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H. M. Srivastavaa, Şahsene Altınkayab, Sibel Yalçınc
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Abstract. In this paper, we discuss the various properties of a newly-constructed subclass of the class of
normalized bi-univalent functions in the open unit disk, which is defined here by using a symmetric basic
(or q-) derivative operator. Moreover, for functions belonging to this new basic (or q-) class of normalized bi-
univalent functions, we investigate the estimates and inequalities involving the second Hankel determinant.

1. Introduction, Definitions and Notations

LetA denote the class of functions of the form:

f (z) = z +

∞∑
n=2

anzn, (1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .

Also let S be the subclass ofA consisting of functions the form (1) which are also univalent inU.

The Koebe One-Quarter Theorem [13] states that the image ofU under every function f in the normalized
univalent function class S contains a disk of radius 1

4 . Thus, clearly, every such univalent function has an
inverse f−1 which satisfies the following condition:

f−1
(

f (z)
)

= z (z ∈ U)
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and

f
(

f−1 (w)
)

= w
(
|w| < r0

(
f
)

; r0
(

f
)
=

1
4

)
,

where

f−1 (w) = w − a2w2 +
(
2a2

2 − a3

)
w3
−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote
the class of bi-univalent functions defined in the unit disk U. For a brief history and interesting examples
of functions in the class Σ, see the pioneering work on this subject by Srivastava et al. [46], which has
apparently revived the study of bi-univalent functions in recent years. From the work of Srivastava et al.
[46], we choose to recall the following examples of functions in the class Σ :

z
1 − z

, − log(1 − z),
1
2

log
(1 + z

1 − z

)
,

and so on. However, the familier Koebe function is not a member of the bi-univalent function class Σ. Such
other common examples of functions in S as

z −
z2

2
and

z
1 − z2

are also not members of Σ (see [46]).

Historically, Lewin [23] studied the class of bi-univalent functions, obtaining the bound 1.51 for the
modulus of the second coefficient |a2| . Subsequently, Brannan and Clunie [8] conjectured that |a2| 5

√
2 for

f ∈ Σ. Later on, Netanyahu [28] showed that max |a2| =
4
3 if f (z) ∈ Σ. Brannan and Taha [9] introduced

certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses S?
(
β
)

and K
(
β
)

of starlike and convex functions of order β
(
0 5 β < 1

)
in U, respectively (see [28]). The classes S?

Σ

(
β
)

and
KΣ

(
β
)

of bi-starlike functions of order β inU and bi-convex functions of order β inU, corresponding to the
function classes S?

(
β
)

andK
(
β
)
,were also introduced analogously. For each of the function classes S?

Σ

(
β
)

and KΣ
(
β
)
, they found non-sharp estimates for the initial coefficients. Recently, motivated substantially

by the aforementioned pioneering work on this subject by Srivastava et al. [46], many authors investigated
the coefficient bounds for various subclasses of bi-univalent functions (see, for example, [4], [15], [24], [40],
[41], [42], [43], [44], [49] and [50]). Not much is known about the bounds on the general coefficient |an| for
n = 4. In the literature, there are only a few works determining the general coefficient bounds for |an| for
the analytic bi-univalent functions (see, for example, [2], [5], [11], [18], [19], [22] and [47]). The coefficient
estimate problem for each of the coefficients |an| (n ∈N \ {1, 2} ; N = {1, 2, 3, · · · }) is still an open problem.

The Fekete-Szegö functional
∣∣∣a3 − µa2

2

∣∣∣ for normalized univalent functions of the form given by (1) is
well known for its rich history in Geometric Function Theory. Its origin was in the disproof by Fekete and
Szegö [14] of the 1933 conjecture of Littlewood and Paley that the coefficients of odd univalent functions
are bounded by unity (see, for details, [14]). The Fekete-Szegö functional has

∣∣∣a3 − µa2
2

∣∣∣ since received
great attention, particularly in connection with many subclasses of the class S of normalized analytic and
univalent functions (see, for example, [3], [25], [31], [45], [48] and [51]).

In the year 1976, Noonan and Thomas [29] defined the qth Hankel determinant of the function f in (1)
by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ (n, q ∈N; a1 := 1).
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The determinant Hq(n) has also been considered by several other authors. For example, Noor [30] deter-
mined the rate of growth of Hq(n) as n → ∞ for functions f given by (1) with bounded boundary. In
particular, sharp upper bounds on H2(2) were obtained in the recent works [30] and [20] for different classes
of functions.

