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Abstract. In the paper we study properties of some integro - differential operators of fractional order. As
an application of the properties of these operators for Poisson equation we examine questions on solvability
of a fractional analogue of the Neumann problem and analogues of periodic boundary value problems for
circular domains. The exact conditions for solvability of these problems are found.

1. Introduction

Let Q be a bounded domain from Rn with a smooth boundary S. It is known that classical problems for
the Poisson equation

∆u(x) = f (x), x ∈ Q, (1)

are Dirichlet and Neumann problems. Let ν be a normal vector to S, and Dν = d
dν be an operator of

differentiation along the normal, D0
ν = I be a unit operators. Then Dirichlet and Neumann boundary

conditions can be given in the following form:

Dα
νu(x) = 1α(x), x ∈ S, (2)

where α = 0 or α = 1. It is known that the Dirichlet problem is unconditionally solvable, and for solvability
of the Neumann condition the following condition is necessary:∫

Q

f (x)dx =

∫
S

11(x)dx. (3)
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In this paper, we introduce fractional analogues of the boundary operators Dα
ν , and for the equation

(1) we study the boundary value problem with the boundary condition (2) for all values of the parameter
α ∈ (0,∞). Moreover, we investigate solvability of some analogues of periodic boundary value problems
and an analog of Samarskii-Ionkin type boundary value problems for circular domains.

Let Ω = {x ∈ Rn : |x| < 1} be a unit ball, n ≥ 2, ∂Ω = {x ∈ Rn : |x| = 1} - unit sphere. Suppose further that,

u(x) is a smooth function in the domain Ω, r = |x|, θ = x/r, δ = r d
dr - Dirac operator, where r d

dr =
n∑

j=1
x j

∂
∂x j

,

α > 0.
Let 0 < α < ∞ be a real number. Consider in Ω integration and differentiation operators of the order α

in the Hadamard sense [6]:

Jα[u](x) =
1

Γ(α)

r∫
0

(
ln

r
s

)α−1
u(sθ)

ds
s
, Dα[u](x) = J`−α[δ`[u]](x), ` − 1 < α ≤ `, ` = 1, 2, . . . .

2. Properties of Jα and Dα Operators

In this section we study properties of Jα and Dαoperators. The following assertions are proved in [20].

Lemma 2.1. Let α > 0, 0 < λ < 1 and u(x) ∈ Cλ+p
(
Ω

)
, p = 0, 1, ... If the condition u(0) = 0 holds, then

Jα [u] (x) ∈ Cλ+p
(
Ω

)
and Jα [u] (0) = 0.

Lemma 2.2. Let µ ≥ 0, ` − 1 < α ≤ `, ` = 1, 2, . . . ,0 < λ < 1 and u(x) ∈ Cλ+p (
Ω̄

)
, p ≥ `. Then Dα[u](x) ∈

Cλ+p−` (Ω̄)
and the equality Dα[u](0) = 0 holds.

Lemma 2.3. Let µ ≥ 0, ` − 1 < α ≤ `, ` = 1, 2, . . . , 0 < λ < 1 and u(x) ∈ Cλ+p (
Ω̄

)
, p ≥ `, p = 1, 2, ... Then

for any x ∈ Ω̄:

Jα [Dα[u]] (x) = u(x) − u(0), (4)

and if u(0) = 0, then we get

Dα [Jα[u]] (x) = u(x). (5)

Lemma 2.4. Let ` − 1 < α ≤ `, ` = 1, 2, . . . , 0 < λ < 1, f (x) be a smooth function in the domain Ω̄ and
∆u(x) = f (x), x ∈ Ω. Then

∆Dα[u](x) = |x|−2Dα[|x|2 f ](x), x ∈ Ω. (6)

3. The Neumann Type Problem

In this section we consider s fractional analogue of the Neumann problem with the boundary condition
Dα.

Problem 1. (Neumann type problem). Let 0 < α. Find a function u(x) ∈ C2(Ω) ∩ C(Ω) such that
Dα [u] (x) ∈ C(Ω), and satisfying the following equation:

∆u(x) = f (x), x ∈ Ω, (7)

and the boundary value condition:

Dα [u] (x) = 1(x), x ∈ ∂Ω. (8)

Note that the local and nonlocal boundary value problems with boundary operators of fractional order
for the second order elliptic equations were studied in [5, 7, 8, 16, 17, 21] and for higher-order equations in
[1–3, 18, 19].

