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Abstract. Let T, denote the class of functions of the form f(z) = z77 + Z,‘T:p a,z" (p € N). Two new
subclasses H, (A, A, B) and Q,x(A, A, B) of meromorphically multivalent functions starlike with respect to
k-symmetric points in Z, are investigated. Certain convolution properties for these subclasses are obtained.

1. Introduction and Preliminaries
Throughout this paper we assume that

N=1{1,23,},keN\{l},-1<B<0,B<A<-Band1<A < +co. 1.1)

For functions f and g analytic in the open unit disk U = {z : |z| < 1}, the function f is said to be

subordinate to g, written f(z) < g(z) (z € U), if there exists an analytic function w in U with w(0) = 0 and
[w(z)| < 1 such that f(z) = g(w(z)) in U.

Let X, denote the class of functions of the form

f@)=z7+ Zanz” (peN), (1.2)
n=p

which are analytic in the punctured open unit disk Uy = U \ {0}.
Let

[e]

filay=27+) ayz"ex, (j=1,2)
n=p
The Hadamard product (or convolution) of f; and f; is defined by

(xR =27+ ) anaanoz".
n=p
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In [3] (see also [4]) Dziok obtained the following result.
Lemma. Let f € I, defined by (1.2) satisfy

Y [p(1 = A)5,p + (1 = BA +p(A = D)]las| < p(A - B), (13)

n=p
where

o (Hen),

Onpk = { 1 (%eN). (1.4)
Then

pA-AN)f(z) - Azf'(z) 1+Az

) “17E ¢€W (1.5)

where

2ni) (1.6)

k-1
1 . .
foul®) = ¢ ]; el flelz) and e =exp(TT).

Recently, Liu and Srivastava [9] introduced and investigated two new subclasses Hyx(A, A, B) and
Qpx(A, A, B) of L, as follows.
A function f € ¥, is said to be in the class H, (A, A, B) if and only if it satisfies the coefficient inequality
(1.3).
Also, a function f € L, is said to be in the class Q,x(A, A, B) if and only if it satisfies the coefficient
inequality
Y nlp(1l = Aoy + (1 = BYnd + p(A = 1)llanl < p*(A - B). (17)
n=p

For f € L,, one can see that

f€Qui(A, A B) ifand onlyif 2z7F +

2f p(z) € H,x(A, A, B). (1.8)

In [9] the authors pointed out that each function in the classes Hy (A, A, B) and Q, x(A, A, B) is meromor-
phically starlike with respect to k-symmetric points.

The subject of meromorphically univalent and multivalent functions continue to receive a great deal
of attention. Very recently, Srivastava et al. (see, e.g., [14, 15, 16, 17, 18, 19, 20, 22]) investigated various
subclasses of meromorphic functions. Certain properties such as distortion bounds, inclusion relations and
integral transforms for these subclasses are studied. Motivated essentially by these works and some other
works (see also, e.g., [1], [2], [5-13], [21] and [23-26]), we aim at investigating here convolution properties
of the subclasses H, (A, A, B) and Q,x(A, A, B).
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2. Convolution Properties for the Classes H, «(A, A, B) and Q,x(A, A, B)
In this section we assume that
-1<Bj<0 and B;j<A;<-B; (j=1,2). 2.1)
Furthermore, we denote by A; the root in (1, +00) of the equation:
h(A) =aA’> +bA +c =0,
where

a=—(1-B1)(1-By),
b =p[(1-B1)(1 - Bz) — (1 = B1)(A2 — B2) = (1 — B2)(A1 — B1)], (2.2)
¢ =p(A; — B1)(Ax — By).

We also denote

A(B) =B+ . 1_3,.1 B =T (2.3)
2M s 7775, ~ Limr 25, + 3
and
2
= p(1 - B) Aj - B;
AB) =B+ . (2.4)
@p+1DA-p = 1-B;

Theorem 1. Let
fj € Hp,k(A/Aj/ B]) (] =1, 2)
with

2
% €N and -1<B<max{By,B).

