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Abstract. In this paper, we introduce non-commutative HE(A; `∞) and HE(A; `1) spaces. Then it is shown
that these spaces possess many of the properties of non-commutative Hp(A) spaces, such as various factor-
ization results including a Riesz type factorization theorem and contractibility of conditional expectation.

1. Introduction and Preliminaries

1.1. Quasi-Banach symmetric function spaces
Let L0[0, 1] be the space of all measurable real-valued functions on [0, 1] equipped with the Lebesgue

measure m (functions which coincide almost everywhere are considered identical). Define S[0, 1] to be the
subset of L0[0, 1] which consists of all functions x such that m({t : |x(t)| > s}) is finite for some s > 0.

For x ∈ S[0, 1] we denote by µ(x) the decreasing rearrangement of the function | f |. That is,

µ(t, x) = inf{s ≥ 0 : m({|x| > s}) ≤ t}, t > 0.

Definition 1.1. We say that (E, ‖ · ‖E) is a symmetric quasi-Banach function space if the following holds.

(a) E is a subset of S[0, 1].
(b) (E, ‖ · ‖E) is a quasi-Banach space.
(c) If x ∈ E and if y ∈ S[0, 1] are such that |y| ≤ |x|, then y ∈ E and ‖y‖E ≤ ‖x‖E.

Furthermore we recall that the quasi-norm in E is said to be order continuous if, for every sequence
{xn}n≥0 ⊂ E such that xn ↓ 0 in S[0, 1], we have that ‖xn‖E → 0. Order continuity of the quasi-norm is
equivalent to separability of the space E (see [10, 16]).

Special examples of such quasi-Banach function spaces are the spaces Lp[0, 1], 0 < p ≤ ∞, equipped with
their usual quasi-norm ‖ · ‖p.

We recall that that every symmetric Banach function space satisfies

L∞[0, 1] ⊂ E ⊂ L1[0, 1]
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with continuous embeddings. For more details see [15].
We say that y is submajorized by x in the sense of Hardy-Littlewood (written y ≺≺ x) if∫ t

0
µ(s, y)ds ≤

∫ t

0
µ(s, x)ds, t > 0.

Now let E be a quasi-Banach lattice. Let 0 < r < ∞. Then E is said to be r-convex and r-concave, if there
exists a constant C > 0 such that for all finite sequence (xn) in E∥∥∥∥∥∥∥∥

 n∑
k=1

|xk|
r


1/r

∥∥∥∥∥∥∥∥
E

≤ C

 n∑
k=1

‖xk‖
r
E


1/r

,

and  n∑
k=1

‖xk‖
r
E


1/r

≤ C

∥∥∥∥∥∥∥∥
 n∑

k=1

|xk|
r


1/r

∥∥∥∥∥∥∥∥
E

,

and as usual the best constant C > 0 is denoted by M(r)(E) and M(r)(E), respectively. We recall that for r1 ≤ r2
we have

Mr1 (E) ≤Mr2 (E)

and
Mr2 (E) ≤Mr1 (E).

To see example: each Lp(m) with Lebesgue measure m is p−convex and p−concave with constant 1, and as
a sequence M(2)(Lp(m)) = 1 for 2 ≤ p and M(2)(Lp(m)) = 1 for p ≤ 2. For all needed information on convexity
and concavity we once again refer to [16]. If Mmax(1,r)(E) = 1, then the r’th power

Er := {x ∈ L0(Ω) : |x|1/r ∈ E}

endowed with the norm
‖x‖Er = ‖|x|1/r‖rE

is again a Banach function space which is 1/min(1, r)-convex.

