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Abstract. This paper deals with some theorems on Sheffer A-type zero polynomial sets.

1. Introduction

A polynomial set pn(x) is said to be of Sheffer A-type zero if and only if it has a generating function
in the form [3, 12, 13] as

A(t) exp (xG(t)) =

∞∑
n=0

pn(x)tn,

where A(t) and G(t) are two formal power series

A(t) =

∞∑
n=0

antn, a0 , 0;

G(t) =

∞∑
n=0

1ntn+1, 10 , 0;

and J(D)p0(x) = 0 and Jpn(x) = pn−1(x), n ≥ 1; where J(D) is defined as

J = J(D) =

∞∑
k=0

akDk+1, a0 , 0 and D ≡
d

dx
.

Al Salam and Verma [1] gave the generalized Sheffer polynomials by considering φn(x) as a
Sheffer A-type zero

r∑
i=1

Ai(t) exp ((xG(εi(t)) =

∞∑
n=0

φn(x)tn,
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where

J(D) =

∞∑
k=0

ckDk+r, J(D)φn(x) = φn−r(x), (n = r, r + 1, ...)

Thorne [21] obtained an interesting characterization of Appell polynomials by means of Stieltjes
integral. Appell sets [17] are hold following equivalent condition:

(i)p′n(x) = pn−1(x),n = 0, 1, 2, ...
(ii)There exists a formal power series A(t) =

∑
∞

n=0 antn, (a0 , 0) such that

A(t) exp (xt) =

∞∑
n=0

pn(x)tn.

Osegove [14] gave the generalization of Appell sets in a different direction. He studied poly-
nomial sets and hold the following property

Drpn(x) = pn−r(x), n ≥ r,

where r is a (fixed) positive integer.

Huff and Rainville [11] proved the necessary and sufficient condition for polynomial pn(x). If
polynomial pn(x) is generated by A(t)ψ (xt) then a necessary and sufficient condition for pn(x) , be
a Sheffer A-type m, m > 0 , if ψ (xt) = 0Fm[−; b1, b2, · · · , bm;αxt], where α is a nonzero constant.

Goldberg [10] generalized the above result and proved, if the polynomial set pn(x) is generated
by A(t)ψ (xB(t)) then a necessary and sufficient condition for pn(x) to be a Sheffer A-type m,m > 0,
is that there exist a positive number r which divides m and numbers b1, b2, · · · , br (none zero nor
negative integers) such that pn(x) is σ -type zero for σ = D

∏r
k=1(xD + bk − 1), D ≡ d

dx .

Bretti et al.[5] gave Laguerre type Exponentials and generalized Appell polynomials and Dat-
toli [8] studied the Appell complementary forms. Khan and Raza [20] discussed the families
of Legendre-Sheffer polynomials corresponding to two different forms of 2-variable Legendre
polynomials. Youn and Yang [22] obtained a differential equation and recursive formulas of Shef-
fer polynomial sequences utilizing matrix algebra. Dattoli et al.[7] studied Sheffer polynomials,
monomiality principle, algebraic methods and the theory of classical polynomials. Bor et al.[4]
studied on new application of certain generalized power increasing sequences and some interest-
ing results on Laguerre type polynomials were discussed by Djordjević [9].
Let p(α)

n (x) be a simple polynomial set and has following generating function [6,19]

(1 − t)−αF(x, t) =

∞∑
n=0

p(α)
n (x)tn, (1)

where F(x, t) is independent on parameter α .
If F(x, t) = (1 − t)−1 exp(−xt

1−t ) then this gives the generalized Laguerre polynomials p(α)
n (x) = L(α)

n (x).
[16]

2. Main Results

First we prove the following Lemmas.

Lemma 1: The polynomial set p(α−βn)
n (x) is generated by

(1 + u(t))α

1 + βu(t)
F(x,u(t)[1 + u(t)]2β−1) =

∞∑
n=0

p(α−βn)
n (x)tn, (2)
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where u(t) is the inverse of v(t) = t(1 + t)β−1, that is, v(u(t)) = u(v(t)) = t.

Proof: Let

(1 − t)−αF(x, t) =

 ∞∑
n=0

(
−α
n

)
(−1)ntn


 ∞∑

n=0

pn(x)tn


∞∑

n=0

p(α)
n (x)tn =

∞∑
n=0

∞∑
k=0

(
−α
n

)
(−1)ntn+kpk(x),

On making the use of
(
−α
n
)

= (−1)n(α+n−1
n

)
, for positive integers α and n.

