Vo))

< B[t + 5,5 + 5,0 /G5, YO + 27 E [Tt 9) 6, Y|
< TIPS fs, YE)IP + 27 - 27 IMPe P9 (s, Y(s)IP
< 2PTIMP(L+ 2°)Mye 779) for t>s,

which implies that
HIE [ + 55,5 +5,) ~ Tt 5)1 (s, Vo))||| € L (00,0,

then, from the Lebesgue dominated convergence theorem, we obtain

f —_ -
lim [ IR (U +s,s +50) - U9, Y(s))”p ds = 0. (3.10)

Hence, by (3.8) and (3.10), one has & (t) — 0 as n — oo.
e 7.

By Holder inequality and [28, Lemma 2.2], one has

t g ~ 14
T <3E ‘ f Ut + 50,0 +52) f K10 = $)[g(5 + S, Ya(S)) — 965 + 5, () W(s)do
= - N ~ .
+3%72E f U(t + 8,0 +55) f Ki(o = 9)[g(s + 54, Y(5)) — 9(s, Y(5))[dW(s)do
t g 14
+ 3% f [U(t +s,,0+s,) — ﬁ(t, 0)] f Ki(o - s)g(s, ?(s))dW(s)do
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t Y _ p/2
< 32p5ivC, (trQ f )’ [ f IK1(0 = )@ + 0, Yi(6)) - 965 + 50, Y(s)»ui(H,H)ds] do)

t o _ _ p/2
+ 32”‘2M’”61"’Cp (ter o (-0R [f IK1(c — 8)(g(s + sn, Y(s)) — g(s, Y(s)))lli(H,H)ds] da)

P
+ 377

t g
f [U(t+s,,0+s,)— ﬁ(t, 0)] f Ki(o = 9)g(s, Y(S))dW(s)da

t G p/2-1
s32”‘2M”61‘pC,,(trQ)”/2-[ f e 0t=0) [ f ||1<1(o—s)||2ds]

X [fm IK1(0 = s)II* - Ell(g(s + 5, Yu(5)) — (s + 5p, ?(s)))ll’z(H,H)ds] da)

t

p/2-1
+ 32p_2Mp51_pCp(tTQ)p/2 . [f |IK1 (0 — s)”2ds]

—00

o~0(t-0) [

—00

X [ f ki@ =9I - El(g(s + s, Y(s)) - (s, Y(s)))u’;(H,H)ds] do)

P

+3%2E f [U(t + 8,0 + 5) — U(t, 0)] f ’ Ki(o — 5)g(s, Y(s))dW(s)do

< 3 2LMPSPCy(trQ)P KA - sup EIIYa(s) - Y)IF + EX(D),
selR

where

Ex(t) = 3 M C, QY K

X (j:oo e_é(t_g) [ . “Kl(o - S)“2 . ]EH(!](S + Sn, 7(S)) - Z]V(S/ Y(S)))”IZ(H/H)dS] dO')

p
+3%2E

t 0
‘ f [U(t + 8y, 0 + 5,) — U(t, 0)] f Ki(o — $)g(s, Y(s))dW(s)do

(o8]

Since K; € L?(0,+0) and g € SAAR x LF(P,H), L7(P,L(H,H))), by Lebesgue dominated convergence
theorem, we have

t 0 . _
nl—i>r-{l:100 B oO(t=0) [Iw 1K1 (0 = s)II* - Ell(g(s + 54, Y(s)) — 3(s, Y(s)))lli(H,H)ds] do =0. (3.11)
On the other hand,

¢ p
E Hf [U(t +sy,0+5,) — fl(t, 0)] Ki(o = 9)g(s, ?(s))dW(s)do

—00

p

0

t —_—
= Hf e 7D (Ut + 5,0 +5,) = Ul 0)) f Ki(0 - 9)g(s, Y(s))dW(s)do

—00

t p-1 t o
s( f e_P]l“’(t_‘j)do) ( f e (=) H(U(t+sn,a+sn)—1,~l(t,a)) f Ki(o — 5)g(s, Y(s))dW(s)
P
do)

where w € (0, pd) is a constant. Similar as the proof of (3.9), one has E||g(s, Y(s))lli(H/H) < M,, where M, > 0

p
da)

t g
<[(p-Da P! ( f PGl H(U(t +8,,0 +5,) — U(t,0)) f Ki(o — 5)7(s, Y(s))dW(s)

(o]
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is a constant. Let
00 = [ Ko=)t TOMNG)
By Holder inequality, one has

p/2

Elln)l < (trQy"*E [ f IK1(o = s)g(s, ?(5))“%(H,H)ds]

< (trQPPIK I [ f 1K1 (o = s)I? - Ellg(s, Y(S))Ili(H,H)ds]
< (trQYPIKA I M.