The following proposition is true.



M. Koshanova et al. / Filomat 32:3 (2018), 939–946 941

Theorem 3.1. Let `−1 < α ≤ `, ` = 1, 2, ..., 0 < λ < 1, f (x) ∈ Cλ+2`−1(Ω), 1(x) ∈ Cλ+`+1(∂Ω). Then for solvability
of the problem 1 it is necessary and sufficient the following condition:∫

Ω

f`−α(y)dy =

∫
∂Ω

1(y)dy., (9)

where the function f`−α(x) = r−2 J`−α
[
r2δ`−1[ f ]

]
(x).

If a solution of the problem exists, then it is unique up to a constant term, belongs to the class Cλ+`+1(Ω).

Proof. Let u(x) be a solution of the problem 1. Apply the operator Dα to the function u(x), and denote
v(x) = Dα[u](x). Find conditions, which the function v(x) satisfies. It is obvious that

v(x)|∂Ω = Dα[u](x)|∂Ω = 1(x).

Applying the operator ∆ to the equality v(x) = Dα[u](x), due to (6), we obtain ∆v(x) = r−2Dα[r2 f ](x).
Therefore, if u(x) is a solution of the problem 1, then the function v(x) = Dα[u](x) will be a solution of the
Dirichlet problem

∆v(x) = F(x), x ∈ Ω, v(x) = 1(x), x ∈ ∂Ω,

with the function F (x) = r−2Dα[r2 f ](x). Moreover, the function v(x) satisfies the condition v(0) = 0. The
function F(x) can be represented in the form F(x) =

(
r d

dr + 2
)

f`−α(x). Then, it is known (see [16]) that for the
equality v(0) = 0, the following condition is necessary:∫

Ω

f`−α(y)dy =

∫
∂Ω

1(y)dSy.

Therefore, necessity of the condition (9) is proved. Applying the operator Jα to the equality v(x) = Dα[u](x),
due to (4), we obtain u(x)−u(0) = Jα[v](x).We show that the condition (9) is sufficient for the existence of any
solution of the problem 1. Indeed, let v(x) be a solution of the Dirihlet problem with F (x) = r−2Dα[r2 f ](x).
If f (x) ∈ Cλ+2`−1(Ω), then F (x) ∈ Cλ+`−1(Ω), and since 1(x) ∈ Cλ+`+1(∂Ω), then a solution of the Dirichlet
problem exists, is unique and belongs to the class Cλ+p+1 (

Ω̄
)

(see e.g. [4]). We represent the function
F (x) = |x|−2Dα[|x|2 f ](x) as F (x) =

(
r d

dr + 2
)

f`−α(x) . If for the function f`−α(x) the condition (9) holds, then
corresponding solution of the Dirichlet problem satisfies the condition v(0) = 0. Then we should to consider
the function u(x) = C + Jα[v](x), which satisfies all conditions of the problem 1. By Lemma 2.1 this function
belongs to the class Cλ+p+1 (

Ω̄
)
. Further, using (5), we obtain Dα[u](x)|∂Ω = Dα[C] + Dα[Jα[v]](x)|∂Ω =

v(x)|∂Ω = 1(x). Moreover,

∆u(x) = ∆

 1
Γ (1 − α)

r∫
0

(
ln

r
s

)1−α
v(sθ)

ds
s

 = ∆

 1
Γ (1 − α)

1∫
0

(
ln

1
ξ

)1−α

v(ξx)
dξ
ξ

 =

=
1

Γ (1 − α)

1∫
0

(
ln

1
ξ

)1−α

ξ2F(ξx)
dξ
ξ

=
1

Γ (1 − α)

1∫
0

(
ln

1
ξ

)1−α

ξ2
|ξx|−2Dα[|ξx|2 f (ξx)]

dξ
ξ

=

|x|−2

Γ (1 − α)

r∫
0

(
ln

r
s

)1−α
Dα[s2 f (sθ)]

ds
s

= r−2 Jα
[
Dα[r2 f ]

]
(x) = r−2

· r2 f (x) = f (x).

Thus, the function u(x) = C + Jα[v](x) satisfies all conditions of the problem 1.

