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Abstract. We apply Noshiro-Warschawski’s theorem to prove that if f (z) = z + a2z2 + · · · is analytic in
|z| < 1 and if

∣∣∣Re{z f ′′(z)}
∣∣∣ ≤ α|z|α in |z| < 1, for some α > 0, then f (z) is univalent in |z| < 1. Also, applying

Ozaki’s condition, we obtain several sufficient conditions for functions to be p-valent or p-valently starlike
function in |z| < 1.

1. Introduction

Let H denote the class of functions analytic in the unit disk D = {z ∈ C : |z| < 1}. Let A be the class of
functions being inH and having the form

f (z) = z +

∞∑
n=2

anzn (z ∈ D). (1)

LetS denote the subclass ofA consisting of all univalent functions inD. LetAp ⊂ H be the class of analytic
functions of the form

f (z) = zp +

∞∑
n=1

ap+nzp+n (z ∈ D). (2)

So we haveA = A1. A function f (z) which is analytic in a domain D ⊂ C is called p-valent in D if for every
complex number w, the equation f (z) = w have at most p roots in D and there will be a complex number w0
such that the equation f (z) = w0, has exactly p roots in D.
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The well known Noshiro-Warschawski univalence condition (see [10] and [17]), indicates that if f (z) is
analytic in a convex domain D ⊂ C and

Re{eiθ f ′(z)} > 0 (z ∈ D), (3)

for some real θ, then f (z) is univalent in D. S. Ozaki [11] extended the above result by showing that if f (z)
of the form (2) is analytic in a convex domain D and for some real θ we have

Re{eiθ f (p)(z)} > 0 (z ∈ D),

then f (z) is at most p-valent in D. Applying Ozaki’s theorem, we find that if f (z) ∈ Ap and

Re{ f (p)(z)} > 0 (z ∈ D), (4)

then f (z) is at most p-valent in D. Condition (4) says that f (p)(z) is a Carathéodory function. For several
interesting recent developments associated with Carathéodory functions, we refere to the articles [13–16].

In [6] it was proved that if f (z) ∈ Ap, p ≥ 2, and

| arg{ f (p)(z)}| <
3π
4

(z ∈ D), (5)

then f (z) is at most p-valent in D. Condition (5) says that f (p)(z) is a strongly Carathéodory function of
order 3/2, see [13]. If f ∈ A satisfies

Re

{
z f ′(z)

f (z)

}
> 0 (z ∈ D),

then f (z) is said to be starlike with respect to the origin inD and it is denoted by f (z) ∈ S∗. It is known that
S
∗
⊂ S.

2. Main Results

Theorem 2.1. If f (z) ∈ H with f ′(0) = 1 and if∣∣∣Re{z f ′′(z)}
∣∣∣ ≤ α|z|α (z ∈ D) (6)

for some α > 0, then f (z) is univalent inD.

Proof. Applying (6) gives∣∣∣Re{ f ′(z) − 1}
∣∣∣ =

∣∣∣Re{ f ′(z) − f ′(0)}
∣∣∣ =

∣∣∣∣∣∣Re
{∫ z

0
f ′′(t)dt

}∣∣∣∣∣∣
=

∣∣∣∣∣∣Re
{∫ r

0
f ′′(ρeiθ)eiθdρ

}∣∣∣∣∣∣ =

∣∣∣∣∣∣Re
{∫ r

0
ρeiθ f ′′(ρeiθ)

1
ρ

dρ
}∣∣∣∣∣∣

=

∣∣∣∣∣∣Re
{∫ r

0
t f ′′(t)

dρ
ρ

}∣∣∣∣∣∣ =

∣∣∣∣∣∫ r

0
Re

{
t f ′′(t)

} dρ
ρ

∣∣∣∣∣
≤

∫ r

0

∣∣∣Re {t f ′′(t)
}∣∣∣ dρ
ρ

≤

∫ r

0

αρα

ρ
dρ =

[
ρα

]r
0 = rα < 1,

where t = ρeiθ, z = reiθ and 0 ≤ ρ ≤ r < 1. Therefore,∣∣∣Re{ f ′(z) − 1}
∣∣∣ < 1 (z ∈ D)

and f ′(z) satisfies condition (4), which implies the univalence of f (z) in the unit discD.
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Corollary 2.2. If 1(z) ∈ H with 1′(0) , 0 and if∣∣∣Re {z1′′(z)
}∣∣∣ ≤ 2|z|2 (z ∈ D), (7)

then 1(z) is univalent inD.

