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Abstract. In this paper, we present the explicit expression for the group inverse of the sum of two matrices.

As an application, the explicit expression for the group inverse of the anti-triangular block matrix (Ié D)

and (g g) are obtained without any conditions on sub-blocks.

1. Introduction

Let M,,(C) be the set of all n X n matrix on complex field C and let I denote the unit of M,(C). For an
element A € M,,(C), if there is an element B € M,,(C) which satisfies ABA = A, then B is called a {1}- inverse
of A. If ABA = A and BAB = B hold , then B is called a {2}-inverse of A, denoted by A*. An element B is
called the Drazin inverse of A, if B satisfies

A*BA = A, BAB=B; AB=BA forsome integer k.

B is denoted by AP. The least such integer k is called the index of A, denoted by ind(A). We denote by
A™ =] — AAP the spectral idempotent of A. In the case ind(A) = 1, AP reduces to the group inverse of 4,
denoted by A*.

The Drazin inverse has various applications in singular differential equations and singular difference
equations, Markov chains, and iterative methods (see[4-7, 9-11, 15, 16, 20]). In 1979, S. Campbell and C.
Meyer proposed an open problem to find an explicit representation for the Drazin inverse of a 2 X 2 block

matrix (11;1 g) in terms of its sub-blocks, where A and D are supposed to be square matrices(see [4]). A

simplified problem to find an explicit representation for the Drazin inverse of (11;‘ g) was proposed by S.

Campbell in 1983(see [7]). Until now, both problems have not been solved. However, many authors have
considered the two problems under certain conditions on the sub-blocks(see [3, 9, 12, 13, 15, 17, 18, 25]). As
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a special case, the expression for the group inverse of 2 X 2 block matrix also has been studied under some

conditions(see [1, 2, 8, 14, 18, 19, 23]).
In this paper, we give the explicit expression for the group inverse of the sum of two matrices. As

an application, the expression for the group inverse of the anti-triangular matrix (é g) and (g g) are

presented without any conditions on sub-blocks.

2. Preliminaries

In this section, we present some important lemmas and investigate the expression of the group inverse
in term of its generalized inverse. Let us begin with a familiar lemma.

Lemma 2.1. [19] Let A, B € M,,(C), then [+ AB is invertible iff | + BA is invertible and (I+ AB)™ = I-A(I+BA)~!B.
Lemma 2.2. Let P be an idempotent matrix in M, (C), then I — P is invertible iff P = 0.

Proof. Since I — P is invertible, there is an X € M,(C) such that X(I — P) = I, thatis, X - XP = I. So,
0=XP-XP=P. O

Lemma 2.3. [24, Theorem 4.5.9] Let A € M,,(C)\{0}. Then the following conditions are equivalent:
(1) A* exists.
(2) AA* + A*A — I is invertible for some A*.
(3) A2A* +1— AA* is invertible for some A*.
(4) A’A* +1— AA* is invertible for any A™.
(5) A+1—-AA" is invertible for some A*.
(6) A+1—-AA" is invertible for any A*.
(7) A*A? +1— A*Ais invertible for some A*.
(8) ATA? +1— A*Ais invertible for any A*.
(9) A +1— A*Ais invertible for some A*.
(10) A +1— A*Ais invertible for any A*.
Proof. The equivalence of (1) to (4) are presented in [24, Theorem 4.5.9]. Noting that A2A* + — AA* =
I+(A-DAA" and A+1—-AA* =1+ A(I- A*), by Lemma 2.1, we have (3) & (5),(4)  (6),(7) © (9),(8)
(10),(5) & (9),(6) & (10). O
Lemma 2.4. Let A € M, (C)\{0}. If A* exists then

A* = AT +A-ATA)?
=(I+A-AANA
=(I+A-AANTAT+A-ATA)Y,

independent of the choice of A*.
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Proof. Put W = A2A* + 1 — AA*. By Lemma 2.3, W is invertible. Set B = W2A. Noting that AA*TW =
WAA* = A2A*, WA = A%, we have

AB =AW™A = AW2AATA = A2ZATIW2A = AATWIW2A = WA,
BA =W72A2=W2WA =W"4,

ABA = WAZ=W"IWA = A4,

BAB = WIAW™ZA = WTAAATW2A = WIAATWIA = W2A.