We note, in particular, that

H2(1) =

∣∣∣∣∣ a1 a2
a2 a3

∣∣∣∣∣ = a3 − a2
2

and

H2(2) =

∣∣∣∣∣ a2 a3
a3 a4

∣∣∣∣∣ = a2a4 − a2
3.

The Hankel determinant H2(1) = a3−a2
2 is the well-known Fekete-Szegö functional. Very recently, the upper

bounds of H2(2) for some specific analytic function classes were discussed by Deniz et al. [12] (see also [32]).

In the field of Geometric Function Theory, various subclasses of the normalized analytic function class
A have been studied from different viewpoints. The q-calculus as well as the fractional q-calculus provide
important tools that have been used in order to investigate various subclasses ofA. Historically speaking,
a firm footing of the usage of the q-calculus in the context of Geometric Function Theory was actually
provided and the basic (or q-) hypergeometric functions were first used in Geometric Function Theory
in a book chapter by Srivastava (see, for details, [39, pp. 347 et seq.]). In fact, the theory of univalent
functions can be described by using the theory of the q-calculus. Moreover, in recent years, such q-calculus
operators as the fractional q-integral and fractional q-derivative operators were used to construct several
subclasses of analytic functions (see, for example, [1], [6], [26], [27], [33], [35], [36], [37] and [38]). In par-
ticular, Purohit and Raina [36] investigated applications of fractional q-calculus operators to define several
classes of functions which are analytic in the open unit diskU. On the other hand, Mohammed and Darus
[26] studied approximation and geometric properties of these q-operators in regard to some subclasses of
analytic functions in a compact disk.

We begin by providing some basic definitions and concept details of the q-calculus which are used in this
paper. We suppose throughout the paper that 0 < q < 1. We shall follow the notation and terminology in
[39] and [16]. We first recall the definitions of fractional q-calculus operators of a complex-valued function
f (z).

Definition 1. Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =


1 − qλ

1 − q
(λ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · · + qn−1 (λ = n ∈N).

Definition 2. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =


1 (n = 0)

n∏
k=1

[k]q (n ∈N).
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Definition 3. For q ∈ (0, 1), λ, µ ∈ C and n ∈N0 =N ∪ {0}, the q-shifted factorial (λ; q)µ is defined by

(λ; q)µ :=
∞∏
j=0

(
1 − λq j

1 − λqµ+ j

)
(λ, µ ∈ C),

so that

(λ; q)n :=


1 (n = 0)

n−1∏
j=0

(
1 − λq j

)
(n ∈N)

and

(λ; q)∞ :=
∞∏
j=0

(
1 − λ q j

)
(λ ∈ C).

Definition 4. (see [21]; see also [39] and [16]) The q-derivative Dq f of a function f is defined in a given
subset of C by

(
Dq f

)
(z) =


f (z) − f (qz)

(1 − q)z
(z , 0)

f ′(0) (z = 0),

(3)

provided that f ′(0) exists.

We note from Definition 4 that

lim
q→1−

(
Dq f

)
(z) = lim

q→1−

f (z) − f (qz)
(1 − q)z

= f ′(z)

for a function f which is differentiable in a given subset of C. It is readily deduced from (1) and (3) that

(
Dq f

)
(z) = 1 +

∞∑
n=2

[n]q anzn−1. (4)

Definition 5. (see [7]) The symmetric q-derivative D̃q f of a function f is defined in a given subset of C is by

(
D̃q f

)
(z) =


f (qz) − f

(
q−1z

)(
q − q−1

)
z

(z , 0)

f ′(0) (z = 0),

(5)

provided that f ′(0) exists.

It easily follows from (1) and (5) that

(
D̃q f

)
(z) = 1 +

∞∑
n=2

[̃n]qanzn−1, (6)
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where [̃n]q denotes the number given by

[̃n]q =
qn
− q−n

q − q−1 (n ∈N),

which occurs frequently in the study of q-deformed quantum mechanical simple harmonic oscillator (see,
for details, [10]).