Hence, by (3.7), one has

p

E H(U(t + 84,0 +8,) — U(t, 0)) f ’ Ki(o — $)3(s, Y(s))dW(s)

<2E “U(t +5,,0 + sn)r](a)”p + 21 E Hfl(t, U)W(O)HP

<271+ ZV)Mp(trQ)”/zﬂKl||’££2Mg€_p6(t_o)/ for t >0,

which implies that
— p
eVt E H(U(t +5,,0+5,) = U(t,0) | Ki(o—35)g(s, Y(s)dW(s)|| € LY (—oo,t). (3.12)
from the Lebesgue dominated convergence theorem, we obtain
¢ _ p
lim eVt E ”(U(t +8,,0+5,) = Ut,0)) | Ki(o—9)g(s, Y(s))dW(s)|| do = 0. (3.13)
Hence, by (3.11) and (3.13), one has &(f) — 0 as n — oo.
* Js.
By Holder inequality, one has
t 0 _ P
J3 <37°E ‘f U(t +s,,0 +sy) f Ky(o = s)[h(s + sy, Yu(s)) — h(s + s, Y(s))]dsdo
t 0 . . p
+ 3% f U(t + sy, 0 +sy,) f Ky(o = s)[h(s + sy, Y(s)) — h(s, Y(s))|dsdo
¢ _ o — g
+3%2F f [U(t + sy, 0 +s,,) — U(t, 0)] f Ka(o = s)h(s, Y(s))dsdo

t 0
< 32MPIP ( f e-é“—ff)lEH f Ka(0 = $)[I(S + 8, Yn(5)) = (s + 85, Y(5))]ds

P
do)

P
da)

t ol
+ 32\ ( f e—5<f—ﬁ>1EH f Koo = $)[1(s + s, Y(5)) — h(s, Y(s))]ds

P
+3%2E

¢ o - —
f [U(t +sy,0+5s,) — ﬁ(t, 0)] f Ky(o — s)h(s, Y(s))dsdo

< 3P2LMPS PG, - sup EIIY,(s) = Y()IIP + E5(t),
seR
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where

t 0
Ea(t) = ¥ MO |IKa |l ( f =9 [ f ||1<2(o—s>||-1E||h<s+sn,?(s)>—'ﬁ(s,?(s)nwds]do)

p
+ 3772

t g
‘f [U(t +s,,0 +5,) — fl(t, 0)] f Ky(o — s)ﬁ(s, ?(s))dsdo

(o)

Since K, € L(0, +0) by (Hy) and (3.5), by Lebesgue dominated convergence theorem,

¢
lim e0t=0) [

n—oo | _

IK2(0 = 9)|| - Ell(s + s, Y(5)) = hs, ?(s))upds] do =0. (3.14)

On the other hand, by Holder inequality,

p

—00

t
IEH f [U(t + 80,0 +54) = U(t, )] | Ka(o = 9)h(s, Y(s))dsdo

t g
<[(p - P! ( f ) H(U(t +8,,0 +5,) — U(t,0)) f Ka(o — $)h(s, Y(s))ds

(o]

p
da)

do = 0. (3.15)

where w € (0, pd) is a constant. Similar as the proof of (3.13), one has

t ~ —
lim eVt E H(U(t +5,,0+5,) = U(t,0)) | Ka(o—s)h(s, Y(s))ds

n—oo

14

—00 —00

Hence, by (3.14) and (3.15), one has &}(t) — 0 as n — co.
By the estimates of J1-J3, one has

EIY,(H) = Y(OIF < E"(t) + 9 - sup EIlY,(s) — Y)IP,
seR

where E'(t) = Y., E/(t). Hence

sup E[|Y,(t) — YOI < sup E'(t) + 9 - sup E||Y,,(s) - Y(s)I-
teR teR seR

By 9 < 1and lim sup &(t) = 0, it follows that

n—oo teR

sup E||Y,(t) = Y(O)IP - 0 as n — oo.
teR

Since Y(f + s,) has the same distribution as Y,(t), by [22], one has Y(t +s,) — 17(1?) in p-distribution as

n — oo. Similarly, we have Y(t —s,) — Y(t) in p-distribution as n — co. Hence Y is almost automorphic in
one-dimensional p-distribution.