The above indicate that B = A* and independent of the choice of A™.
Noting that
I+A-AANYTA=AI+A-ATA)},

by Lemma 2.1, we have
A% = (A2AT +1- AAY)2A
=[I+(A-DAAT]?A
=[I-(A-DI+A-AAY)TAATPA
=[I-(A-DI+A-AANTAAT|QI - AA)I+A-AAT) 1A
=[I-(A-DI+A-AAY)TAAY AT+ A - ATA)7!
=Al+A-A*A)™?
=(I+A-AANHA
=(I+A-AAY)TAI+A-ATA)™L
O

Proposition 2.5. Let A, B € M,,(C). Then (AB)* exists iff | + AB — ABB*(A*ABB*)*A* is invertible iff  + AB —
B*(A*ABB*)*A*AB is invertible. In this case,

(AB)* = {I + AB — ABB*(ATABB*)*A"}"2AB
= AB{I + AB — B*(A*ABB*)*A*AB}2,

Proof. Noting that B¥*(A*ABB*)*A" is a {1,2}-inverse of AB. By Lemma 2.4, we get the results. [

Corollary 2.6. Let A, B € M,,(C) with (AB)* exists.
(1) If B is invertible, then (AB)* exists iff | + AB — AA™ is invertible. In this case,

(AB)* = (1 + AB— AA")2AB.
(2) If A is invertible, then (AB)* exists iff | + AB — B* Bis invertible. In this case,

(AB)* = AB(I + AB - B*B)™2.

3. Main Results
Let A, B,C,D € M,(C). Throughout of this paper, we denote E4 =1 — AA*,Fy =1 - A*A.
Lemma3.1. Let A, X, Y e M,(C)and Z =1 - YA*X, U =E X,V =YF4,5 = EyZFy. Let
G=A" —FAV*YA* + (FAV*Z + A*X)[FuS*EyYA* — (I - FyuS*EvZ)U*E4l.
Then G is a {1}—inverse of A — XY.
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Proof.

(A - XY)G = AA* + AA*X[FuS*EyYA* — (I - FuS*EvZ)U*E]
— XEyYA* — (XVV*Z + XYA*X)[FuSTEyYA* — (I = FuS*EyZ)U"EA]
= AA* + (X = U)[FuS*EyYA" — (I — FuS*EvZ)U*E]
— XEyYA* — (XVV*Z + XYA*X)[FuS*EyYA* — (I - FuS*EyZ)U*E4]
= AA* + X[FuS*EyYA* — (I — FuS*EvZ)U*EA] + UU'E4
— XEyYA* — (XVV*Z + X(I — Z))[FuS*EyYA" — (I - FuS*EvZ)U*E]
= AA* + X[FuSTEyYA' — (I — FuS*EvZ)U Ea] + UUYE4
— XEyYA* — (X - XEyZ)[FuS*EvYA* — (I - FyuS*EyZ)U*E4l
= AA* + UUYE4 — XEsEyYA* — XEyZU'Ex + XSS*EyZU*E4
= AA* + UUYE, — XEsEyYA* — XEsEyZUYE,
= AA* + UUYE, — XEsEv(YA™ + ZU"E,)
=1- EyEs — XEsEy(YA* + ZUYE,).

G(A - XY) = A*A — FAV YA*A + (FAV*Z + A*X)FuS*Ey YATA — A*XY
+ FAVTYA*XY — (FAV*Z + A*X)[FuSTEvYA* — (I - FuS*EyZ)U T EA]XY
= AYA—FAV*Y + FAV*V + (FAV*Z + A*X)FuS*EyY — A*XY
+ FAVYYAYXY — (FAV*Z + A*X)[FuSTEyYA™ — (I — FuS*EyZ) U EA]XY
= A*A = FEAVYY + FAV*V + (FAV*Z + A*X)FyuS*EvY — A XY
+FAV* (I = 2)Y = (FAV*Z + A*X)[FuS*Ev(I — Z)Y — (I - FyuS*EyZ)U UY]
= A*A+FAV*V = (A*X + FAV*2)Y
+ (FAV*Z + A*X)[FuS*EvZY + (I - FuSTEyZ)UtUY]
= A*A + EAV*V + (FAV*Z + A*X)[FuS*EvZY + (I - FuS*EyZ)UTUY - Y]
= A*A+ FAV*V + (FAV*Z + A*X)[FuS*EvZ — FuS*EyZU*U — FylY
= AYA+ FAV*V = (FAV*Z + A*X)FyEsY
=1-FFy — (FEAV*Z + A*X)FyFsY.

