
Filomat 32:6 (2018), 2207–2217
https://doi.org/10.2298/FIL1806207L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we present a preconditioned normal and skew-Hermitian splitting (PNSS) iteration
method for continuous Sylvester equations AX + XB = C with positive definite/semi-definite matrices.
Theoretical analysis shows that the PNSS methods will converge unconditionally to the exact solution
of the continuous Sylvester equations. An inexact variant of the PNSS iteration method(IPNSS) and the
analysis of its convergence property in detail have been established. Numerical experiments further show
that this new method is more efficient and robust than the existing ones.

1. Introduction

In this paper, we consider the iteration solution of the following continuous Sylvester equations:

AX + XB = C, (1)

where A ∈ Cm×m, B ∈ Cn×n and C ∈ Cm×n. Assume that
(A1) A, B, C are large and sparse matrices;
(A2) at least one of A and B is non-Hermitian;
(A3) both A and B are positive semi-definite, and at least one of them is positive definite.

The continuous Sylvester equations (1) has a unique solution, under the assumption (A1-A3 ) that there
is no common eigenvalue between A and -B [22, 29]. Here and in the sequel, A∗ represents the conjugate
transpose of the matrix A. In [1], many important theoretical results about this kind of equations can be
found. The continuous Sylvester equations (1) plays an important role in many fields, such as system
theory [30, 33, 34], model reduction [2, 35, 38], power systems [26], matrix nearness problem [31], numerical
solution of differential equations [3–5, 28, 48–51], finite element model updating [21], noisy image restoration
[17], stability of linear systems [24] and so on.
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The continuous Sylvester equation (1) is mathematically equivalent to the system of linear equations

Ax = c, (2)

whereA = I⊗A + BT
⊗ I, and the vectors x and c contain the concatenated columns of the matrices X and C

respectively, with ⊗ being the Kronecker product symbol, and BT representing the transpose of the matrix
B. However, it is expensive and ill-conditioned to use the iteration method for solving the system of linear
equations (2).

There are a large number of numerical methods for solving the continuous Sylvester equations (1). The
Bartels-Stewart and the Hessenberg-Schur methods [23] are direct methods, which consist in transforming
A and B into triangular or Hessenberg-Schur form by an orthogonal similarity transformation and then
solving the resulting system of linear equations directly by a back-substitution process. However, they
are suitable for small-scale settings, and not applicable in large-scale settings. When the matrices A and
B are large and sparse, iterative methods can solve the continuous Sylvester equation (1) efficiently and
accurately with its sparsity and low rank structure. The two most common iterative methods are Alternating
Direction Implicit (ADI) method [6, 7, 20], gradient based algorithms[32, 37] and the Krylov subspace based
algorithms [8, 18, 25, 27, 36].

The HSS iteration method was firstly proposed by Bai, Golub and Ng in [9] for non-Hermitian positive
definite linear systems. Then the method was extended to other equations and conditions in [10–15, 39,
40, 42–45]. In [16], Bai presented the Hermitian and skew-Hermitian splitting (HSS) iteration method for
solving large sparse continuous Sylvester equations. Wang et al. applied the idea of PSS iteration method to
solve the continuous Sylvester equations in [41], Zheng and Ma applied the NSS iteration method to solve
the continuous Sylvester equations in [46]. Recently, Dong and Gu presented a PMHSS iteration method [19]
for Sylvester equations. Zhou and Wang presented a PPSS iteration method [47] for Sylvester equations.
Thus, motivated by this, we further present and analyze a preconditioned normal and skew-Hermitian
iteration method (PNSS) for solving the continuous Sylvester equations.

The rest of the paper is organized as follows. In Section 2, after a brief introduction of the NSS iteration
method, we present the PNSS iteration method for solving the continuous Sylvester equation (1) and
analyze the convergence property of the PNSS iteration method. In Section 3, we establish an inexact
preconditioned normal and skew-Hermitian iteration method (IPNSS) iteration for solving the continuous
Sylvester equation (1). In Section 4, some numerical examples are presented to illustrate the efficiency of
the PNSS method.