1.2. Quasi-Banach symmetric operator spaces
LetH be a Hilbert space. The closed densely defined linear operator x inHwith domain D(x) is said to

be affiliated withM if and only if uxu = x for all unitary operators u which belong to the commutantM
′

of
M. If x is affiliated withM; then x is said to be τ-measurable if for every ε > 0 there exists a projection e in
M such that e(H) ⊆ D(x) and τ(1 − e) < ε. The set of all τ-measurable operators will be denoted by L0(M).
The set L0(M) is a ∗-algebra with sum and product being the respective closure of the algebraic sum and
product [19]. For each x onH affiliated withM, all spectral projection e⊥s (|x|) = χ(s;∞)(|x|) corresponding to
the interval (s;∞) belong toM, and x ∈ L0(M) if and only if χ(s;∞)(|x|) < ∞ for some s ∈ R. Recall that the
decreasing rearrangement (or generalized singular numbers) of an operator x ∈ L0(M) is defined as follows

µ(s, x) = inf{t > 0 : λt(x) ≤ s}, s > 0

where
λt(x) = τ(e⊥t (|x|)); t > 0.

The function s 7→ λs(x) is called the distribution function of x. For more details on generalized singular
value function of measurable operators we refer to [12]. Recall the construction of a quasi-Banach symmetric
operator space LE(M, τ) (for convenience LE(M)). Let E be a quasi-Banach symmetric function space. Set

LE(M, τ) =
{
x ∈ L0(M, τ) : µ(x) ∈ E

}
.
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We equip LE(M, τ) with a natural quasi-norm

‖x‖LE(M,τ) = ‖µ(x)‖E, x ∈ E(M, τ).

It was further established in [20] (see also [23]) that E(M, τ) is quasi-Banach.
Since for each operator x ∈ L0(M)

µ(|x|r) = µ(x)r,

we conclude for every symmetric Banach function space E on the interval [0, 1] which satisfies Mmax(1,r)(E) = 1
that

LEr (M) := {x ∈ L0(M) : |x|1/r ∈ LE(M)}

and
‖x‖LEr (M) = ‖µ(|x|)‖Er = ‖µ(|x|1/r)‖rE = ‖|x|1/r‖rLE(M).

See [8, 10].

1.3. Non-commutative Hardy spaces

LetM be a finite von Neumann algebra on the Hilbert spaceH equipped with a normal faithful tracial
state τ. Let D be a von Neumann subalgebra of M, and let Φ : M → D be the unique normal faithful
conditional expectation such that τ ◦ Φ = τ. A finite subdiagonal algebra of M with respect to Φ is a
w∗-closed subalgebraA ofM satisfying the following conditions:

(i)A + J(A) is w∗-dense inM;
(ii) Φ is multiplicative onA, i.e., Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A;
(iii)A∩ J(A) = D, where J(A) is the family of all adjoint elements of the element ofA, i.e., J(A) = {a∗ :

a ∈ A}.
The algebra D is called the diagonal of A. It’s proved by Exel [11] that a finite subdiagonal algebra A

is automatically maximal in the sense that if B is another subdiagonal algebra with respect to Φ containing
A, then B = A. Given 0 < p ≤ ∞ we denote by Lp(M) the usual non-commutatve Lp-spaces associated
with (M, τ). Recall that L∞(M) = M, equipped with the operator norm ‖ · ‖∞ := ‖ · ‖ (see [19]). The norm
of Lp(M) will be denoted by ‖ · ‖p. For p < ∞ we define Hp(A) to be closure of A in Lp(M), and for p = ∞
we simply set H∞(A) = A for convenience. These are so called Hardy spaces associated withA. They are
non-commutative extensions of the classical Hardy space on the torus T. These non-commutative Hardy
spaces have received a lot of attention since Arveson’s pioneer work. For more details on non-cammutative
Hardy space we refer to [1, 7, 17] and [19].

1.4. Non-commutative `∞− and `1−valued symmetric Hardy spaces

For brevity, we introduce the following definition which was defined in [4].

Definition 1.2. Let E be a symmetric quasi Banach space on [0;1] andA be a finite subdiagonal subalgebra
of M. Then HE(A) = [A]LE(M) called symmetric Hardy space associated with A, where [·]LE(M) means
closure in the norm of LE(M). We denote [A0]LE(M) by H0

E(A).

The theory of vector-valued non-commutative Lp-spaces were introduced by Pisier in [18] for the case,
whenM is hyperfinite and Junge introduced these spaces for general setting in [13] (see also [9, 14]). The
theory for the spaces LE(M; `∞) and LE(M; `1) was developed by Defant in [8] and Dirksen in [10] and in
full analogy with the special case LE = Lp considered in [9, 13, 14].