Then we have the following:
(i) If p(1 = A1)(1 - A2) (1 =B1)(1 = By) and A > 1, then

fi* fo € Hy(A, A(B), B).
(ii) If p(1 — Ay)(1 — A) > (1 — B1)(1 - B) and A > Ay, then

fi* f» € Hyu(A, A(B), B).
(i) If p(1 — A7)(1 = A2) > (1 = By)(1 = By) and 1 < A < A4, then

f1 *fz € Hp,k(A,A(B), B)

In all cases (i)-(iii) the numbers A(B) and A(B) are optimal in the sense that they cannot be decreased for
each B.
Proof. Suppose that —1 < B < max({By, B2} = Bj (j = 1 or 2). It follows from (2.1) and (2.3) that

1-B _ T =B _y1-8 1
AB) -8~ Lla-B " La-B 2
2 2 2
1-B 1-B 1-A 1
=21 - L L1+ =
g j = Bj QAJ'_BJ EAJ_BJ'
2
1-B; A-1
>@2A-1 L_C -
( )]HA]—Bj )
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which implies that B < A(B) < —B. Also, (2.1) and (2.4) give that

which implies that B < A(B) < -B.
Let 277’ € Nand

fie)=z7"+ Za,,,jz” € Hyx(A,Aj,Bj) (z€Up;j=1,2).
n=p

Then

i {ﬁ P(L = A)Sups + (1= B(nA + p(d — 1))

Ian,lan,2|
el B p(Aj—Bj))
2 [
p(L = Ap)dnpk + (1= Bj)(nA + p(A - 1))
< |2, b < 1. (2.5)
H {Z:S P4 =B)) ’

Also, f1 * fo € Hyx(A, A, B) if and only if

i p(1 = A)dypi + (1= B)(nA + p(A — 1))
p(A - B)

|an, 10| < 1. (2.6)
n=p

In order to prove Theorem 1, it follows from (2.5) and (2.6) that we only need to find the smallest A such
that

1= A), s + (1 = B)(nA + p(A -1 2 51— A)Sppx + (1= B)(mA +p(A —1
p( )onpj + (1 —B)(nA +p(A -1)) < H p( Ponpk + (1= Bj)(nA +p(A —1)) > p). ©.7)
p(A - B) i p(A; - B))
Forn > p and % € N, (2.7) is equivalent to
1-B
AzB+ Nowp) 72 1B _y2 1B, » P1(n). (2.8)
P j:l A]'—B/' j:l A/'—B/' /\(Vl+p)
It can be verified that @1(n) (n > p, A > 1) is decreasing in n and so, in view of 2{ €N,
Pi(0) < pr(p) = B+ s 29)
1) = e1p) = 2 1-B > 1-B : :
A 75~ Zja 7, *+ 3
Forn > p and % ¢ N, (2.7) becomes
1-B
A>B+ AT = =T U1(n) (2.10)
P j=1 A;-B;
and we have
< 1)=B 1-5 2.11
i) Syulp+1) =B+ Ay pp2 1B : (2.11)
P j=1 A;-B,
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2 2 2

1-B; 1-B; 1 @p+DA-p 1-

2)\I_IA»—B-_. A B 1 p H
TR = TR

=1
_ h(A)
= pA(AI - B)(A; — By’ @12
where
h(A) = A(p — A)(A = B1)(1 = B2) — pA[(1 — B1)(A2 — By)
+ (1= B2)(A1 — B1)] + p(A1 — B1)(Az — By)
=aA®> +bA +c (2.13)
with
a=—(1-B1)(1-By),
b =pl(1-B1)(1-By)— (1 -B1)(A2 — B2) = (1 = B2)(A1 — By)l,
¢ = p(A1 — B1)(A2 — Ba).
Note thata < 0, h(0) = c > 0 and
h(1) = (p — 1)(1 = B1)(1 — B2) — pl(1 — B1)(A2 — B2) + (1 — B2)(A1 — By)]
+p(A1 — B1)(A2 — By)
=p(1-A)1-A2) - (1-By1)(1 - By). (2.14)

Therefore, if (i) or (ii) is satisfied, then it follows from (2.7) to (2.14) that h(A) < 0, Y1(p + 1) < p1(p) = A(B),
and f1 * fo € H,x(A, A(B), B).
Furthermore, for B < Ay < A(B), we have

1-A+(1-B)QA-1)
Ay -B H1 A+(1 B)(Z/\ 1)

1-A®B)+ (1-B)2A

-1
A(B)- B H1 A+(1 B)(2/\ n=h

Hence for functions

A; - B;
T1-A+(A-Bp2A-1)

f](z) =z 7' e Hp,k(/\lA]'r Bj) (] = 1/2)
we have fi * fo ¢ Hyx(A, Ao, B).

(iii) If p(1 = A1)(1 = Az) > (1 =B1)(1-B;) and 1 < A < A4, then we have h(A) > 0, p1(p) < Y1(p+1) = A(B),
and f1 * f» € Hyx(A, A(B), B). Furthermore, the number A(B) cannot be decreased as can be seen from the
functions f; defined by

N p(Aj - B))
(@p+ 1A -p)1 - Bj)

fie) =27 e Hyx(A,Aj,B)  (j=1,2).