In the remainder of this paper, a matrix sequence {Y(k)
}
∞

k=0 ⊆ C
m×n is said to be convergent to a matrix

Y ∈ Cm×n if the corresponding vector sequence {y(k)
}
∞

k=0 ⊆ C
mn is convergent to the corresponding vector y ∈

Cmn, where the vectors y(k) and y contain the concatenated columns of the matrices Y(k) and Y, respectively.
If {Y(k)

}
∞

k=0 is convergent, then its convergence factor and convergence rate are defined as those of {y(k)
}
∞

k=0,
correspondingly. In addition, we use sp(·), ‖ · ‖2, and ‖ · ‖F to denote the spectrum, the spectral norm, and
the Frobenius norm, respectively. Note ‖ · ‖2 is also used to represent the 2-norm of a vector.

2. The PNSS iteration method

In this section, we consider the scheme of PNSS iteration method and its convergence property. This
iteration method is with inner and outer iterations while each step of the inner iteration is exactly computed
by direct methods.

Firstly, we split A and B into normal and skew-Hermitian parts

A = N(A) + S(A), B = N(B) + S(B).

Then A and B can be rewritten as

A = (αI +N(A)) + (S(A) − αI) = (αI + S(A)) + (N(A) − αI),

B = (βI +N(B)) + (S(B) − βI) = (βI + S(B)) + (N(B) − βI),
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where α , β be positive real numbers and I is the identity matrix of suitable dimension. It follows that the
continuous Sylvester equations (1) can be equivalently written as follows:{

(αI +N(A))X + X(βI +N(B)) = (αI − S(A))X + X(βI − S(B)) + C,
(αI + S(A))X + X(βI + S(B)) = (αI −N(A))X + X(βI −N(B)) + C.

Then we can easily establish the following normal and skew-Hermitian splitting iteration method.
The NSS iteration method
Given an initial guess X(0)

∈ Cm×n, compute X(k+1)
∈ Cm×n for k = 0, 1, 2, · · · , using the following iteration

procedure until {X(k)
}
∞

k=0 satisfies the stopping criterion:
(αI +N(A))X(k+ 1

2 ) + X(k+ 1
2 )(βI +N(B))

= (αI − S(A))X(k) + X(k)(βI − S(B)) + C,
(αI + S(A))X(k+1) + X(k+1)(βI + S(B))
= (αI −N(A))X(k+ 1

2 ) + X(k+ 1
2 )(βI −N(B)) + C,

where α , β be positive real numbers and I is the identity matrix of suitable dimension.
Now, based on the above observations, we can establish the following preconditioned normal and

skew-Hermitian splitting iteration for solving the continuous Sylvester equations (1).
The PNSS iteration method
Given an initial guess X(0)

∈ Cm×n, compute X(k+1)
∈ Cm×n for k = 0, 1, 2, · · · , using the following iteration

procedure until {X(k)
}
∞

k=0 satisfies the stopping criterion:
(αV1 +N(A))X(k+ 1

2 ) + X(k+ 1
2 )(βV2 +N(B))

= (αV1 − S(A))X(k) + X(k)(βV2 − S(B)) + C,
(αV1 + S(A))X(k+1) + X(k+1)(βV2 + S(B))
= (αV1 −N(A))X(k+ 1

2 ) + X(k+ 1
2 )(βV2 −N(B)) + C,

where α , β be two positive real numbers and V1,V2 be two prescribed symmetric positive definite matrices.
Under the assumptions (A1-A3 ), we can easily know that there is no common eigenvalue between the

matrices αV1 +N(A) and −(βV2 +N(B)), as well as between the matrices αV1 + S(A) and −(βV2 + S(B)),
so that the two fixed-point matrix equations have unique solutions for all given right-hand side matrices.
Naturally, the two half-steps involved in each step of the PNSS iteration method can be solved effectively
using mostly real arithmetic. It is clear that the PNSS iteration method reduces to NSS iteration method
with V1 = Im,V2 = In, where Im, In are the identity matrices of order m and n respectively. In particular,
when α = β, we have 

(αV1 +N(A))X(k+ 1
2 ) + X(k+ 1

2 )(αV2 +N(B))
= (αV1 − S(A))X(k) + X(k)(αV2 − S(B)) + C,
(αV1 + S(A))X(k+1) + X(k+1)(αV2 + S(B))
= (αV1 −N(A))X(k+ 1

2 ) + X(k+ 1
2 )(αV2 −N(B)) + C.

By making use of the Kronecker product, it can be rewritten the above-described PNSS iteration method in
the following matrix-vector form:

(I ⊗ (αV1 +N(A)) + (αV2 +N(B))T
⊗ I)vec(X(k+ 1

2 ))
= (I ⊗ (αV1 − S(A)) + (αV2 − S(B))T

⊗ I)vec(X(k)) + vec(C),
(I ⊗ (αV1 + S(A)) + (αV2 + S(B))T

⊗ I)vec(X(k+1))
= (I ⊗ (αV1 −N(A)) + (αV2 −N(B))T

⊗ I)vec(X(k+ 1
2 )) + vec(C).