Remark 3.2. If α = 1 , then f1(x) = r−2 J0[r2 f ](x) = f (x) and (9) coincides with the condition of solvability of
the Neumann problem (3).
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4. Boundary Value Problems with Periodic Conditions

In this section we study some analogues of periodic problems in Ω.
Let x = (x̃, xn) ∈ Ω, x̃ = (x1, ..., xn−1). For any x = (x̃, xn) ∈ Ω we put ”opposite” point x∗ = (ax̃,−xn) ∈ Ω,

where a = (a1, a2, ..., an−1) and a j, j = 1, ...,n − 1 take one of the values ±1. Denote

∂Ω+ = {x ∈ ∂Ω : xn ≥ 0} , ∂Ω− = {x ∈ ∂Ω : xn ≤ 0} , I = {x ∈ ∂Ω : xn = 0} .

Let 0 ≤ β < α ≤ 1 .Consider in Ω the following problem.
Problem 2. Find a function u(x) ∈ C2(Ω) ∩ C(Ω̄), such that Dβ[u](x) ∈ C(Ω̄), Dα[u](x) ∈ C(Ω̄) and

−∆u(x) = f (x), x ∈ Ω, (10)

Dβu(x) − (−1)kDβu(x∗) = 10(x), x ∈ ∂Ω+, (11)

Dα[u](x) + (−1)kDα[u](x∗) = 11(x), x ∈ ∂Ω+ (12)

where k = 1, 2.
These problems are analogous to the classical periodic boundary value problems. The problem (10) -

(12) in the case β = 0, α = 1 have been studied in [12, 13], and in the case 0 < α < 1 for the Riemann -
Liouville and Caputo operators in [15].

If x = (x̃, 0) ∈ I, then x∗ = (αx̃, 0) ∈ I, therefore, a necessary condition for existence of a solution from the
class u(x) ∈ C2(Ω) ∩ C(Ω̄), Dα[u](x) ∈ C(Ω̄) is fulfillment of the following conditions:

∂p10(x̃, 0) = −(−1)k∂p10(ax̃, 0), ∂p11(x̃, 0) = (−1)k∂p11(ax̃, 0), (x̃, 0) ∈ I, (13)

where p = (p1, p2, ..., pn)−multiindex with |p| ≤ 2 , ∂p = ∂|p|

∂xp1
1 ...∂xpn

n
.

Theorem 4.1. Let 0 < λ < 1, f (x) ∈ Cλ+1(Ω̄), 10(x) ∈ Cλ+2(∂Ω+), 11(x) ∈ Cλ+2(∂Ω+) and the matching conditions
(13) hold. Then

1) if k = 1 and β = 0, then a solution of the problem 2 exists, is unique and belongs to the class Cλ+2(Ω̄);
2) if k = 1 and β > 0 for solvability of the problem 2, then the following condition is necessary and sufficient:

∫
Ω

f1−β(y)dy =

∫
∂Ω+

10(y)dSy. (14)

3) if k = 2, then for solvability of the problem 2 the following condition is necessary and sufficient:

∫
Ω

f1−α(y)dy =

∫
∂Ω+

11(y)dSy. (15)

If a solution exists, then it is unique up to a constant term, and belongs to the class Cλ+2(Ω̄);

Proof. First we prove uniqueness. Let u(x) be a solution of the homogenous problem 2 and Dβu(x) = v(x).
Putting the function u(x) into the boundary value conditions of the problem 2, we have

v(x) − (−1)kv(x∗) = 0, x ∈ ∂Ω+ (16)

Dα−β[v](x) + (−1)kDα−β[v](x∗) = 0, x ∈ ∂Ω+ (17)

If x ∈ ∂Ω−, then x∗ ∈ ∂Ω+. Then the condition (16) implies v(x∗) = (−1)kv(x), x ∈ ∂Ω−, and (17) yields

Dα−β[v](x∗) = −(−1)kDα−β[v](x), x ∈ ∂Ω−.
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Consequently, the equalities (16) and (17) hold for all points x ∈ ∂Ω, i.e.

v(x) = (−1)kv(x∗), Dα−β[v](x) = −(−1)kDα−β[v](x∗), x ∈ ∂Ω.

Since Dα−β[v](x) ∈ C(Ω̄), then from the equality v(x) = (−1)kv(x∗), x ∈ ∂Ω it follows:

Dα−β [v] (x) = (−1)kDα−β [v] (x∗), x ∈ ∂Ω.