The following properties hold true:

D̃q

(
f (z) + 1(z)

)
=

(
D̃q f

)
(z) +

(
D̃q1

)
(z),

D̃q

(
f (z)1(z)

)
= 1

(
q−1z

)(
D̃q f

)
(z) + f (qz)

(
D̃q1

)
(z)

= 1(qz)
(
D̃q f

)
(z) + f

(
q−1z

)(
D̃q1

)
(z)

and

D̃qzn = [̃n]qzn−1.

Finally, by comparing Definitions 4 and 5, we have the following relation:(
D̃q f

)
(z) =

(
Dq2 f

)
(q−1z).

Moreover, by using (2) and (5), we also deduce that

(
D̃q1

)
(w) =

1(qw) − 1
(
q−1w

)
(q − q−1)w

= 1 − [̃2]qa2w + [̃3]q

(
2a2

2 − a3

)
w2

− [̃4]q

(
5a3

2 − 5a2a3 + a4

)
w3 + · · · . (7)

Definition 6. A function f ∈ Σ is said to be in the classHΣ(q; β) if the following conditions hold true:

<

((
D̃q f

)
(z)

)
> β

(
0 5 β < 1; z ∈ U

)
and

<

((
D̃q1

)
(w)

)
> β

(
0 5 β < 1; w ∈ U

)
,

where 1 = f−1.

We note from Definition 6 that

lim
q→1−
HΣ(q; β) =

 f : f ∈ Σ and
{ lim

q→1−
<

((
D̃q f

)
(z)

)
> β (z ∈ U)

lim
q→1−
<

((
D̃q1

)
(w)

)
> β (w ∈ U)


= HΣ(β),

whereHΣ(β) is the class of bi-univalent defined and studied by Srivastava et al. [46].

In this paper, we derive the upper bound for the functional

H2(2) = a2a4 − a2
3

for a function f , given by (1), which belongs to the bi-univalent function classHΣ(q; β) given by Definition
6.
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2. A Set of Lemmas

Let P be the class of functions p(z) with positive real part consisting of all analytic functions P : U→ C
satisfying the following conditions:

p(0) = 1 and <

(
p(z)

)
> 0.

Lemma 1. (see [34]) If the function p ∈ P is defined by

p (z) = 1 + p1z + p2z2 + p3z3 + · · · ,

then ∣∣∣pn

∣∣∣ 5 2 (n ∈N = {1, 2, 3, · · · }) .

Lemma 2. (see [17]) If the function p ∈ P is defined by

p (z) = 1 + p1z + p2z2 + p3z3 + · · · ,

then

2p2 = p2
1 + ξ

(
4 − p2

1

)
and

4p3 = p3
1 + 2

(
4 − p2

1

)
p1ξ − p1

(
4 − p2

1

)
ξ2 + 2

(
4 − p2

1

)(
1 − |ξ|2

)
z

for some ξ and z with |ξ| 5 1 and |z| 5 1.

3. The Main Result and Its Consequences

Our main result in this paper is stated as the following theorem.

Theorem. Let the function f given by (1) be in the classHΣ(q; β). Then

∣∣∣a2a4 − a2
3

∣∣∣ 5



4
(
1 − β

)2
(

4(1−β)2

[̃2]
4
q

+ 1
[̃2]q [̃4]q

)
0 5 β 5 1 −

[̃2]
2
q [̃4]q+[̃2]q

√
[̃2]

2
q [̃4]

2
q+32q [̃2]q [̃3]

2
q [̃4]q

16[̃3]q [̃4]q


4(1−β)2

[̃3]
2
q

−

(
[̃3]q [̃4]q(1−β)+3[̃2]q [̃3]

2
q−2[̃2]

2
q [̃4]q

)2

(1−β)2

[̃3]
2
q [̃4]q

(
4[̃3]

2
q [̃4]q(1−β)2

−[̃2]
2
q [̃3]q [̃4]q(1−β)−2[̃2]

3
q [̃3]

2
q+[̃2]

4
q [̃4]q

)
1 −

[̃2]
2
q [̃4]q+[̃2]q

√
[̃2]

2
q [̃4]

2
q+32q [̃2]q [̃3]

2
q [̃4]q

16[̃3]q [̃4]q
< β < 1

 .