Denote by A = N + S, with

N = I ⊗N(A) +N(B)T
⊗ I, S = I ⊗ S(A) + S(B)T

⊗ I

and
K (α) = I ⊗ (αV1) + (αV2)T

⊗ I = αK .
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Then we obtain {
(αK +N)vec(X(k+ 1

2 )) = (αK − S)vec(X(k)) + vec(C),
(αK + S)vec(X(k+1)) = (αK −N)vec(X(k+ 1

2 )) + vec(C).

Evidently, the iteration scheme is the PNSS iteration method for solving the system of linear equation (2).
Then after concrete operations, we can obtain:

vec(X(k+1)) =M(α)vec(X(k)) +G(α)vec(C),

where
M(α) = (αK + S)−1(αK −N)(αK +N)−1(αK − S),

and
G(α) = (αK + S)−1(I + (αK −N)(αK +N)−1).

In addition, if we introduce matrices

F1(α) =
1

2α
(αK +N)K−1(αK + S)

and
G1(α) =

1
2α

(αK −N)K−1(αK − S),

then it holds that
A = F1(α) − G1(α), M(α) = F1(α)−1

G1(α).

In the following, to study the convergence property of the PNSS method. The following lemmas are
required.

Lemma 1[15] Let S̃ ∈ Cmn×mn be a skew-Hermitian matrix. Then for any α > 0 , the Cayley transform
Q(α) = (αI − S̃)(αI + S̃)−1 of S̃ is an unitary matrix.

Lemma 2[46] If A ∈ Cm×m, B ∈ Cn×n, C ∈ Cm×n, let A = Mi(A) −Ni(A)(i = 1, 2), B = Mi(B) −Ni(B)(i = 1, 2)
be two splittings of the matrices A, B, respectively. Let X(0)

∈ Cm×n be a given initial matrix, if {X(k)
} is a

two-step iteration sequence defined by{
M1(A)X(k+ 1

2 ) + X(k+ 1
2 )M1(B) = N1(A)X(k) + X(k)N1(B) + C,

M2(A)X(k+1) + X(k+1)M2(B) = N2(A)X(k+ 1
2 ) + X(k+ 1

2 )N2(B) + C,

k = 0, 1, 2, . . ., x(k+1) = vec(X(k+1)), x(k+ 1
2 ) = vec(X(k+ 1

2 )), x(k) = vec(X(k)),
then we can obtain

x(k+1) = Mxk + 1,

where
M = [I ⊗M2(A) + M2(B)T

⊗ I]−1[I ⊗N2(A) + N2(B)T
⊗ I]

× [I ⊗M1(A) + M1(B)T
⊗ I]−1[I ⊗N1(A) + N1(B)T

⊗ I]

and

1 = [I ⊗M2(A) + M2(B)T
⊗ I]−1[I + (I ⊗N2(A) + N2(B)T

⊗ I)(I ⊗M1(A) + M1(B)T
⊗ I)−1]vec(F).

Moreover, if the spectral radius ρ(M) of the iteration matrix M is less than 1,i.e., ρ(M) < 1, then the
iterative sequence {X(k)

}
∞

k=0 converges to the unique solution of the linear matrix equation (1) for arbitrary
initial matrix X(0)

∈ Cm×n.
Concerning the convergence property of the PNSS method, we apply the above results to obtain the

following theorem.
Theorem 1 Assume that A ∈ Cm×m, B ∈ Cn×n are positive semi-definite matrices, and at least one of

them is positive definite. Let N(A) ∈ Cm×m, N(B) ∈ Cn×n be two normal matrices and S(A) ∈ Cm×m,
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S(B) ∈ Cn×n be two skew-Hermitian matrices, such that A = N(A) + S(A), B = N(B) + S(B). Denote by
N = I ⊗ N(A) + N(B)T

⊗ I,S = I ⊗ S(A) + S(B)T
⊗ I, K (α) = I ⊗ (αV1) + (αV2)T

⊗ I = αK , where α is a
positive constant, V1 ∈ Cm×m, V2 ∈ Cn×n are prescribed symmetric positive definite matrices. Noting that
Ñ = K−

1
2NK

−
1
2 , S̃ = K−

1
2SK

−
1
2 , and

M(α) = (αK + S)−1(αK −N)(αK +N)−1(αK − S).