Denote by LE(M; `∞) the space of all families x = (xn)n≥1 in LE(M, τ) for which there are operators
a, b ∈ LE1/2 (M) and a uniformly bounded sequence (yn)n≥1 inM such that xn = aynb for all n ∈N. We set

‖x‖LE(M;`∞) := inf{‖a‖LE1/2 (M) sup
n
‖yn‖∞‖b‖LE1/2 (M)},
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where the infimum is taken over all such possible factorizations. Moreover, we denote by LE(M; `col
∞ ) (here

”col” should remind on the word ”column”) the space of all x = (xn)n≥1 in LE(M) for which there are
b ∈ LE(M) and a bounded sequence (yn)n≥1 inM such that xn = ynb for all n. We then put

‖x‖LE(M;`col
∞ ) := inf{sup ‖yn‖∞‖b‖LE(M)}.

Similarly, the row version consisting of all families x = (xn)n≥1 admitting a factorization xn = ayn with
a ∈ LE(M) and (yn)n≥1 bounded inM is denoted by LE(M; `row

∞ ) and we define

‖x‖LE(M;`row
∞ ) := inf{‖a‖LE(M) sup ‖yn‖∞}.

In both cases the infimum is again taken over all possible factorizations. The space LE(M; `1) is defined as
the space of all sequences x = (xn)n≥1 in LE(M) which can be decomposed as

xn =

∞∑
k=1

uknvnk,∀n ≥ 1

for two families (ukn)k,n≥1 and (vnk)n,k≥1 in LE1/2 (M) such that

∞∑
k,n=1

uknu∗kn ∈ LE(M) and
∞∑

n,k=1

v∗nkvnk ∈ LE(M),

where the series converge in norm. For x ∈ LE(M; `1) we define

‖x‖LE(M;`1) := inf{‖
∞∑

k,n=1

uknu∗kn‖
1/2
LE(M)‖

∞∑
n,k=1

v∗nkvnk‖
1/2
LE(M)},

where the infimum runs over all decompositions of x as above.
Now we define the Hardy space analogue of these spaces by a similar way.

Definition 1.3. (i) We define HE(A; `∞) as the space of all sequences x = (xn)n≥1 in HE(A) which admit a
factorization of the following form: there are a, b ∈ HE1/2 (A), and a bounded sequence y = (yn) ⊂ A such
that

xn = aynb,∀n ≥ 1.

Given x ∈ HE(A, `∞) define

‖x‖HE(A;`∞) := inf{‖a‖HE1/2 (A) sup
n
‖yn‖∞‖b‖HE1/2 (A)},

where the infimum runs over all factorizations of (xn) as above. Moreover, let us define HE(A; `col
∞ ) as the

space of all (xn)n≥1 in HE(A) for which there are b ∈ HE(A) and bounded sequence (yn)n≥1 inM such that
xn = ynb and

‖x‖HE(A;`∞) := inf{sup
n
‖yn‖∞‖b‖HE(A)}.

Similarly, we define the row version HE(A; `row
∞ ) all sequences which allow a uniform factorization xn = ayn,

again with a ∈ HE(A) and (yn)n≥1 uniformly bounded inM.
(ii) We define HE(A; `1) as the space of all sequences x = (xn)n≥1 in HE(A) which can be decomposed as

xn =

∞∑
k=1

uknvnk,∀n ≥ 1

for two families (ukn)k,n≥1 and (vnk)n,k≥1 in HE1/2 (A) such that

∞∑
k,n=1

uknu∗kn ∈ LE(M) and
∞∑

n,k=1

v∗nkvnk ∈ LE(M).
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In this space we define norm in the following form:

‖x‖HE(A;`1) := inf


∥∥∥∥∥∥∥
∞∑

k,n=1

uknu∗kn

∥∥∥∥∥∥∥
1/2

HE(A)

∥∥∥∥∥∥∥
∞∑

n,k=1

v∗nkvnk

∥∥∥∥∥∥∥
1/2

HE(A)

 ,
where the infimum runs over all decompositions of x as above.