Theorem 2. Let
fi € Hpx(A, A1, B1) and  f € Qpx(A, Az, Ba)
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with

2
7;7 €N and—1<B <max{By,B,).

Also let A(B),E(B) and A be given as in Theorem 1. Then we have the following:
@) Ifpl-A1)(1—-A2) <(1-B1)(1—-By)and A > 1, then
fi* f2 € Qpi(A, A(B), B).
(i) If p(1 — A1)(1 — Az) > (1 — By)(1 — Bp) and A > A4, then
fi* f2 € Qpi(A, A(B), B).
(iii) If p(1 = A1)(1 — Ap) > (1 = B1)(1 = Bz) and 1 < A < A4, then

fi* 2 € Qui(A, A(B), B).
In all cases (i)-(iii) the numbers A(B) and X(B) are optimal in the sense that they cannot be decreased for
each B.
Proof. Since

f1 € HP,k(/\/ Al/ Bl)/ 2777 + Zfz,p(Z) € HP,k(/\; AZ/ BZ)
(see (1.8)), and
fl(Z) * (ZZP + Z—f;(Z)) =277 4+ —Z(fl *pfz) (Z) (Z € Uo),

the assertion of the theorem follows from Theorem 1.
Next, we denote by A, the root in (1, +o0) of the equation:

hl(A) = 011/\2 + bl/\ +c1 =0,
where

a1 = —@Bp +1)(1 = B1)(1 - By),
b1 = p(p +1)(1 - B1)(1 — B2) — p*[(1 — B1)(A2 — Bo) + (1 — B2)(A1 — By)], (2.15)
c1 = p*(A1 — B1)(A2 — Bo).

We also denote

—~ 2(1-B 2 A;i-B;
A(B) = B + p(1-5) 15 (2.16)
j=1

(p+ D@+ DA-p)
Theorem 3. Let
f1 € Hpx(A, A1, B1) and  f, € Qpi(A, Az, Ba)
with

2
TP €N and -1<B<max{By,B).

Then we have the following:
(1) If p2(1 -A))(1-A) <(2p+1)1-B1)(1-By)and A > 1, then

fl >{-f2 € Hp/k(A,A(B), B).
(ii) If pz(l —-A))(1-Az) > (2p+1)1-B;1)(1-By)and A > Ay, then

f1 * f2 € Hp/k(A,A(B), B)
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(iii) If p2(1 —A1)1-A2)>2p+1)1-B1)(1-By)and 1 < A < A, then
fi* f2 € Hyx(A, A1(B), B).

In all cases (i)-(iii) the numbers A(B) and Al(B) are optimal in the sense that they cannot be decreased for
each B.
Proof. It can be verified that

>0

1-B :(p+n«@+1m—p)f11—3j>fj1—3j>_1_3
A(B) - B P — Bj B~ 2B

and so B < E(B) < -B.
In order to prove Theorem 3, we only need to find the smallest A such that

(= Adupi+ A= BYnA+p(A-1) n ﬁ p(L = Ak + (1= B(nd +p(A = 1) 217
p(A-B) TP p(Aj - B)) '
for alln > p.
Forn > p and # € N, (2.17) is equivalent to
1-B
A>B+ = @a(n). (2.18)
An(n+p) 1-B 2 1-B;
+pH]1A ]_%Z]’—lAJTB]j-'-%
Define ,
)\x(x+p) 1—B]' X 1—B] 1
g(A, x) - = +5 (zpAzl)
| e Y
Then

dg(A,x) _ A@x+p) 1-B; 1 1-B;
3.’)( p H ] pZ .

which implies that ¢,(n) defined by (2.18) is decreasing in n (n > p). Hence, in view of 277’ € N, we have

P2(n) < @a2(p)

1-B
=B+ T = AB).
2 i 275, ~ Lja 35 * 2

Forn > p and % ¢ N, (2.17) reduces to

1-B

A2B+ n(n/Hp(/\ 1)) H 1702(1’[)

P2 ]1AB
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. 2
and, in view of 7" € N, we have

1-B
Ya(m) < p2p+ 1) =B+ o5 2 B
72 j=1 A/-B,’
Now
2 2 2
1-B; 1-Bj 1 (p+1)(@+DA-p)y7 1-B;
) _ 1_
AHAj—Bj ZAj—Bj+A 2 HAj—Bj
j=1 j=1 j=1

_ hi(A)
Ap* (A1 = B1)(Az = By)’

(2.19)

where h1(A) = a1A% + biA + c; and a3, by, ¢; are given by (2.15). Note thata; <0, h1(0) = ¢; > 0 and
hi(1) = 2p*(1 = B1)(1 - Bo) — p*[(1 = B1)(A2 — Bo) + (1 — Bo)(A1 — By)]
+p*(A1 — B1)(A2 — By) — (p + 1)*(1 = By)(1 — By)
= p*(1 - A1)(1 - Az) - (2p + 1)(1 - By)(1 - By).