Then the convergence factor of the PNSS iteration method is given by the spectral radius ρ(M(α)) of the
matrixM(α), which is bounded by

σ(α) = max
λ j∈λ(Ñ)

∣∣∣∣∣∣α − λ j

α + λ j

∣∣∣∣∣∣ .
Therefore, it holds that

ρ(M(α)) ≤ σ(α) < 1, ∀α > 0.

i.e. the PNSS iteration is convergent to the exact solution X∗ ∈ Cm×n of the continuous Sylvester equations
(1). Morever, we denote a j = Re(λ j), b j = Im(λ j).

Proof: By putting

M1(A) = αV1 +N(A),M1(B) = αV2 +N(B),N1(A) = αV1 − S(A),N1(B) = αV2 − S(B)

and
M2(A) = αV1 + S(A),M2(B) = αV2 + S(B),N2(A) = αV1 −N(A),N2(B) = αV2 −N(B).

in Lemma 2, we obtain
M(α) = (αK + S)−1(αK −N)(αK +N)−1(αK − S).

We can easily verify thatK is symmetric positive definite matrix, Ñ is normal and S̃ is skew-Hermitian.
By the similarity invariance of the matrix spectrum, we have

ρ(M(α)) = ρ((αK −N)(αK +N)−1(αK − S)(αK + S)−1)

≤‖ (αK −N)(αK +N)−1(αK − S)(αK + S)−1) ‖2

=‖ K−
1
2 (αK −N)K−

1
2K

1
2 (αK +N)−1K

1
2K
−

1
2 (αK − S)K−

1
2K

1
2 (αK + S)−1)K

1
2 ‖2

=‖ (αI − Ñ)(αI + Ñ)−1(αI − S̃)(αI + S̃)−1
‖2

≤‖ (αI − Ñ)(αI + Ñ)−1
‖2‖ (αI − S̃)(αI + S̃)−1

‖2

≤‖ (αI − Ñ)(αI + Ñ)−1
‖2 .

Here we use the special property of the matrix Q = (αI−S̃)(αI+S̃)−1 which can be obtained from Lemma
1, i.e., Q is an unitary matrix with its spectral norm equal to 1 (Q is also called the Cayley transform of S̃).
Hence, we can further get

ρ(M(α)) ≤ σ(α) = max
λ j∈λ(Ñ)

∣∣∣∣∣∣α − λ j

α + λ j

∣∣∣∣∣∣ ≤ max
j

√√√
(α − a j)2 + b2

j

(α + a j)2 + b2
j

.

since the a j = Re(λ j) > 0, j = 1, 2, ...,n, and α is a positive constant, it is easy to see that

ρ(M(α)) ≤ σ(α) < 1, ∀α > 0.

Therefore the PNSS iteration method converges unconditionally to the exact solution X∗ ∈ Cm×n of (1), with
the convergence factor being ρ(M(α)).
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3. The inexact PNSS iteration method

The two-half steps at each step of the PNSS iteration method for solving the continuous Sylvester
equation (1) require finding solutions of two continuous Sylvester equations

(αV1 + N(A))X + X(αV2 + N(B)) = CS

and
(αV1 + S(A))X + X(αV2 + S(B)) = CH

where CS and CH are prescribed m − by − n complex matrices. However, this may be very costly and
impractical in actual implementations, particularly when the sizes of the matrices involved are very large.
To further improve the computational efficiency of the PNSS iteration, we can solve the two subproblems
inexactly by utilizing certain effective iteration methods such as Gauss-Seidel, SOR, ADI or Krylov subspace
based methods, which results in the following inexact preconditioned normal and skew-Hermitian splitting
iteration for solving the continuous Sylvester equation(1).
The IPNSS iteration method

Give an initial guess X(0)
∈ Cm×n, for k = 0, 1, 2, · · · until {X(k)

}
∞

k=0 ⊆ C
m×n satisfies the stopping criterion,

solve X(k+ 1
2 )
∈ Cm×n approximately from

(αV1 +N(A))X(k+ 1
2 ) + X(k+ 1

2 )(αV2 +N(B)) ≈ (αV1 − S(A))X(k) + X(k)(αV2 − S(B)) + C

by employing an inner iteration with X(k) as the initial guess, then solve {X(k+1)
}
∞

k=0 ⊆ C
m×n approximately

from
(αV1 + S(A))X(k+1) + X(k+1)(αV2 + S(B)) ≈ (αV1 −N(A))X(k+ 1

2 ) + X(k+ 1
2 )(αV2 −N(B)) + C

by employing an inner iteration with X(k+ 1
2 ) as the initial guess, where α is given positive constant.