If we take 1(z) = z + a2z2, then z1′′(z) = 2a2z and condition (7) becomes

|Re {2za2}| ≤ |z| (z ∈ D),

which is satisfied whenever |2a2| ≤ 1. Using this way, we can obtain the known and sharp result. If
1(z) = z + xzn+1, n ∈N, then condition (6), with α = n, becomes

|Re {n(n + 1)xzn
}| ≤ n|z|n (z ∈ D),

which is satisfied whenever |x| ≤ 1/(n + 1). Therefore, if |x| ≤ 1/n, n ∈N \ {1}, then h(z) = z + xzn is univalent
inD.

Corollary 2.3. If 1(z) ∈ H with 1′(0) , 0 and if∣∣∣∣∣∣Re
{

z1′′(z)
1′(0)

}∣∣∣∣∣∣ ≤ α|z|α (z ∈ D) (8)

for some α > 0, then 1(z) is univalent inD.

Proof. If 1(z) = b0 + b1z + b2z2 + · · · , then

f (z) =
1(z)
1′(0)

=
b0

b1
+ z +

b2

b1
z2 + · · ·

with f ′(0) = 1 and by (8), we have∣∣∣Re {z f ′′(z)
}∣∣∣ =

∣∣∣∣∣∣Re
{

z1′′(z)
1′(0)

}∣∣∣∣∣∣ < α|z|α (z ∈ D)

for some α ≥ 1. Then Theorem 2.1 implies the univalence of f (z) and 1(z) too, in the unit discD.

Corollary 2.4. Assume that 1(z) ∈ H with 1′(0) , 0. If there exists 0 < α ≤ 1 such that∣∣∣∣∣∣Re
{

z1′′(z)
1′(0)

}∣∣∣∣∣∣ ≤ α|z| (z ∈ D), (9)

then 1(z) is univalent inD.

Proof. For 0 < α ≤ 1 and z ∈ D, we have |z| ≤ |z|α. Hence∣∣∣∣∣∣Re
{

z1′′(z)
1′(0)

}∣∣∣∣∣∣ ≤ α|z| ≤ α|z|α (z ∈ D). (10)

Then Corollary 2.3 implies the univalence of f (z) in the unit discD.

On the other hand, we have the following known univalence condition.

Lemma 2.5. [12] Let f (z) = z + a2z2 + . . . be analytic in the unit disc and suppose that

| f ′′(z)| < 1 (z ∈ D). (11)

Then f (z) is univalent inD.
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Remark 1. If we denote z = |z|eiγ, f ′′(z) = | f ′′(z)|eiβ, then (6) becomes∣∣∣Re{|z|eiγ
| f ′′(z)|eiβ

}

∣∣∣ ≤ α|z|α (z ∈ D).

Hence for α = 1, we have that

| f ′′(z)|| cos(β + γ)| ≤ 1 (z ∈ D) (12)

implies the univalence of f (z) inD. So Theorem 2.1 is a generalization of Lemma 2.5. However condition
(12) is not convenient.

Remark 2. Putting

h(z) = e−iα f (zeiα) = z + a2eiαz2 + · · · = z + i|a2|z2 + · · · ,

where α = π/2 − arg{a2}. Therefore without loss of generality, we can consider the coefficient a2 in Lemma
2.5 which is a pure imaginary number.

Lemma 2.6. [9, Theorem 2, p. 93] Let f (z) ∈ Ap, f (k)(z) , 0 in 0 < |z| < 1 for k = 1, 2, . . . , p and suppose that

| arg
{

f (p)(z)
}
| <

π
2

(
1 +

1
π

log p
)

(z ∈ D). (13)

Then f (z) is p-valent inD.

Theorem 2.7. Let f (z) = zp +
∑
∞

n=p+1 anzn be analytic in D, f (k)(z) , 0 in 0 < |z| < 1 for k = 1, 2, 3, . . . , p and
suppose that∣∣∣∣∣∣Im

{
z f (p+1)(z)

f (p)(z)

}∣∣∣∣∣∣ ≤ π
2

{
1 +

2
π

log p
}
α|z|α (z ∈ D), (14)

for some α > 0. Then f (z) is p-valent inD.