∞∑
n=0

p(α)
n (x)tn =

∞∑
n=0

∞∑
k=0

(
α + n − 1

n

)
pk(x)tn+k, (3)

we get

p(α)
n (x) =

n∑
k=0

(
α + n − k − 1

n − k

)
pk(x),

On setting α by α − βn, in equation (3),yields

∞∑
n=0

p(α−βn)
n (x)tn =

∞∑
k=0

 ∞∑
n=0

(
α + βk − 1 − (β − 1)n

n

)
(t)n

 pk(x)tk.

On making the use of following identity [15]

∞∑
n=0

(
a + bn

n

) [
z

(1 + z)b

]n

=
(1 + z)1+a

1 + (1 − b)z
,

and afterwords setting a = α + βk − 1, b = −(β − 1) and z = u(t) ,this yields

∞∑
n=0

(
α + βk − 1 − (β − 1)n

n

)
tn =

(1 + u(t))α+βk

1 + βu(t)
.

This can be easily written in following form as

∞∑
n=0

p(α−βn)
n (x)tn =

(1 + u(t))α

1 + βu(t)

∞∑
k=0

pk(x)
[
t(1 + u(t))β

]k
,

∞∑
n=0

p(α−βn)
n (x)tn =

(1 + u(t))α

1 + βu(t)

∞∑
k=0

pk(x)
[
u(t)(1 + u(t))2β−1

]k
.

Thus
∞∑

n=0

p(α−βn)
n (x)tn =

(1 + u(t))α

1 + βu(t)
F(x,u(t)(1 + u(t))2β−1).

This leads the proof.

Lemma 2: The polynomial set p(α−γn,β−δn)
n (x, y) is generated by

(1 + u(t))α+β

1 + (γ + δ)u(t)
F(x, y,u(t)[1 + u(t)]2(γ+δ)−1) =

∞∑
n=0

p(α−γn,β−δn)
n (x, y)tn, (4)

where u(t) is the inverse of v(t) = t(1 + t)γ+δ−1, that is, v(u(t)) = u(v(t)) = t.
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Proof: Let

(1 − t)−α−βF(x, y, t) =

 ∞∑
n=0

(
−α − β

n

)
(−1)ntn


 ∞∑

n=0

pn(x, y)tn


=

∞∑
n=0

∞∑
k=0

(
−α − β

n

)
(−1)npk(x, y)tn+k.

Since (
−α − β

n

)
= (−1)n

(
α + β + n − 1

n

)
,

where α, β and n are positive integers.
We get

∞∑
n=0

p(α,β)
n (x, y)tn =

∞∑
n=0

∞∑
k=0

(
α + β + n − 1

n

)
pk(x, y)tn+k,

∞∑
n=0

p(α,β)
n (x, y)tn =

∞∑
n=0

n∑
k=0

(
α + β + n − k − 1

n − k

)
pk(x, y)tn.

On comparing the coefficient of tn, gives

p(α,β)
n (x, y) =

n∑
k=0

(
α + β + n − k − 1

n − k

)
pk(x, y).

On replacing α by α − γn and β by β − δn, we get

∞∑
n=0

p(α−γn,β−δn)
n (x, y)tn =

∞∑
n=0

n∑
k=0

(
α − γn + β − δn + n − k − 1

n − k

)
pk(x, y)tn.

On further simplification,yields

∞∑
n=0

(
a + bn

n

) [
z

(1 + z)b

]n

=
(1 + z)1+a

1 + (1 − b)z
.

Now, setting a = α + β + (γ + δ)k − 1, b = −(γ + δ − 1) and z = u(t) , this becomes

∞∑
n=0

(
α + β + (γ + δ)k − 1 − (γ + δ − 1)n

n

)
[u(t)(1 + u(t))γ+δ−1]n =

(1 + u(t))1+α+β+(γ+δ)k−1

1 + (γ + δ)u(t)
.

Or
∞∑

n=0

(
α + β + (γ + δ)k − 1 − (γ + δ − 1)n

n

)
tn =

(1 + u(t))α+β+(γ+δ)k

1 + (γ + δ)u(t)
;

this leads to
∞∑

n=0

p(α−γn,β−δn)
n (x, y)tn =

(1 + u(t))α+β

1 + (γ + δ)u(t)

∞∑
k=0

pk(x, y)
[
t(1 + u(t))γ+δ

]k
.