To simplify numerical implementation and convergence analysis, we may rewrite the above iteration
method as the following scheme.
The IPNSS iteration method
Give an initial guess X(0)

∈ Cm×n, for k = 0, 1, 2, · · · until {X(k)
}
∞

k=0 ⊆ C
m×n converges:

Step 1. Approximate the solution of

(αV1 +N(A))Z(k) + Z(k)(αV2 +N(B)) = R(k),

with R(k) = C − AX(k)
− X(k)B, by iterating until Z(k) is such that the residual

Pk = R(k)
− ((αV1 +N(A))Z(k) + Z(k)(αV2 +N(B))),

satisfies
‖P(k)
‖F ≤ εk‖R(k)

‖F.

Then compute
X(k+ 1

2 ) = X(k) + Z(k);

Step 2. Approximate the solution of

(αV1 + S(A))Z(k+ 1
2 ) + Z(k+ 1

2 )(αV2 + S(B)) = R(k+ 1
2 ),

with R(k+ 1
2 ) = C − AX(k+ 1

2 )
− X(k+ 1

2 )B, by iterating until Z(k+ 1
2 ) is such that the residual

Q(k+ 1
2 ) = R(k+ 1

2 )
− ((αV1 + S(A))Z(k+ 1

2 ) + Z(k+ 1
2 )(αV2 + S(B))),

satisfies
‖Q(k+ 1

2 )
‖F ≤ ηk‖R(k+ 1

2 )
‖F.
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Then compute
X(k+1) = X(k+ 1

2 ) + Z(k+ 1
2 ).

Here, εk and ηk are prescribed tolerances which are used to control the accuracies of the inner iterations.
Theorem 2 Assume that the assumptions of Theorem 1 hold. If {X(k)

}
∞

k=0 ⊆ C
m×n is the iteration sequence

generated by the IPNSS iteration method and if X∗ ∈ Cm×n is the exact solution of the continuous Sylvester
equation (1), then we have

‖ X(k+1)
− X∗ ‖S≤ (σ(α) + θ%ηk)(1 + θεk) ‖ X(k)

− X∗ ‖S,

where the norm ‖ · ‖S is defined as ‖ Y ‖S=‖ (αV1 +S(A))Y + Y(αV1 +S(B)) ‖F, for any matrix Y ∈ Cm×n, and
the constants % and θ are given by

% =‖ (αK + S)(αK +N)−1
‖2,

θ =‖ A(αK + S)−1
‖2,

σ(α) =‖ (αI − Ñ)(αI + Ñ)−1
‖2 .

In particular, if
(σ(α) + θ%ηmax)(1 + θεmax) < 1,

then the iteration sequence {X(k)
}
∞

k=0 ⊆ C
m×n converges to X∗ ∈ Cm×n, where εmax = max

k
εk, and ηmax = max

k
ηk.

Proof: The conclusion is straightforward according to Theorem 3.1 in [16].
Theorem 3 Assume that the conditions of Theorem 1 hold. Suppose that both r1(k) and r2(k) are

nondecreasing and positive sequence satisfying r1(k) ≥ 1 and r2(k) ≥ 1, and lim
k→∞

sup r1(k) = lim
k→∞

sup r2(k) =

+∞, and that both δ1 and δ2 are real constants in the interval (0, 1) satisfying

εk ≤ c1δ
r1(k)
1 and ηk ≤ c2δ

r2(k)
2 , k = 0, 1, 2, . . .

where c1 and c2 are nonnegative constants. Then it holds that

‖X(k+1)
− X∗‖S ≤ (

√
σ(α) + ϕθδr(k))2

‖X(k)
− X∗‖S,

where % and θ are defined in the above theorem and r(k) and δ are defined as

r(k) = min{r1(k), r2(k)}, δ = max{δ1, δ2},

and

ϕ = max{
√

c1c2%,
1

2
√
σ(α)

(c1σ(α) + c2%)}.

Proof: The conclusion is straightforward according to Theorem 3.2 in [16].