Example 1.4. For E = Lp, we obtain with HE(A) = Hp(A) and HE1/2 (A) = H2p(A) the symmetric case of the
spaces H(r,s)

p (A; `∞), i.e.

HE(A; `∞) = H(2p,2p)
p (A; `∞).

Moreover, we then have
HE(A; `col

∞ ) = Hri1ht
p (A; `∞)

and
HE(A; `row

∞ ) = Hle f t
p (A; `∞).

Particular cases which are shown in Example 1.4 with Hp(A; `1) were introduced in [5, 21, 22] with some
basic properties. Section 1 contains some preliminary definitions. In section 2, we prove that HE(A, `∞) and
HE(A; `1) are quasi-Banach spaces and an analogue Saito’s theorem (see [20, Proposition 2 ]). In section 3,
we extend that the conditional expectation Φ to a contractive projection from HE(A; `∞) onto LE(D; `∞) and
from HE(A; `1) onto LE(D; `1), respectively.

2. Some Properties of HE(A; `∞) and HE(A; `1) Spaces

The following is our key lemma.

Lemma 2.1. (i) Let E be a r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E
do not contain c0, where c0 = {(an) : limn→∞ an = 0}. If (xn) ∈ LE(M; `∞), then there exist h, 1 ∈ HE1/2 (A) and
(zn) ⊂ M such that h−1, 1−1

∈ A, and for all n, xn = hzn1, and supn ‖zn‖∞ ≤ 1. Moreover,

‖(xn)‖LE(M;`∞) = inf{‖h‖HE1/2 (A) sup
n
‖zn‖∞‖1‖HE1/2 (A)},

where the infimum runs over all factorizations of (xn) as above.
(ii) Let E be a symmetric quasi Banach function space on [0; 1], then

LE(M; `∞) = LE1/2 (M; `row
∞ ) · LE1/2 (M; `col

∞ ).

Proof. (i) If x ∈ LE(M; `∞), then for any ε > 0 there is a bounded sequence y = (yn) in M and operators
a, b ∈ LE1/2 (M) such that for all n

xn = aynb, ‖yn‖ ≤ 1,

and ‖a‖LE1/2 (M)‖b‖LE1/2 (M) < ‖x‖LE(M;`∞) + ε. Let a∗ = u|a∗| and b = v|b| the polar decompositions of a∗ and b,
respectively. Put c = (|a∗|2 + ε)

1
2 and d = (|b|2 + ε)

1
2 . Clearly, |a∗|2 ≤ c2 and |b|2 ≤ d2. Then by Remark 2.3. in

[9] there exist contractions ω, θ ∈ M such that |a∗| = ωc, |b| = θd. Since c, d ∈ LE1/2 (M) and c−1, d−1
∈ M, by

Proposition 3.3 (i) in [4] there exist h, 1 ∈ HE1/2 (A) and unitary operators ν,w ∈ M such that c = hν, d = w1,
and h−1, 1−1

∈ A. Obviously,
xn = h[νω∗u∗ynvθw]1.

Put
zn = νω∗u∗ynvθw,

then it is clear that supn ‖zn‖∞ ≤ 1. The norm estimate is clear.
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(ii) Let x ∈ LE(M; `∞), then xn = aynb. Choosing x(1)
n = a and x(2)

n = ynb for all n, we see that

xn = x(1)
n x(2)

n , ∀ n.

SinceM is finite and a, b ∈ LE1/2 (M), we have (x(1)
n ) ∈ LE1/2 (M; `row

∞ ), (x(2)
n ) ∈ LE1/2 (M; `col

∞ ).
This completes the proof.

Proposition 2.2. Let E be a r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E
do not contain c0. Then

HE(A; `∞) = {(xn) ∈ LE(M; `∞) : (xn) ⊂ HE(A)}. (1)

Moreover,

‖(xn)‖LE(M;`∞) = ‖(xn)‖HE(A;`∞), ∀ (xn) ∈ HE(A; `∞). (2)

Proof. The inclusion HE(A; `∞) ⊂ {(xn) ∈ LE(M; `∞) : (xn) ∈ HE(A)} is clearly. Let (yn) ∈ {(xn) ∈ LE(M; `∞) :
(xn) ∈ HE(A)}. Then by (i) of Lemma 2.1 there exist a, b ∈ HE1/2 (A), and zn ∈ M such that

yn = aznb, ∀ n,

and a−1, b−1
∈ A, and supn ‖zn‖∞ ≤ 1. By Proposition 3.3. (ii) in [4], we have that

zn = a−1ynb−1
∈ Hr(A) ∩M = A, ∀ n.