Finally we arrive at conclusion that

∞∑
n=0

p(α−γn,β−δn)
n (x, y)tn =

(1 + u(t))α+β

1 + (γ + δ)u(t)
F(x, y,u(t)(1 + u(t))2(γ+δ)−1).
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This completes the proof.
To prove the theorems, we consider pn(x, y) is generated by

A(t)φ
(
xH(t), yG(t)

)
=

∞∑
n=0

pn(x, y)tn, (5)

where

G(t) =

∞∑
n=0

1ntn+1, 10 , 0,

H(t) =

∞∑
n=0

hntn+1, h0 , 0,

A(t) =

∞∑
n=0

antn, a0 , 0.

On taking F
(
x, y, t

)
= A(t)φ

(
xH(t), yG(t)

)
, we get

(1 + u(t))α+β

1 + (γ + δ)u(t)
A(u(t)(1 + u(t))2(γ+δ)−1)φ

(
xH(u(t)(1 + u(t))2(γ+δ)−1), yG(u(t)(1 + u(t))2(γ+δ)−1)

)
=

∞∑
n=0

p(α−γn,β−δn)
n (x, y)tn.

Hence, we can say that if pn(x, y) is a generalized Appell set then p(α−γn,β−δn)
n (x, y) is also generalized

Appell set.

Theorem 1: if pn(x, y) is Sheffer A-type zero polynomials in two variables then p(α−γn,β−δn)
n (x, y) is

also Sheffer A-type zero polynomials in two variables.

Proof: Let pn(x, y) be of Sheffer A-type zero polynomials in two variables and there exists a
differential operator J = J(D) =

∑
∞

k=0 ckDk+1, c0 , 0, D = ∂
∂x + ∂

∂y , where ck are constants, such
that Jpn(x, y) = pn−1(x, y),for all n ≥ 1 .
Since pn(x, y) is of A-type zero iff pn(x, y) have the generating relation [2] as

A(t) exp (xH(t)) exp
(
yG(t)

)
=

∞∑
n=0

pn(x, y)tn. (6)

From lemma 2 and equation (6), we get

(1 + u(t))α+β

1 + (γ + δ)u(t)
A(u(t)) exp

(
xH(u(t)(1 + u(t))2(γ+δ)−1

)
exp

(
yG(u(t)(1 + u(t))2(γ+δ)−1)

)
=

∞∑
n=0

p(α−γn,β−δn)
n (x, y)tn.

Theorem 2: If pn(x, y) is a generalized Sheffer set of A-type zero then p(α−γn,β−δn)
n (x, y) is also

generalized Sheffer set of A-type zero.

Proof: Since pn(x, y) is a generalized Sheffer set of A-type zero and the generating function is given
by [18]

r∑
i=1

Ai(t) exp ((xH(εi(t)) exp
(
(yG(εi(t)

)
=

∞∑
n=0

pn(x, y)tn, (7)
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where

G(t) =

∞∑
i=1

1iti, 11 , 0,

H(t) =

∞∑
i=1

hiti, h1 , 0,

As(t) =

∞∑
i=0

α(s)
i ti, (not all α(s)

0 are zeros)

On applying lemma 2 , equation (7) takes following form

∞∑
n=0

p(α−γn,β−δnn)
n (x, y)tn =

(1 + u(t))α+β

1 + (γ + δ)u(t)

r∑
i=1

[
Ai(u(t)(1 + u(t))2(γ+δ)−1)

exp
(
xH(εiu(t)(1 + u(t))2(γ+δ)−1

)
exp

(
yG(εiu(t)(1 + u(t))2(γ+δ)−1)

)]
Thus, we can say that p(α−γn,β−δn)

n (x, y) is also generalized Sheffer set of A-type zero.

The operator J =
∑
∞

k=0 ckDk+1 is associated with pn(x, y), where D = ∂
∂x + ∂

∂y . This is generated by

the function J(t) =
∑
∞

k=0 cktk+1 and J(t) is the inverse of the function (H + G)(t). The p(α−γn,β−δn)
n (x, y)

corresponds to the operator which is generated by the inverse of function (H + G)(u(t)).
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