Note that the sequence (||Y,,(#)||P) is uniformly integrable, thus (||Y (t+s,)|IF) is also uniformly integrable, so
the family (||Y(#)|[P)ter is uniformly integrable. Next, we prove that Y is almost automorphic in p-distribution.
For fixed 1 € R, let &, = Y(T +5,), fu(t,Y) = f(t +5,,Y), gu(t,Y) = g(t +5,,Y), hy(t,Y) = h(t +5,,Y). By the
foregoing, (&,) converges in p-distribution to some variable Y(7). We deduce that (&,) is tight, so (£,, W) is
tight also. We can thus choose a subsequence (still noted s, for simplicity) such that (£,, W) converges in
p-distribution to (Y(7), W). Similar as the proof of [12, Properties 3.1], for every T > 7, Y(- +s,) converges in
p-distribution on C([z, T], L7 (P, H)) to the (unique in p-distribution) solution to

t t o
Y(t) = U, 1)Y(7) +f U(t, s)f (s, Y(s))ds +f utt, o)f Ki(o —5s)g(s, Y(s))dW(s)do
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t 0
+f U(t,o)f Ky(o — s)h(s, Y(s))dsdo,

Note that Y does not depend on the chosen interval [, T], thus the convergence takes place on C(R, £F(P, H)).
Similarly, one has that Y, := Y(- —s,) converges in p-distribution on C(R, £F(P,H)). Hence Y is almost
automorphic in p-distribution. The proof is complete. [

3.2. (u,v)-pseudo almost automorphy in p-distribution

In this subsection, we assume that g € SPAA(R x LP(P,H), LP(P,L(H,H)), u,v), f,h € SPAA(R X
LP(P,H), LP(P,H), u,v) and and study the existence, uniqueness of (u,v)-pseudo almost automorphic in
p-distribution mild solution to (1.1).

Lemma 3.1. If (Ay), (Hs) hold and ¢ € PAAW(R, R, u,v), then the functions

t

M) = f e =) h(s)ds € PAAYR, R, i, v),
t 0

Mty = [ e [ o - Moo € PAAR, R, ),
t 0

Ms(t) = f ¢t f IKa(0 — 8)llgp(s)dsdo € PAA)R, R, i, v).

Proof. By Fubini theorem, one has

([ o]
v([=71]) Jiin (Ime P(s)ds |dul(t)

= ; i _5s _ :f+°° o
v([~7,1]) f[_ . j; e (t — s)dsdp(t) e D,(s)ds,

1

V([—l’, 7’]) [-rr]
convergence theorem, we have

. 1 t ~5(t-s) ) _
rliargo (= j[‘_m] (Ime ¢(s)ds | du(t) = 0.

So M; € PAA)(R, R, y,v). Similarly, one has M; € PAA)R, R, p,v),i=2,3. O

where @, (s) =

o(t — s)du(t). Since lir+n ®,(s) = 0 for all s € R and using Lebesgue dominated

Theorem 3.2. Let (A1)-(Az) and (H1)-(He) be satisfied, then (1.1) has a unique mild solution X being (u, v)-pseudo
almost automorphic in p-distribution if 8 < 1. More precisely, let Y € SBC(R, LP(P,H)) be the unique almost
automorphic in p-distribution mild solution to

t

wm=AWWﬂ+ﬁ@wm++j‘Kﬁ—ﬁm@Y©MW@

t
+ f Ky(t — s)hy(s, Y(s))ds, teR, (3.16)

00

then X has the decomposition:

X=Y+Z  ZeSPAA(R, L7(PH), u,v).
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Proof. The proof of existence and properties of Y can be seen in the proof of Theorem 3.1. The existence and
uniqueness of the mild solution X to (1.1) are proved as in Theorem 3.1, using the classical method of the
fixed point theorem for the contractive operator ¥ on SBC(R, LF(P, H)) defined by

t t o
TX(t):f U(t,s)f(s,X(s))ds+f U(t,o)f Ki(o —s)g(s, X(s))dW(s)do

t o
+f U(t,o)f Ka(o — s)h(s, X(s))dsdo. (3.17)

The solution X is the limit in SBC(R, £LP(P, H)) of a sequence (X,) with arbitrary Xy and for n € IN, X411 =
F (X,). To prove that X is (4, v)-pseudo almost automorphic in p-distribution, we choose a special sequence.
Set

Xo=Y, Xun ZT(XH)/ Z,=X,-Y, neN.