It is easy to verify (A — XY)G(A — XY) = A — XY. This shows G is a {1}-inverse of A — XY. [

Corollary 3.2. Let A, X e My(C)and Z =1+ A*X, U =EsX,S = AYAZFy. Let
G=A"+(Fsa—A"X)[FuS*A™ + (I - FuSTA*AZ)U"E4],

and

(A + X)G =1—EyEs + XE5(147L - A+AZU+EA),
G(A +X) =1-FyFs.
Proof. Replacing Y by —I in Lemma 3.1, we get easily the first part of the results. Noting that Z =1 + A*X
and S = ATAZF;;, we have
G(A+X) =1—-(Fa— A"X)FyFs
=1-(I-A*A-A"X)FyFs
=1-[I-A*A(I+A*X)|FuFs
=1-(I-A"AZ)FyFs
=1 - FyFs.
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Similarly, we have
Corollary 3.3. Let A, X e M,(C)and Z =1+ XA*,V = XF4,S = EyZAA™*. Let
G=A"—FpV*XA* + (FAV*Z + A*X)[AA*STEyXA" + (I - AA*STEyZ)EA].

Then G is a {1}—inverse of A + X and

(A+X)G=1-EgEy,

G(A+X) =1—-FaFy — (FAV*ZAA" — A")FsX.
Theorem 3.4. Let A, X,Y € M,(C)and Z = - YA*X,U = E4X,V = YF,,S = EyZFy;. Then (A — XY)* exists iff

A— XY+ EyEs + XESEy(YA' + ZUTEy)

is invertible iff
A — XY + F4Fy + (FAV'Z + A*X)FuFgY

is invertible and
(A= XY)* = {A = XY + EyEs + XESEy(YAT + ZUTE)} 2(A — XY)
= (A= XY){A = XY + FoFy + (FAV*Z + A*X)FuFsY}™2
={A - XY + EyEs + XEsEy(YA" + ZUEA)} " (A - XY)
X {A = XY + FAFy + (FAV*Z + A" X)FyFsY}™ .

Proof. By Lemma 3.1, G is a {1}-inverse of A — XY. Thus, (A — XY)" = G(A — XY)G is a generalized inverse
of A — XY. Hence,

(A= XY)(A-XY)* = (A= XY)G =1 - EyE4 — XEsEy(YA* + ZU'Ey4,
(A—XY)" (A= XY) = G(A—XY) =1 -F4Fy — (FAV*Z + A*X)FyFsY.

So, the results follow by Lemma 2.3 and Lemma 2.4. [
Using Lemma 2.3, Lemma 2.4 and Corollary 3.2, Corollary 3.3, we have the following corollaries:
Corollary 3.5. Let A, X € M,(C)and Z =1+ A*X,U = ExX,S = A*AZFy. Then (A + X)* exists iff
A+ X+EyEs— XEs(A* — ATAZUE,)
is invertible iff A + X + FyFs is invertible and
(A+X)* = (A+X)A+ X + FyFs)?
={A+ X+ EyEs — XEs(A™ = ATAZUYEL)) 2(A + X)
={A+ X+ EyEs — XEs(A™ = ATAZUEA)}) Y (A + X)(A + X + FyFs) ™.
Corollary 3.6. Let A, X e M,(C)and Z =1+ XA*,V = XF4,S = EyZAA*. Then (A + X)* exists iff
A+ X+ FpFy + (FAV+ZAA+ - A+)P5X
is invertible iff A + X + EsEy is invertible and
(A+X)* = (A+ X +EsEy)?(A+X)
= (A+X)A+ X +FaFy + (FAV*ZAAT — A")FsX) 2
=(A+X+EsEy) (A + X){A+ X+ FaFy + (FAVYZAAT — A")FsX) L.
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In the following, we investigate the expression for the group inverse of anti-triangular matrix. First, we cite
a lemma which comes from [21].

Lemma 3.7. [21] Suppose M, X € M,(C). Then N = M — MXM has a {1}-inverse Y iff M has a {1}-inverse
X+ (- XM)Y(I - MX).