(8)

Proof. Suppose that f ∈ HΣ(q; β). Then(
D̃q f

)
(z) = β + (1 − β)ϑ(z) (9)

and (
D̃q1

)
(w) = β + (1 − β)ϕ(w), (10)
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where 1 = f−1 and the functions ϑ ∈ P and ϕ ∈ P are given by

ϑ(z) = 1 + c1z + c2z2 + c3z3 + · · ·

and

ϕ(z) = 1 + d1z + d2z2 + d3z3 + · · · ,

respectively.

It follows from (9) and (10), together with (6) and (7), that

[̃2]qa2 =
(
1 − β

)
c1, (11)

[̃3]qa3 =
(
1 − β

)
c2, (12)

[̃4]qa4 =
(
1 − β

)
c3 (13)

and

−[̃2]qa2 =
(
1 − β

)
d1, (14)

[̃3]q

(
2a2

2 − a3

)
=

(
1 − β

)
d2, (15)

−[̃4]q

(
a4 + 5a3

2 − 5a2a3

)
= (1 − β)d3. (16)

From (11) and (14), we obtain

c1 = −d1 (17)

and

a2 =
1 − β

[̃2]q

c1. (18)

Upon subtracting (12) from (15), we have

a3 =

(
1 − β

)2

[̃2]
2
q

c2
1 +

1 − β

2[̃3]q

(c2 − d2) . (19)

Also, if we subtract (13) from (16), we get

a4 =
5
(
1 − β

)2

4[̃2]q [̃3]q

c1 (c2 − d2) +
1 − β

2[̃4]q

(c3 − d3) . (20)

Thus, by applying (18), (19) and (20), we find that

∣∣∣a2a4 − a2
3

∣∣∣ =

∣∣∣∣∣∣∣∣−
(
1 − β

)4

[̃2]
4
q

c4
1 +

(
1 − β

)3

4[̃2]
2
q [̃3]q

c2
1 (c2 − d2)

+

(
1 − β

)2

2[̃2]q [̃4]q

c1 (c3 − d3) −
(
1 − β

)2

4[̃3]
2
q

(c2 − d2)2

∣∣∣∣∣∣∣∣ . (21)
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Next, according to Lemma 2 and (17), we have

2c2 = c2
1 + ξ

(
4 − c2

1

)
2d2 = d2

1 + η
(
4 − d2

1

)
 =⇒ c2 − d2 =

4 − c2
1

2

 (ξ − η) (22)

and

4c3 = c3
1 + 2

(
4 − c2

1

)
c1ξ − c1

(
4 − c2

1

)
ξ2 + 2

(
4 − c2

1

) (
1 − |ξ|2

)
z, (23)

4d3 = d3
1 + 2

(
4 − d2

1

)
d1η − d1

(
4 − d2

1

)
η2 + 2

(
4 − d2

1

) (
1 −

∣∣∣η∣∣∣2) w (24)

and

c3 − d3 =
c3

1

2
+

c1

(
4 − c2

1

)
2

(ξ + η) −
c1

(
4 − c2

1

)
4

(
ξ2 + η2

)
+

4 − c2
1

2

[(
1 − |ξ|2

)
z −

(
1 −

∣∣∣η∣∣∣2) w
]
. (25)

Then, by using (22), (23), (24) and (25) in (21), we get

∣∣∣a2a4 − a2
3

∣∣∣ =

∣∣∣∣∣∣∣∣−
(
1 − β

)4

[̃2]
4
q

c4
1 +

(
1 − β

)3

4[̃2]
2
q [̃3]q

c2
1

(
4 − c2

1

)
2

(ξ − η) +

(
1 − β

)2

4[̃2]q [̃4]q

c4
1

+

(
1 − β

)2

2[̃2]q [̃4]q

c2
1

(
4 − c2

1

)
2

(ξ + η) −
(
1 − β

)2

2[̃2]q [̃4]q

c2
1

(4 − c2
1)

4
(x2 + y2)

+

(
1 − β

)2

2[̃2]q [̃4]q

c1
(4 − c2

1)

2

[(
1 − |x|2

)
z −

(
1 −

∣∣∣y∣∣∣2) w
]

−

(
1 − β

)2

4[̃3]
2
q

(4 − c2
1)2

4
(ξ − η)2

∣∣∣∣∣∣∣∣ . (26)