4. Numerical examples

In this section, we use several examples to illustrate the effectiveness of the PNSS iteration method
for solving the continuous Sylvester equation AX + XB = C. In addition, the numerical experiments are
performed in Matlab (R2010b) on an Inter dual core processor (1.90GHz, 4GB RAM). All iterations of this
section are started from zero matrix and terminated when the current residual norm satisfies

‖R(k)
‖F/‖R(0)

‖F ≤ 10−6,

where R(k) = C − AXk
− XkB. The number of iteration steps (denoted as ”IT”) and the computing time

in seconds (denoted as ”CPU”) are listed in tables. In the PNSS iteration method for the continuous
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Table 1: IT and CPU for PNSS and NSS

PNSS NSS
r=0.01 r=0.1 r=1 r=0.01 r=0.1 r=1

n IT CPU IT CPU IT CPU IT CPU IT CPU IT CPU
8 9 0.075 9 0.085 9 0.085 13 0.128 13 0.131 14 0.166
16 12 0.541 12 0.465 13 0.463 20 0.758 19 0.646 18 0.668
32 20 2.686 18 2.378 16 2.670 36 4.497 31 4.773 28 3.685
64 26 11.361 23 9.440 22 10.391 45 22.975 37 17.229 35 18.965

128 37 129.059 35 122.163 33 110.980 62 214.199 58 192.295 55 167.192
256 45 1068.930 42 932.747 43 856.326 78 1665.597 73 1403.131 70 1399.644

Sylvester equation (1), N(A) and N(B) are two circulant matrices. We set the preconditioning matrices
V1 = dia1(N(A)),V2 = dia1(N(B)).

Example 1. In this experiment, We consider the continuous Sylvester equation (1) with m = n and the
matrices

A = B = M + 2rN +
100

(n + 1)2 I,

where M,N ∈ Cn×n are the tridiagonal matrices given by

M =


2.6 −1
1 2.6 −1

. . .
. . .

. . .
1 2.6 −1

1 2.6


,

N =


0 −0.5

0.5 0 −0.5
. . .

. . .
. . .

0.5 0 −0.5
0.5 0


.

This class of problems arise frequently in the preconditioned Krylov subspace iteration methods. We will
solve this continuous Sylvester equation by the PNSS and the NSS iteration methods. The computing results
of PNSS iteration method and the NSS iteration method are listed in Table 1, respectively. We compare the
iteration steps and the computing time in seconds of both methods. We also present the optimal parameters
αexp for the PNSS iteration method and the NSS iteration method in Table 2. From the results in Table 1,
we observe that the PNSS is much better than the NSS both in terms of the number of iteration steps and
computing time.
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Table 2: The optimal values αexp for PNSS and NSS

PNSS NSS
n r=0.01 r=0.1 r=1 r=0.01 r=0.1 r=1
8 0.68 0.68 0.82 1.99 1.97 1.95

16 0.65 0.62 0.66 3.00 2.91 2.82
32 0.79 0.69 0.56 3.73 3.20 3.02
64 0.92 0.87 0.42 4.18 3.37 3.23
128 1.26 1.20 0.30 5.52 5.10 4.91
256 1.52 1.41 0.23 6.85 6.39 6.10

Table 3: IT and CPU for PNSS and NSS

PNSS NSS
n IT CPU IT CPU
8 6 0.054 10 0.396

16 6 0.307 11 0.416
32 6 1.008 13 2.545
64 6 4.566 17 8.417
128 6 17.120 21 62.988
256 6 108.034 22 521.290

Example 2. To generate large sparse matrices A and B , we build them in the following structures:

A =


10 1 1
2 10 1

. . .
. . .

. . .
2 10 1

2 2 10


,

B =


8 1 1
3 8 1

. . .
. . .

. . .
3 8 1

3 3 8


.

The computing results of the PNSS and the NSS are listed in the Table 3, the optimal parameters αexp
for PNSS and NSS are presented in Table 4.

Table 4: The optimal parameters αexp for PNSS and NSS

PNSS NSS
n αexp αexp

8 1.14 7.8
16 1.14 7.3
32 1.14 6.2
64 1.14 5.0

128 1.14 4.1
256 1.14 3.8
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From the results we can observe that the number of iteration steps (IT) of PNSS is smaller than that of
NSS, and the PNSS has much less computational workload than NSS at each of the iteration steps, and the
actual computing time (CPU) of PNSS may be less than that of NSS. So when the matrices A and B are large
enough, the PNSS iteration methods considerably outperform the NSS iteration methods in both iteration
step and computing time.
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