A B + N .
Lemma 3.8. Let M = cC D and Z = D — CA*B,P = EoB,Q = CF4,R = ZFp, W = ERQQ"*. Then there exists
a {1}-inverse G of M such that

EpE4 0

I-MG= (—EWER(ZP+EA +CA*) EwEg)

+

0 8 and N = M — MXM. Let Y be a {1}-inverse of N. Then by Lemma 3.7,
G=X+(I-XM)Y(I - MX) be a {1}-inverse of M and

Proof. Taking X = (A

I-MG=1-MX-MI-XM)Y(I-MX)=(1I-NY)I-MX). @)
(0 P (00 _ (0 EsB
Let N; _(Q 0),N2—(0 Z) ThenN-Nl +N2—(CFA D—CA+B)
Note that
0 Qf I 0
N{'z(P+ 0), T=I+N2Nf:(zp+ I)’
pPp* 0 otQ 0
NlNr :( 0 QQ+)/ N‘TNl =( 0 P+P)r
_ (0 0 _ + [ PP* 0
V =NoFn, = (0 ZFp)’ S =EyTNINy = (ERZP+ ERQQ+)
ast={ PP 0.). Thus, by Corollary 3.3, we h
an =\ -wrEezpr W) us, by Corollary 3.3, we have
_ _ Ep 0
I=NY=EsEy = (—EWERZP+ EWER)'
Hence, by Eq.(1), we have

I-MG = (I - NY)(I - MX)

_ EP 0 EA 0
" \-EwERZP* EwER|\-CA* I

_ EpE4 0
- —EwER(ZP+EA+CA+) EwER ’

O

Theorem 3.9. Let M = (A 0 with A*, D* exist. Then M* exists iff D"CA™ = 0. In this case,

¢ o)
M = A 0
~ \(D*2cA™ + DrC(a)? - DfcA* D)
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Proof. Take A* = A*, D* = D¥ and B = 0 in Lemma 3.8, we have Z = D,P = 0,Q = CA",R=Z =D,W =
D™QQ* and

M+I—MG=( A+4 0 )

C-EwD"™CA* D+ EwD™

Since A+ A™ and D + D™ are invertible, M + [ — MG is invertible iff | - WW* D™ is invertible. Thus, by Lemma
2.2,1 — WW*D"™ is invertible iff WW*D™ = 0 iff W = 0 iff D"Q = D™CA™ = 0. Hence, if M* exists, then

At + AT 0
— MG =
(M + I - MG) (DHCN_C D#+Dn).

By simple calculation, we get

M = At 0
~ \(D"2CA™ + D*C(A%)? - DfCA*  D*):

O

0 B
Theorem 3.10. Let M = (C D

)and R = DFg, W = ERCC*. Then M* exists iff

DFg — CB + EwEx(Fs + DB*B)

is invertible. In this case,

= [ 1+ BEn -BEV (0 B
=\B—rsen mpe) \C DJ

Here,

& = |DFg — CB + EwEgr(Fg + DB*B)} 7},
n=C+DB" + EwEgr(I - D)B*.

Proof. Take A = 0in Lemma 3.8, we have Z = D,P =B,Q = C,R = DFg, W = EgCC* and

Ep B)

M+1-MG= (C— EwERDB* D+ EwEg

~ I B I 0
~\c+DB* + EwEr(1-D)B* D+ EwEg/\-B* I

_ I 0 E; B
= (c + DB* + EwEg(I - D)B* DFj — CB + EEg(Fp + DB*B)) (—B+ 1)'

By Lemma 2.3, we have M* exists iff DFg — CB + EwEg(Fg + DB*B)) is invertible.
Put

& = {DFp — CB + EwEr(Fg + DB'B)} !,
n=C+DB* + EwEr(I - D)B*.

Then

w1 _ [ I+B&n  —Bg
(M + I - MG) _(B+_FB&] FBE)'

Thus, by Lemma 3.1, we have

= [ 1+ BEn ~BE\ (0 B
=\B—rsen mpe) \C DJ
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#
We find it is very difficulty to calculate (Ié g) if take D = 0 in Lemma 3.8. So, we present another method

as following;:

Theorem 3.11. Let M = (Ié g) and P = AFc, W = EpBB*. Then M exists iff

AF- - BC + EwEP(FC + AC+C)

M#_(ch C+—Fcén)2(A B)
=1- 1+czn | \c o)

is invertible. In this case,

Here,

& ={AFc — BC + EwEp(Fc + ACTO)}™!
n= B +AC+ + Epr(I —A)C+-

0 B A0

Proof. Let M;
EpBB*. Noting that

0 B
(e o)

Ey=L-VV'= (EP 0),

0 I

W EpAC*
S = EyZM\M; = (0 p )
£ _ (Ew —EwEpAC*
S — 0 EC ’

and
+

M +EGEy = A+Epr B - EprAC

Ec

AFc —BC+ Epr(FC + AC+C)

&3

|

I

(A +EwEp B - EwEpAC* + AC* + EWEPC+)( —c+)
0 I

V= MyFy, = (P 0),

00
+

Z=Iz+]\/12]\/11r Z(é Af ),
g o (W -W'EpACY

10 cct !