Since ϑ ∈ P, we find by applying Lemma 1 that |c1| 5 2. Therefore, by letting |c1| = c, we may assume
without any loss of generality that 0 5 c 5 2. We thus find from (26) that

∣∣∣a2a4 − a2
3

∣∣∣ 5 (
1 − β

)4

[̃2]
4
q

c4 +

(
1 − β

)2

4[̃2]q [̃4]q

c4 +

(
1 − β

)2

2[̃2]q [̃4]q

c(4 − c2)

+


(
1 − β

)3

4[̃2]
2
q [̃3]q

c2

(
4 − c2

)
2

+

(
1 − β

)2

2[̃2]q [̃4]q

c2

(
4 − c2

)
2

 (|ξ| +
∣∣∣η∣∣∣)

+

 (
1 − β

)2

2[̃2]q [̃4]q

c2 (4 − c2)
4

−

(
1 − β

)2

2[̃2]q[̃4]q

c
(4 − c2)

2

 (|ξ|2 +
∣∣∣η∣∣∣2)

+

(
1 − β

)2

4[̃3]
2
q

(4 − c2)2

4
(|ξ| +

∣∣∣η∣∣∣)2. (27)
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Now, for κ = |ξ| 5 1 and µ =
∣∣∣y∣∣∣ 5 1, we can rewrite (27) in the following form:∣∣∣a2a4 − a2

3

∣∣∣ 5 T1 +
(
κ + µ

)
T2 +

(
κ2 + µ2

)
T3 +

(
κ + µ

)2 T4 =: G(κ, µ) (28)

where

T1 = T1(c) :=
(
1 − β

)2

4


4

(
1 − β

)2

[̃2]
4
q

+
1

[̃2]q[̃4]q

 c4 +
8c − 2c3

[̃2]q [̃4]q

 = 0,

T2 = T2(c) :=
(
1 − β

)2

8
c2(4 − c2)


(
1 − β

)
[̃2]

2
q [̃3]q

+
2

[̃2]q [̃4]q

 = 0,

T3 = T3(c) :=
(
1 − β

)2

8[̃2]q [̃4]q

c(4 − c2)(c − 2) 5 0

and

T4 = T4(c) :=
(
1 − β

)2

16[̃3]
2
q

(4 − c2)2 = 0.

We next need to maximize the function G(κ, µ) in (28) on the closed square [0, 1] × [0, 1]. We must
investigate the maximum value of G(κ, µ) according to c ∈ (0, 2), c = 0 and c = 2 by taking into account the
sign of the following expression:

Gκ,µ := G(κ, κ) · G(µ, µ) −
[
G(κ, µ)

]2 .

Firstly, we let c ∈ (0, 2). Since T3 < 0 and T3 + 2T4 > 0 for c ∈ (0, 2), we conclude that

Gκ,µ := G(κ, κ) · G(µ, µ) −
[
G(κ, µ)

]2 < 0.

Thus the function G(κ, µ) cannot have a local maximum in the interior of the square [0, 1] × [0, 1].

We now investigate the maximum value of the function G(κ, µ) on the boundary of the square [0, 1]×[0, 1].
Indeed, for κ = 0 and 0 5 µ 5 1 (and, similarly, for µ = 0 and 0 5 κ 5 1), we obtain

G(0, µ) =: H(µ) = (T3 + T4)µ2 + T2µ + T1.

(i) The case when T3 + T4 = 0: In this case, for 0 < µ < 1 and for any fixed c with 0 < c < 2, it is clear that

H′(µ) = 2(T3 + T4)µ + T2 > 0,

that is, that H(µ) is an increasing function. Hence, for fixed c ∈ (0, 2), the maximum value of H(µ) occurs at
µ = 1 and

max{H(µ)} = H(1) = T1 + T2 + T3 + T4.

(ii) The case when T3 + T4 < 0: Since T2 + 2(T3 + T4) = 0 for 0 < µ < 1 and for any fixed c with 0 < c < 2, it is
clear that

T2 + 2(T3 + T4) < 2(T3 + T4)µ + T2 < T2

and so H′(µ) > 0. Hence, for fixed c ∈ (0, 2), the maximum value of H(µ) occurs at µ = 1.
For κ = 1 and 0 5 µ 5 1 (and, similarly, for µ = 1 and 0 5 κ 5 1), we obtain

G(1, µ) = F(µ) = (T3 + T4)µ2 + (T2 + 2T4)µ + T1 + T2 + T3 + T4.
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Analogous to the above cases of T3 + T4, we find that

max{F(µ)} = F(1) = T1 + 2T2 + 2T3 + 4T4.