Let us show that Z,, € SPAAR, LF(P, H), u,v) for n € IN, and prove it by induction. In fact, assume that
Z, € SPAAVR, LF(P, H), u,v), then for everyn € Nand t € IR,

Znn = F Xu(t) = Y(H)

- [ | w UGt 95, Xa(5)) — (5, YE)Ms
. [ m (o) [ Kulo =gt X6 ~ o6, YOI WMo
+ [ w (ko) [ Kato =90t X - s, Y(s»]dsdo]
+ [ | m Ut 9t Y + [ m (o) [ Kufo =gt YEDWMo

+ f t u(t, o) f ’ Ka(o — s)ha(s, Y(s))dsda]
= (Hl(_tc;+ Ho (). R
By (Hs), one has E||f(t, X,(t)) — f(t, Y(H))IIP < L - E[|Z,(#)IF, so the mapping
fot = Elf(t Xu(®) - fE YOI
lies in PAAo(R, R, 4, v). The same conclusions hold for

ot — Ellg(t, Xu(0) = g(t, YOI, ;1
b1t = Ellh(t, Xu(t)) — h(t, YOI

By Lemma 3.1 and f, g, h € PAAo(R, R, p1,v), one has
1

V([—Y 1’]) [-rr]

MPél p f f s(ts)
i(s)dsdu(t) - 0 as r — +
[ 7’7’]) [-rr] f ) ‘l() o

P
du(t)

t
IEHf U(t, s)[f(s, Xu(s)) — f(s, Y(s))]ds

and

1 p

W) Jin )

t
E H f U, o) | Ki(o = s)lg(s, Xu(s)) = g(s, Y(s))ldW(s)do




Z. N. Xia, D. ]. Wang / Filomat 32:4 (2018), 1233-1250 1247

]\/[Ipil;]’) f”]f e 0= ‘T)]EHf Ki(o = s)lg(s, Xu(s)) — g(s, Y(s))]dW(s)

MPSPC, Q)P IKa P
< ’; D : f ( f e 0(t=0) f 1K1 (o —s)||zg(s)dsda)dy(t)—>o as r — +oo,
2 [-rr]

P
dodu(t)

and

1 p

V([—T’, 7’]) [-rr]
MPS'7||Ks | e

<— f ( f e 0t=0) f ||K2(a—s)||b(s)dsda)dy(t) —0 as r — +oo.
—r,7] —00 —0c0

E Hf u(t, o) Ko (o = s)[h(s, Xn(s)) — h(s, Y(s))]dsdo|| du(t)

v([=r7])

Thus, H; € SPAANR, LV (P, H), u,v).

Next, we show that H, € SPAA(R, LF(P,H), u,v). Since Y is almost automorphic in p-distribution,
(Y(#)) = (Y(t + *))ter is uniformly tight in C(R, LF(P, H)), where C(R, LF(P, H)) is the space endowed with
the topology of uniform convergence on compact subsets of L7(P,H). Hence, for ¢ > 0, there exists a
compact subset K, of C(IR, LF(P, H)) such that for t € R

PY(H) eK,)=1-¢.

By the Arzela-Ascoli theorem, for every € > 0 and for every compact interval I of R, there exists a compact
subset K, of LF(P,H) such that for ¢t € R,

P(Y(t+s)e K, Vsel)>1—e¢.

In particular, (Y(f)):er is tight, i.e., let K, := K, (), for t € IR, one has P(Y(f) € K,;) > 1 — ¢. Since f, is uniform
continuous on R X K¢, there exists 1(¢) > 0 such that for all x, y € K,

Ellx — yllP < n(e) = sup El|f2(t, x) = folt, yIP < e.
teR

We can find a finite sequence y1, V2, ...y such that K, C U B(yi, n1(€)), where B(y;, 11(¢€)) is the open balls
with center y; and radius less than 7(¢). Similar as the proof of [32], Y is bounded in L7 (P, H), then
Ellf2(t, YOI < 277 Ellfa(t, (1) — falt, ODIF + 27"l fa(t, 0)IP
< 27L-EIY@IF + 27 El fa(t, O)IP < +eo,
thatis f,(-, Y(-)) is bounded in LP(P, H). Clearly, fo(-, Y(-)) is in SBC(R, LF(P, H)). By the uniform integrability

of (|IY(£)II")ser and (Hs) holds, one has the uniform integrability of (|| f2(t, Y(t))IIP);er. Hence, let ¥ > 0, we can

choose ¢ small enough such that, for any measurable A such that P(A) < € and sup E(14llf2(¢, Y())IP) < «.
teR
Let Q, be the measurable set on which Y(t) € K, one has