_ +
M + EEy = A+ EwEp B—-EwEpAC
C Ec

B+ AC* + EwEp(I - A)C*\(I 0\(I -C*
I c I/lo I

3 (AFC — BC + EwEp(Fc + AC*C) B+ AC* + EwEp(I - A)C*) (1 —c+)
- I C Ec)

0

Thus, by Corollary 3.6, we have M* exists iff AFc — BC + EwEp(Fc + AC*C) is invertible.

Put

& = |AF¢ — BC + EwEp(Fc + ACTC)} ™!
n= B+ ACT + Epr(I —A)C+.

Then, by Simple calculation, we have

Fc

(M +EsEy)™ ( C

C+

)(é —én)_(FccE c+—Fcén)
0 I ) \-Cc& 1+C&n |

= (C 0),M2 = (O O)' Then M = M; + M,. Let I, be the identity of M»(C) and P = AFc, W =
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Thus, by Corollary 3.6,
2
# _ 0., [Fcé C*—Fcén\ (A B
M —(M+E5Ev) M_(—CE I+C§77 c ol
O

Corollary 3.12. Let M = ((0: g) Then M* exists iff EgFc — BC is invertible. Put & = (EgFc — BC)™!, then

M = 0 —(I - Fc&)CTCEB

—CEBBH(I - Fe&)CHC 0 '

Proof. Let & = (EgFc — BC)™!. Then
Epé™! = EgFc = & 'F¢, EBCCt = —C*,B*BCE = —B™.

Thus,
EEp = Fc&,CEEp = 0,FcéB = 0, BCE = —BB*

and

(Fc& =I)C'C = (Fc& - (I - Fe)
= (Fc& = 1) — (FcéFc — Fo)
= (Fc& —1I) — (EEpFc — Fo)
= (Fcé - 1I).

Associate with Theorem 3.11, we get the results. [

Corollary 3.13. [9] Let M = ( é é) and C* exists. Then
#
1 1) (o crac
c 0) —\cct -c* |

Now, we consider the group inverse of M = ( A). From the proof of Theorem 3.11, we have

0 C

LA B)(A B*_EE _ (EwEp —EwEpAC*
27\c oJic o) =™Vl oo Ec :

B a9 Y

B A
by Corollary 2.6, we have ( 0 C) exists iff

Here, P = AFc, W = EpBB*.
Since

B A} . (A B)(A B\" (B+EwEp A—EwEpAC*
o c)J 2 \c o/J]\c o) ~ 0 C+Ec

is invertible.
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B+EwEp A- EprAC+
0 C+Ec
B+EwEp is invertible. Noting that EwEpB™ = EwEp and B* + B™ is invertible, we have B + EwEp is invertible

iff

Assume that Bf, C* exist. Then P = AC™, W = EpBB* and ( ) is invertible iff

(B + EwEpB™)(B* + B™) = BB* + EwEpB™ = — (I — EwEp)B™

is invertible iff I — B™(I — EwEp) is invertible by Lemma 2.1. So, by Lemma 2.2, we have I — B*(I — EwEp) is
invertible iff B*(I — EwEp) = 0 iff B"P = 0. Thus, we get the following theorem by Corollary 2.6:

Theorem 3.14. [4,8,22] Let M = (B 4

0 C) with B, C* exist. Then M* exists iff B*TAC™ = 0. In this case,

M = (B# (B*)2AC™ + B"A(C*)? - B#Ac#)

0 ct
0 0 01
10 0 0O _ (01 (00 _ (0 B .. (00
Example 3.15. Let M = 100 ol PutB—(O ()),D—(1 0). ThenM—(I D)' Taking B —(1 0).
0110

Then R = DFg = ((1) 8),W =Er = ((1) 8) and DFg —CB + EwER(FB + DB+B) = (1

Theorem 3.10, we have M* exists and M* = M2,

0 ) is invertible. Thus, by
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