Since H(1) 5 F(1) for c ∈ (0, 2),
max{G(κ, µ)} = G(1, 1)

on the boundary of the square [0, 1]× [0, 1]. Thus the maximum value of the function G(κ, µ) occurs at κ = 1
and µ = 1 in the closed square [0, 1] × [0, 1].

Let K : (0, 2)→ R

K(c) := max{G(κ, µ)} = G(1, 1) = T1 + 2T2 + 2T3 + 4T4. (29)

Upon substituting the values of T1,T2,T3 and T4 into the function K(c) defined by (29), we obtain

K(c) =
(
1 − β

)2



(
1 − β

)2

[̃2]
4
q

−

(
1 − β

)
4[̃2]

2
q [̃3]q

−
1

2[̃2]q [̃4]q

+
1

4[̃3]
2
q

 c4

+


(
1 − β

)
[̃2]

2
q [̃3]q

+
3

[̃2]q [̃4]q

−
2

[̃3]
2
q

 c2 +
4

[̃3]
2
q

 . (30)

Let us assume that the function K(c) has a maximum value at an interior point c ∈ (0, 2). Then, by elementary
calculation using (30), we have

K′(c) =
(
1 − β

)2


4

(
1 − β

)2

[̃2]
4
q

−

(
1 − β

)
[̃2]

2
q [̃3]q

−
2

[̃2]q [̃4]q

+
1

[̃3]
2
q

 c3

+

2
(
1 − β

)
[̃2]

2
q [̃3]q

+
6

[̃2]q [̃4]q

−
4

[̃3]
2
q

 c

 . (31)

By means of some calculations, we can examine the following two cases.

Case 1. Suppose that

4
(
1 − β

)2

[̃2]
4
q

−

(
1 − β

)
[̃2]

2
q [̃3]q

−
2

[̃2]q [̃4]q

+
1

[̃3]
2
q

= 0.

Therefore, we have

0 5 β 5 1 −
[̃2]

2
q [̃4]q + [̃2]q

√
[̃2]q [̃4]q

(
32[̃3]

2
q − 15[̃2]q [̃4]q

)
8[̃3]q [̃4]q

and K′(c) > 0 for c ∈ (0, 2). Since K(c) is an increasing function in the interval (0, 2), it has no maximum
value in this interval.

Case 2. Suppose that

4
(
1 − β

)2

[̃2]
4
q

−

(
1 − β

)
[̃2]

2
q [̃3]q

−
2

[̃2]q [̃4]q

+
1

[̃3]
2
q

< 0.
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Therefore, we have

1 −
[̃2]

2
q [̃4]q + [̃2]q

√
[̃2]q [̃4]q

(
32[̃3]

2
q − 15[̃2]q [̃4]q

)
8[̃3]q [̃4]q

< β < 1.

In this case, K′(c) = 0 implies the real critical point c = c(1)
0 , where

c(1)
0 =

√√√√√√√ −2[̃2]
2
q

(
[̃3]q [̃4]q(1 − β) + 3[̃2]q [̃3]

2
q − 2[̃2]

2
q [̃4]q

)
4[̃3]

2
q [̃4]q

(
1 − β

)2
− [̃2]

2
q [̃3]q[̃4]q

(
1 − β

)
− 2[̃2]

3
q [̃3]

2
q + [̃2]

4
q [̃4]q

.

For the parameter β constrained by

1 −
[̃2]

2
q [̃4]q + [̃2]q

√
[̃2]q [̃4]q

(
32[̃3]

2
q − 15[̃2]q [̃4]q

)
8[̃3]q [̃4]q

< β

5 1 −
[̃2]

2
q [̃4]q + [̃2]q

√
[̃2]

2
q [̃4]

2
q + 32[̃2]q [̃3]

2
q [̃4]q

16[̃3]q [̃4]q

,

we observe that c(1)
0 = 2, that is, that c(1)

0 is outside of the interval (0, 2). On the other hand, when the
parameter β is constrained by

1 −
[̃2]

2
q [̃4]q + [̃2]q

√
[̃2]