Hence (yn) ∈ HE(A; `∞). So (1) holds. Using (i) of Lemma 2.1 we get (2).

Theorem 2.3. Let E be a r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E do
not contain c0. Then HE(A, `∞) is a quasi-Banach space.

Proof. By (2), it is suffices to show HE(A, `∞) is a closed linear subspace of LE(M, `∞). Let (x(1)
n ), (x(2)

n ) ∈
HE(A, `∞) and α, β ∈ C. Then (αx(1)

n + βx(2)
n ) ∈ LE(M, `∞) and for all n, αx(1)

n + βx(2)
n ∈ HE(A). By Proposition

2.2, we have that (αx(1)
n + βx(2)

n ) ∈ HE(A, `∞), i.e., HE(A, `∞) is a linear subspace of LE(M, `∞). Next to prove
HE(A, `∞) is closed. Let (x( j)

n ) ∈ HE(A, `∞) ( j = 1, 2, ...) and (xn) ∈ LE(M, `∞) such that

lim
j→∞
‖(x( j)

n ) − (xn)‖HE(A,`∞) = 0.

Since
‖x( j)

n − xn‖HE(A) ≤ ‖(x
( j)
n ) − (xn)‖HE(A,`∞), ∀n ∈N,

it follows that lim j→∞ ‖x
( j)
n − xn‖HE(A) = 0, so xn ∈ HE(A). Using Proposition 2.2 we obtain (xn) ∈ HE(A, `∞),

i.e., HE(A, `∞) is closed.

Corollary 2.4. Let E be a r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E do
not contain c0. Then

HE(A; `∞) = HE1/2 (A; `row
∞ ) ·HE1/2 (A; `col

∞ ).

Lemma 2.5. Let E be a r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E do not
contain c0. If x ∈ LE(M; `1), then for each n there exist (akn)k≥1 ⊂ HE1/2 (A), (bnk)k≥1 ⊂ HE1/2 (A) and (ynk)k≥1 ⊂ M

such that

xn =

∞∑
k=1

aknynkbnk,

where (a−1
kn )k≥1, (b−1

nk )k≥1 ⊂ A, and supn ‖ynk‖∞ ≤ 1 for all n and k. Moreover,

‖x‖LE(M;`1) = inf


∥∥∥∥∥∥∥
∞∑

k,n=1

akna∗kn

∥∥∥∥∥∥∥
1/2

HE(A)

sup
n
‖ynk‖∞

∥∥∥∥∥∥∥
∞∑

n,k=1

b∗nkbnk

∥∥∥∥∥∥∥
1/2

HE(A)

 ,
where the infimum runs over all decompositions of x as above.
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Proof. Let (xn) ∈ LE(M; `1). Then for ε > 0 there are two families (ukn), (vnk) ∈ LE1/2 (M) such that xn =∑
∞

k=1 uknvnk ∈ LE(M),
∑

v∗nkvnk,
∑

uknu∗kn ∈ LE(M) and∥∥∥∥∥∥∥
∞∑

k,n=1

uknu∗kn

∥∥∥∥∥∥∥
1/2

LE(M)

∥∥∥∥∥∥∥
∞∑

n,k=1

v∗nkvnk

∥∥∥∥∥∥∥
1/2

LE(M)

< ‖x‖LE(M;`1) + ε.