Proof. It follows that

| arg f (p)(z)| =
∣∣∣∣Im {

log{ f (p)(z)} − log{ f (p)(0)}
}∣∣∣∣

≤

∫ r

0

∣∣∣∣∣∣Im
{

t f (p+1)(t)
f (p)(t)

}∣∣∣∣∣∣ 1
ρ

dρ ≤
π
2

{
1 +

2
π

log p
}∫ r

0

αρα

ρ
dρ

<
π
2

{
1 +

2
π

log p
}
,

where z = reiθ, t = ρeiθ and 0 ≤ ρ ≤ r < 1. Applying Lemma 2.6 completes the proof.

A function f (z) ∈ Ap, p ∈N, is said to be p-valently starlike of order α, 0 ≤ α < p, if

Re

{
z f ′(z)

f (z)

}
> α (z ∈ D).

The class of all such functions is usually denoted by S∗p(α). For p = 1, we receive the well known class
of normalized starlike univalent functions S∗(α) of order α, S∗p(0) = S∗p. For further properties of starlike
functions and other functions having a geometric property, we refer to [3]. In [7, 8] the second author
proved the following theorems.

Lemma 2.8. [7] Let f (z) ∈ Ap, with p ≥ 2 and suppose that

Re
{

f (p)(z)
}
> −

p! log{4/e}
2 log{e/2}

(z ∈ D). (15)

Then f (z) is p-valently starlike inD.
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Lemma 2.9. [8] Let f (z) ∈ Ap, with p ≥ 3 and suppose that

Re
{

f (p)(z)
}
> −

p!
[
1 − 4(log{4/e}) log{e/2}

]
4(log{4/e}) log{e/2}

(z ∈ D). (16)

Then f (z) is p-valent inD.

Theorem 2.10. Let f (z) ∈ Ap, with p ≥ 2 and suppose that∣∣∣∣Re {z f (p+1)(z)
}∣∣∣∣ ≤ p!α|z|α

2 log{e/2}
(z ∈ D), (17)

for some α > 0. Then f (z) is p-valently starlike inD.

Proof. Applying (17), it follows that∣∣∣∣Re { f (p)(z) − f (p)(0)
}∣∣∣∣ =

∣∣∣∣∣∣Re
{∫ r

0
t f (p+1)(t)

1
ρ

dρ
}∣∣∣∣∣∣

≤

∫ r

0

∣∣∣∣Re {t f (p+1)(t)
}∣∣∣∣ 1
ρ

dρ ≤
p!

2 log{e/2}

∫ r

0

αρα

ρ
dρ

<
p!

2 log{e/2}
,

where z = reiθ, t = ρeiθ and 0 ≤ ρ ≤ r < 1. Therefore, applying Lemma 2.8 shows that f (z) is p-valently
starlike inD.

Applying the same method as in the proof of Theorem (2.10) and the result of Lemma 2.9, we obtain the
following Theorem 2.11.

Theorem 2.11. Let f (z) ∈ Ap, with p ≥ 3 and suppose that∣∣∣∣Re {z f (p+1)(z)
}∣∣∣∣ ≤ p!α|z|α

4(log{4/e}) log{e/2}
(z ∈ D), (18)

for some α > 0. Then f (z) is p-valent inD.

Theorem 2.12. Let f (z) ∈ Ap, with p ≥ 2 and suppose that∣∣∣ f (p+1)(z)
∣∣∣ ≤ p!

2 log{e/2}
(z ∈ D). (19)

Then f (z) is p-valently starlike inD.

Proof. Applying (19), it follows that∣∣∣∣Re { f (p)(z) − f (p)(0)
}∣∣∣∣ =

∣∣∣∣∣∣Re
{∫ r

0
f (p+1)(ρeiθ)eiθdρ

}∣∣∣∣∣∣
≤

∫ r

0

∣∣∣ f (p+1)(ρeiθ)eiθ
∣∣∣ dρ ≤ ∫ r

0

p!
2 log{e/2}

dρ

<
p!

2 log{e/2}
,

where z = reiθ, t = ρeiθ and 0 ≤ ρ ≤ r < 1. Therefore, applying Lemma 2.8 shows that f (z) is p-valently
starlike inD.
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