2
q [̃4]

2
q + 32[̃2]q [̃3]

2
q [̃4]q

16[̃3]q [̃4]q

< β < 1,

we observe that c0(1) < 2, that is, that c(2)
0 is an interior point of the closed interval [0, 2]. Since K′′

(
c(2)

0

)
< 0,

the maximum value of K(c) occurs at c = c(2)
0 . Thus, clearly, we have

K
(
c(2)

0

)
=

(
1 − β

)2

·

 4

[̃3]
2
q

−

(
[̃3]q [̃4]q(1 − β) + 3[̃2]q [̃3]

2
q − 2[̃2]

2
q [̃4]q

)2

[̃3]
2
q [̃4]q

(
4[̃3]

2
q [̃4]q

(
1 − β

)2
− [̃2]

2
q [̃3]q [̃4]q

(
1 − β

)
− 2[̃2]

3
q [̃3]

2
q + [̃2]

4
q [̃4]q

)
 . (32)

Secondly, in the case when c = 2, we obtain

G(κ, µ) = 4
(
1 − β

)2

4
(
1 − β

)2

[̃2]
4
q

+
1

[̃2]q [̃4]q

 . (33)

Finally, in the case when c = 0, we find that

G(κ, µ) =

(
1 − β

)2

[̃3]
2
q

(κ + µ)2.
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We can easily see that the maximum value of the function G(κ, µ) occurs at κ = µ = 1:

max{G(κ, µ)} = G(1, 1) =
4
(
1 − β

)2

[̃3]
2
q

. (34)

We thus find from (32), (33) and (34) that

4
(
1 − β

)2

[̃3]
2
q

<
16

(
1 − β

)4

[̃2]
4
q

+
4
(
1 − β

)2

[̃2]q [̃4]q

<
4
(
1 − β

)2

[̃3]
2
q

−

(
[̃3]q [̃4]q(1 − β) + 3[̃2]q [̃3]

2
q − 2[̃2]

2
q [̃4]q

)2 (
1 − β

)2

[̃3]
2
q [̃4]q

(
4[̃3]

2
q [̃4]q

(
1 − β

)2
− [̃2]

2
q [̃3]q [̃4]q

(
1 − β

)
− 2[̃2]

3
q [̃3]

2
q + [̃2]

4
q [̃4]q

) (35)

for the parameter β constrained by

1 −
[̃2]

2
q [̃4]q + [̃2]q

√
[̃2]

2
q [̃4]

2
q + 32q [̃2]q [̃3]

2
q [̃4]q

16[̃3]q [̃4]q

< β < 1.

This leads us to the second inequality of (8).
On the other hand, from the left-hand part of the inequality (35), we get

4
(
1 − β

)2

[̃3]
2
q

<
16

(
1 − β

)4

[̃2]
4
q

+
4
(
1 − β

)2

[̃2]q [̃4]q

,

which yields the first inequality of (8) for the parameter β constrained by

0 5 β 5 1 −
[̃2]

2
q [̃4]q + [̃2]q

√
[̃2]

2
q [̃4]

2
q + 32q [̃2]q[̃3]

2
q [̃4]q

16[̃3]q [̃4]q

.

This evidently completes the proof of the above Theorem.

Corollary. Let the function f given by (1) be in the class HΣ(β) (0 5 β < 1). Then∣∣∣a2a4 − a2
3

∣∣∣
5


(
1 − β

)2
((

1 − β
)2 + 1

2

) (
0 5 β 5 11−

√
37

12

)
( 1−β

3

)2
(
4 − (17−6β)2

16(9β2−15β+1)

) (
11−
√

37
12 < β < 1

)
.

(36)

4. Concluding Remarks and Observations

In our present investigation, we have derived the various properties of a newly-constructed subclass
HΣ(q; β) (0 < q < 1; 0 5 β < 1) of the class Σ of normalized bi-univalent functions in the open unit disk
U. We have defined this two-parameter function class HΣ(q; β) by making use of a symmetric basic (or
q-) derivative operator. For functions belonging to this bi-univalent function class, we have found the
estimates and inequalities for the second Hankel determinant. The corresponding result is also derived for
the function class HΣ(β) (0 5 β < 1) which was introduced and studied earlier by Srivastava et al. [46].
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