Let u∗kn = ϑkn|u∗kn| and vnk = νnk|vnk| be the polar decompositions of u∗kn and vnk, for all n and k, respectively.
Put ckn := (|u∗kn|

2 + ε
2k+n )

1
2 and dnk := (|vnk|

2 + ε
2k+n )

1
2 . It is clear that |u∗kn|

2
≤ c2

kn and |vnk|
2
≤ d2

nk. By Remark
2.3 in [9], there exist contractions ωkn, θnk ∈ M such that |u∗kn| = ωknckn, |vnk| = θnkdnk. Notice that ckn ∈

LE1/2 (M), dnk ∈ LE1/2 (M) and c−1
kn , d

−1
nk ∈ M. Hence, by Proposition 3.3 (i) in [4], there exist unitary operators

νkn, wnk ∈ M and hkn ∈ HE1/2 (A), 1nk ∈ HE1/2 (A) such that ckn = hknνkn and dnk = wnk1nk, and h−1
kn , 1

−1
nk ∈ A.

Clearly,

xn =

∞∑
k=1

hkn[νknω
∗

knu∗knvnkθnkwnk]1nk.

Set
ynk = νknω

∗

knu∗knvnkθnkwnk.

Then

xn =

∞∑
k=1

hknynk1nk and sup
n
‖ynk‖∞ ≤ 1.

The norm estimate is clear.

Similar to Proposition 2.2, we have the following result.

Proposition 2.6. Let E be an r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E
do not contain c0. Then

HE(A; `1) = {(xn) ∈ LE(M; `1) : (xn) ⊂ HE(A)}.

Moreover,
‖(xn)‖LE(M;`1) = ‖(xn)‖HE(A;`1), ∀ (xn) ∈ HE(A; `1).

Using Lemma 2.5 and Proposition 2.6 we obtain the following result.

Theorem 2.7. Let E be a r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E do
not contain c0. Then HE(A; `1) is a quasi-Banach space.

Proposition 2.8. Let E be an r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E
do not contain c0. Then

HE(A; `∞) = Hr(A; `∞) ∩ LE(M; `∞) and H0
E(A; `∞) = H0

r (A; `∞) ∩ LE(M; `∞).

Proof. We prove only the first equivalence. The proof of the second equivalence is similar. It is obvious
that HE(A; `∞) ⊂ Hr(A; `∞)∩LE(M; `∞). To prove the converse inclusion let (yn)n≥1 ∈ Hr(A; `∞)∩LE(M; `∞),
then (yn)n≥1 ∈ LE(M; `∞). By Proposition 3.3. in [4], (yn) ⊂ Hr(A) ∩ LE(M) = HE(A). Applying Lemma 2.2
we find (yn) ∈ HE(A; `∞).

Proposition 2.9. Let E be a r−convex symmetric quasi Banach function space on [0; 1] for some 0 < r < ∞ and E
do not contain c0. Then

HE(A; `1) = Hr(A; `1) ∩ LE(M; `1) and H0
E(A; `1) = H0

r (A; `1) ∩ LE(M; `1).

The following proposition is analogue of Proposition 2 in [20] on the HE(A; `∞) space.
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Proposition 2.10. Let E be a symmetric Banach function space on [0; 1] and E do not contain c0. Then we have the
following, where H0

E(A; `∞) = {x ∈ HE(A; `∞) : Φ(xn) = 0, ∀n} :

HE(A; `∞) = {x ∈ LE(M; `∞) : τ(xnc) = 0, f or all c ∈ A0 and n}.

Moreover,

H0
E(A; `∞) = {x ∈ LE(M; `∞) : τ(xnc) = 0, f or all c ∈ A and n}. (3)

Proof. The inclusion HE(A; `∞) ⊂ {x ∈ LE(M; `∞) : τ(xnc) = 0, f or all c ∈ A0 and n} is clearly. Let
y ∈ {x ∈ LE(M; `∞) : τ(xnc) = 0, f or all c ∈ A0 and n}. Then by Lemma 2.1 (i) there exist a ∈ HE1/2 (A),
b ∈ HE1/2 (A) and zn ∈ M such that

yn = aznb, ∀n

where a−1, b−1
∈ A and supn ‖yn‖∞ ≤ 1. On the other hand, we have τ(ync) = 0, ∀c ∈ A0. Since a−1sb−1

∈

A0, ∀s ∈ A0, substituting c by a−1sb−1 we obtain zn ∈ A (see [4, Lemma 3.1.]), so (yn) ∈ HE(A; `∞). Now
we prove the (3). It is obvious that H0

E(A; `∞) ⊂ {x ∈ LE(M; `∞) : τ(xnc) = 0, f or all c ∈ A and n}.
Let x ∈ LE(M; `∞), then as above by using Lemma 2.1 (i) and since τ(xnd) = 0, ∀ d ∈ A0 we get that
x ∈ HE(A; `∞). On the other hand we have τ(xnc) = 0, ∀ c ∈ A. Then since xn ∈ LE(M), we deduce
xn ∈ H0

E(A) (see [4, Lemma 3.1.]), which is the conclusion.