The remaining part of the proof of Theorem 3 is similar to that as in Theorem 1 and hence we omit it. The
proof of the Theorem is completed.

From Theorem 3 we have the following theorem at once.

Theorem 4. Let

fj € Qp,k(A/Ajl Bj) (] = 1,2)
with
2p
% € N and -1<B<max{By,B,)}.

Also let A(B),ZI (B) and A; be given as in Theorem 3. Then we have the following:
(i) If p2(1 — A1)(1 — A3) < (2p + 1)(1 = B1)(1 = By) and A > 1, then

fi* o € Qui(A, A(B), B).
(i) If p*(1 — A1)(1 — Ay) > (2p + 1)(1 = By)(1 — By) and A > Ay, then
fi* fo € Qur(A, A(B), B).
(iii) If p2(1 — A1)(1 — A2) > (2p + 1)(1 — B1)(1 — By) and 1 < A < Ay, then
fi* fo € Qui(A, A1(B), B).

In all cases (i)-(iii) the numbers A(B) and Zl' (B) are optimal in the sense that they cannot be decreased for
each B.
Finally, we denote by A3 the root in (1, +c0) of the equation:

ho(A) = aA% + byAd + ¢, = 0,
where

a = —[(p+1)*(2p + 1) = 2p°1(1 = B1)(1 - Ba),
by = p(p +1)*(1 = B1)(1 = B2) = p°[(1 = B1)(A2 = B2) + (1 = B2)(A1 = By)], (2.20)
2 = p*(A1 — B1)(A2 — By).
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We also denote

p*(1 - B) T Aj =B
p+D*Cp+DA-p) 21 1-B;

A,(B) =B + (2.21)

Theorem 5. Let
fj € Qp,k(A/Aj/ Bj) (] = 1,2)
with

2
% €N and -1<B<max{By,B,).

Then we have the following:
(1) If p3(1 — A))(1 — A3) < (3p? + 3p+ 1)(1 = B1)(1 — By) and A > 1, then

fl * fz [S Hp,k(A,A(B), B)

(ii) If p>(1 = A1)(1 — Az) > (32 + 3p + 1)(1 — B1)(1 — B,) and A > As, then
fl >{-f2 € Hp/k(A,A(B), B).

(iii) If p3(1 — A1)(1 — A2) > 3p* +3p + 1)(1 — B1)(1 — By) and 1 < A < A3, then
fi* f2 € Hyx(A, A2(B), B).

In all cases (i)-(iii) the numbers A(B) and A;(B) are optimal in the sense that they cannot be decreased for
each B.

Proof. It can be seen that B < A»(B) < —B. In order to prove Theorem 5, we only need to find the smallest
A such that

p(1 = A)oupi + (1 = B)(nA + p(A - 1)) B (E)z ﬁ p(1 = Aj)oupx + (1 = Bj)(nA + p(A - 1)) 2.22)
pA-B) “\p) p(Aj = B)) '
forn > p.
Forn > pand # € N, (2.22) can be written as
1-B
AzB+ A2(n+p) 112 1-Bj 2 w2 1-B; n2+p? = ¢3(n). (2.23)
- lim 27, ~ 7 Lie 25 e

A simple calculation shows that @3(n) (n > p, A > 1) is decreasing in n. Therefore
1-B
2 1-B 2 1-B, 1
2M o 375~ L 20, ¥

= A(B).

@3(n) < @3(p) =B+

For n > p and % ¢ N, (2.22) becomes

1-B
Y ) 2 1B, P3(n)
P Hj:1 Aj—B;

A>B

and we have 1_B
Yot < s+ D) =B+ Gy T b
7 /=1 Aj-B;
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Now
2

2 2

1-B; 1-B; 1 (p+1)*@p+1)A-p) 1-B;

2AHAj—Bj_ZAj—Bj+X_ p3 HA]'—B]'
=1 j=1 =1

_ hy(A)
Ap3(A1 = B1)(A2 - By)’

where hi;(A) = ayA? + by A + ¢ and ay, by, ¢, are given by (2.20). Note thata, < 0, 112(0) = c; > 0 and

ha(1) = p°(1 = A1)(1 - Az) — B3p* + 3p + 1)(1 — B1)(1 — By).

The remaining part of the proof is similar to that of Theorem 1 and thus we omit it.
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