Elfot, YOW <3 max (E(la,Ifalt, Y(O) = falt, y)IP) + 3~ max Ellfalt, )P

+37'E (195 llf2(t, Y(t))”p)
<3 e + 37 max E|fa(t, y)ll + 3 k.
1<i<m

By the ergodicity of fo(t,y;) for all i € {1,2,...,m}, hence t — E|/f2(t, Y(£))II is in SPAA)(R, R, ,v). By
Lemma 3.1, one has

1

=) Jion )

H f UL, 9)f(5, YE)s
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_MF t —0(t-=s) )pl( t ~3(t-s) P )
R f[_,,y] (Lx,e ds I I, Y(s)IFds | du(t)

Z\/Jpél_P ft st )
< e "VE| fa(s, Y(s)IPds | du(t) = 0 as r — +oo.
V([_r/ 7']) [-rr] ( -0 ||f2( ( ))” H( )

Similarly, one has t — E||g2(t, Y(t)IF t — Ellha(t, Y())IIP are in SPAAN(R, R, 1, v) and

L(H,H)’
1 ¢ 14
_ E Hf Uu(t, o) Ki(o = 5)ga2(s, Y(s))dW(s)do|| du(t) = 0 as r — +oo.
V([—T’, 1’]) [-rr] —o0 —0c0
1 P

¢
E Hf u(t, o) Ky (0 = s)ha(s, Y(s))dsdo|| du(t) = 0 as r — +oo.

V([—T’, 1’]) [-rr]

Thus, H, € SPAANR, L (P, H), u,v). So, we have proved Z,+1 € SPAAN(R, LF(P,H), it,v). We deduce by
induction that the sequence (Z,) lies in SPAA(R, LF(P, H), i, v).

Now, the sequence (X,) convergences to X in SBC(IR, L7 (P, H)), hence (Z,) convergences to Z := X - Y
in SBC(R, LP(P,H)), then let ¢ > 0 and n large enough such that sup (E||Z(t) — Z,(¢)II’) < ¢. Since Z,, €

teR B
SPAAR, £(P, H), u,v) and

-1
S EIZOW o < s [ Bz - Zu dut)
2p-1 .
r f[  EIZOW duty
- 27 teu([-r,1]) 2p-1
v([-7,7]) v([-r,7]) [=77]
which implies that Z € SPAA((R, L7 (P, H), u, v). The proof is complete. [

E(Z, O du(t),

4. Example

Consider the stochastic integro-differential equations:

du(t,x) _[d*u(t, x) _ 1
ot [ ox2? +ult,x)sin 2 +sint + sin ntt + f(t utt, x)
¢ t

+fe‘”(tS)g(s,u(s,x))dW(s)+fe“’(ts)h(s,u(s,x))ds, (t,x) e Rx(0,1), 1)

—co -0

u(t,0)=u(t,1)=0, teR,

where W(t) is a standard two-sided and one-dimensional Brownian motion defined on the filtered proba-
bility space (Q, F, (F)ter, P). Let

D(A) = {x € C'[0,1] : x/(r) is absolutely continuous on [0, 1], x”(r) € £2[0,1],x(0) = x(1) = 0},

then A generates a Cyp-semigroup (T(t))=0, Which is given by [T(t)x](r) = i e, e,) r26,(r) where

n=1
en(r) = V2sin(nmr) forn =1,2,... and || T(f)|| < e™* for t > 0.
Define a family of linear operators A(t) by

DAW) = D(A), teR

A(t)x = (A + sin !

2 +sint + sin nt)x’ x € DIAC).
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Hence A(t) generates an evolution family (U(f,s))s»s such that U(t,s)x = T(f — s)efst sin 2+sim1+sindex, therefore
U, )| < e ™D for t > 5, ie., (Hy), (Hy) hold withM =1, 6 = % — 1.

Note that

ff+5y, sin %d’[
U(t +5,,8 + Sn)y = T(t — s)e s+sn 2+sin t+sin 7T y

t . 1 d
— T(t — S)efs sin 2+sin(t+sy )+sin (t+sp) Ty

uniformly for all y in any bounded subset of £2(P, £2[0, 1]), so (H3) holds.

Let u = v and suppose that its Radon-Nikodym derivative is given by

e, if t<0,
Pw‘{1, if £>0,

then u,v € M and satisfy (A1), (A2) [6]. It is not difficult to see that (H4) holds. Assume that (Hs)-(He)
hold and 9 = 9L(n? — 1)72 (1 +w 'trQ + w‘2) < 1, by theorem 3.1, (4.1) has a unique solution which is
(4, v)-pseudo almost automorphic in 2-distribution.
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