3. Contractibility ofΦ on HE(A; `∞) and HE(A; `1) Spaces

It is well-known that conditional expectation Φ extends to a contractive projection from Lp(M) onto
Lp(D) for every 1 ≤ p ≤ ∞. In general, Φ cannot be, of course, continuously extended to Lp(M) for p < 1.
However, in [3] proved that Φ contractive projection from Hp(A) onto Lp(D) for p < 1. In this section we
prove that Φ extends to a contractive projection on HE(A; `∞) and HE(A; `1) spaces.

Theorem 3.1. Let E be a symmetric quasi-Banach function space on [0;1] with M(r)(E) = 1 for some 0 < r < ∞ and
let h = (hn)n≥1 ⊂ HE(A). Define (hn)n≥1 7→ (Φ(hn))n≥1, then Φ extends to a contractive projection from HE(A; `∞)
onto LE(D; `∞), i.e.

‖Φ(h)‖LE(D;`∞) ≤ ‖h‖HE(A;`∞)

for all h ∈ HE(A; `∞). The extension will be denoted still by Φ.

Proof. Let h = (hn)n≥1 ∈ HE(A; `∞), then for all ε > 0 there exist a, b ∈ HE1/2 (A) and a bounded sequence
(xn) ⊂ A such that for all n, hn = axnb, and

‖(hn)n≥1‖HE(A;`∞) + ε ≥ ‖a‖HE1/2 (A) sup
n
‖xn‖∞ ‖b‖HE1/2 (A) .

Hence, by Corollary 2.3. and Theorem 2.2. in [4],

Φ(hn) = Φ(axnb) = Φ(a)Φ(xn)Φ(b),

where
Φ(a) ∈ LE(D), Φ(xn) ∈ D, Φ(b) ∈ LE(D)

and
‖Φ(a)‖LE1/2 (D) ≤ ‖a‖HE1/2 (A) , ‖Φ(xn)‖∞ ≤ ‖xn‖∞ , ‖Φ(b)‖LE1/2 (D) ≤ ‖b‖HE1/2 (A) .

Therefore,
‖(Φ(hn))n≥1‖LE(D;`∞) ≤ ‖Φ(a)‖LE1/2 (D) sup

n
‖Φ(xn)‖L∞(D) ‖Φ(b)‖LE1/2 (D)

≤ ‖a‖HE1/2 (A) sup
n
‖xn‖H∞(A) ‖b‖HE1/2 (A) ≤ ‖(hn)‖HE(A;`∞) + ε.

Then letting ε→ 0 we obtain the desired inequality .
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Theorem 3.2. Let E be a symmetric quasi-Banach function space on [0;1] with M(r)(E) = 1 for some 0 < r < ∞ and
let y = (yn)n≥1 ⊂ HE(A). Define (yn)n≥1 7→ (Φ(yn))n≥1, then Φ extends to a contractive projection from HE(A; `1)
onto LE(D; `1), i.e. ∥∥∥Φ(y)

∥∥∥
LE(D;`1)

≤

∥∥∥y
∥∥∥

HE(A;`1)

for all y ∈ HE(A; `1). The extension will be denoted still by Φ.

Proof. Let y = (yn)n≥1 ∈ HE(A; `1), then for all ε > 0 there are (ukn)k,n≥1 and (vnk)n,k≥1 in HE1/2 (A) such that

xn =

∞∑
k=1

uknvnk, ∀n,

and
∑
∞

k,n=1 uknu∗kn ∈ LE(M) and
∑
∞

n,k=1 v∗nkvnk ∈ LE(M), and

∥∥∥(yn)n≥1

∥∥∥
HE(A;`1)

+ ε ≥

∥∥∥∥∥∥∥
∞∑

k,n=1

uknu∗kn

∥∥∥∥∥∥∥
1
2

HE(A)

∥∥∥∥∥∥∥
∞∑

k,n=1

v∗nkvnk

∥∥∥∥∥∥∥
1
2

HE(A)

.

Hence, by Corollary 2.3. and Theorem 2.2. in [4]

Φ(yn) = Φ

 ∞∑
k=1

uknvnk

 =

∞∑
k=1

Φ(uknvnk) =

∞∑
k=1

Φ(ukn)Φ(vnk), ∀ n.

Then by using the inequality in the proof of Lemma 5.1 in [4] we obtain

equation

∥∥∥(Φ(yn))n≥1

∥∥∥
LE(D;`1)

=
∥∥∥∥( ∑

∞

k=1 Φ(ukn)Φ(vnk)
)

n≥1

∥∥∥∥
LE(D;`1)

≤

∥∥∥∥∥∥∥∥
 ∞∑

k,n=1

|Φ(u∗kn)|2


1/2
∥∥∥∥∥∥∥∥

LE1/2 (D)

∥∥∥∥∥∥∥∥
 ∞∑

k,n=1

|Φ(vnk)|2


1/2
∥∥∥∥∥∥∥∥

LE1/2 (D)

≤

∥∥∥∥∥∥∥∥
 ∞∑

k,n=1

|u∗kn|
2


1/2

∥∥∥∥∥∥∥∥
HE1/2 (A)

∥∥∥∥∥∥∥∥
 ∞∑

k,n=1

|vnk|
2


1/2

∥∥∥∥∥∥∥∥
HE1/2 (A)

≤

∥∥∥(yn)n≥1

∥∥∥
HE(A;`1)

+ ε.

So letting ε→ 0 we obtain verifies inequality.
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[3] T.N. Bekjan, Q. Xu, Riesz and Szegö type factorizations for noncommutative Hardy spaces, J. Operator Theory 62 (2009) 215–231.
[4] T.N. Bekjan, Noncommutative symmetric Hardy spaces, Integ. Eq. Oper. Theor. 81 (2015) 191–212.
[5] T.N. Bekjan, K. Tulenov, D. Dauitbek, The noncommutative H(r,s)

p (A; `∞) and Hp(A; `1) spaces, Positivity 19 (2015) 877–891.
[6] C. Bennett, R. Sharpley. Interpolation of Operators, Academic Press Inc., Boston, MA, (1988).
[7] D.P. Blecher, L.E. Labuschagne, Characterizations of noncommutative H∞, Integ. Equat. Oper. Theor. 56 (2006) 301–321.
[8] A. Defant, Classical summition in Commutative and Noncommutative Lp-spaces, Lecture Notes in Mathematics, Springer-Verlag,

Berlin (2011), 80–95.
[9] A. Defant, M. Junge, Maximal theorems of Menchoff-Rademacher type in non-commutative Lq-spaces, J. Funct. Anal. 206 (2004)

322–355.
[10] S. Dirksen, Noncommutative Boyd interpolation theorems, ArXiv:1203.1653v2.
[11] R. Exel, Maximal subdiagonal algebras, Amer. J. Math. 110 (1988) 775–782.
[12] T. Fack, H. Kosaki, Generalized s-numbers of τ-measurable operators, Pac. J. Math. 123 (1986) 269–300.
[13] M. Junge, Doobs inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002) 149–190.



K.S. Tulenov, O.M. Zholymbayev / Filomat 32:3 (2018), 955–964 964

[14] M. Junge, Q. Xu, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007) 385–439.
[15] S.G. Krein, J.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, Translations of Mathematical Monographs, AMS, 54

(1982).
[16] J. Lindentrauss, L. Tzafriri, Classical Banach space II, Springer-Verlag, Berlin, (1979).
[17] M. Marsalli, G. West, Noncommutative Hp spaces, J. Operator Theory 40 (1998) 339–355.
[18] G. Pisier, Non-commutative vector valued Lp-spaces and completely p-summing maps, Astérisque, 247 (1998).
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