Consequently, Dα−β [v] (x) = 0, x ∈ ∂Ω, i.e. v(x) is also solution of the homogeneous Problem 1. Then by
Theorem 3.1: v(x) ≡ C, x ∈ Ω̄. Since v(0) = 0, β > 0, then v(x) ≡ 0, x ∈ Ω̄, i.e. Dβu(x) ≡ 0, x ∈ Ω̄. Therefore,
u(x) ≡ C, x ∈ Ω̄. Therefore, solution of the problem 2 when k = 1, β = 0 is unique, and in other cases it is
unique up to a constant term. Uniqueness is proved.

Now let us turn to study existence of a solution. Consider the following auxiliary functions:

v(x) =
1
2

(u(x) + u(x∗)) , w(x) =
1
2

(u(x) − u(x∗))

Find problems, which these functions satisfy. Let k = 1. Applying the operator ∆ to the functions v(x) and
w(x), we have

∆v(x) = f +(x), ∆w(x) = f−(x), x ∈ Ω, f±(x) =
1
2
[

f (x) ± f (x∗)
]
,

Further, from the boundary value conditions (11) and (12) we obtain

Dβv(x) |∂Ω+
=
10(x)

2
, Dαw(x) |∂Ω+

=
11(x)

2
.

If x ∈ ∂Ω−, then x∗ ∈ ∂Ω+, so the following equalities are true:

Dβv(x) |∂Ω− =
10(x∗)

2
, Dαw(x) |∂Ω− = −

11(x∗)
2

.

Introduce functions:

21̃0(x) =

{
10(x), x ∈ ∂Ω+

10(x∗), x ∈ ∂Ω−
, 21̃1(x) =

{
11(x), x ∈ ∂Ω+

−11(x∗), x ∈ ∂Ω−
.

Therefore, functions v(x) and w(x) are solutions of the following problems:

∆v(x) = f +(x), x ∈ Ω; Dβv(x)
∣∣∣
∂Ω

= 1̃0(x), (18)

∆w(x) = f−(x), x ∈ Ω; Dαw(x)|∂Ω = 1̃1(x). (19)

If for the functions f (x), 10(x) and 11(x) conditions of the theorem hold, then f±(x) ∈ Cλ+1(Ω̄), 1̃0(x) ∈
Cλ+2(∂Ω), 1̃1(x) ∈ Cλ+2(∂Ω).Then a solution of the Dirichlet problem (β = 0) (18) exists, is unique, belongs
to the class Cλ+2(Ω̄). Due to Theorem 3.1 for solvability of the problem (18)(β > 0), (19) it is necessary and
sufficient the following condition:∫

Ω

f +
1−β(y)dy =

∫
∂Ω

1̃0(y)dy,
∫
Ω

f−1−α(y)dy =

∫
∂Ω

1̃1(y)dy, (20)

where f +
1−β(y) = r−2 J1−β[r2 f +](x), f−1−α(y) = r−2 J1−α[r2 f−](x). Since∫

Ω

f +
1−β(y)dy =

∫
Ω

f1−β(y)dy,
∫
Ω

f−1−α(y)dy = 0,
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∂Ω

1̃0(y)dSy =

∫
∂Ω+

10(y)dSy,

∫
∂Ω

1̃1(y)dSy =0,

then the second condition of (20) always holds, and therefore, in this case f−(x) ∈ Cλ+1(Ω̄), 1̃1(x) ∈ Cλ+2(∂Ω)
a solution of the problem (19) exists and belongs to the class Cλ+1(Ω̄). The first condition of (20) can be
rewritten as (15). Under this condition, a solution of the problem (18) exists, is unique up to a constant term,
and belongs to the class Cλ+1(Ω̄). Note that a solution of the problem (19) is unique up to a constant term
C. Since the function w(x) should have the property w(x) = −w(x∗), then we get C ≡ 0. Therefore, existence
of a solution of the problem 2 for the case k = 1 is proved. Case k = 2 is investigated in the same way.

5. On an Samarskii-Ionkin Boundary Value Problem for the Poisson Equation in a Disk

If we consider non-classical problems, one of the most famous problems is Samarskii-Ionkin problem,
arisen in physics in the 70s of the last century, in connection with the study of the processes occurring in
the plasma. Application of the separation of variables method to this problem leads to the spectral problem
for the multiple differentiation operator

y′′(ϕ) = λy(ϕ), 0 < ϕ < 2π, y(0) = 0; y′(0) = y′(2π).

In this section, we consider a Samarskii-Ionkin type boundary value problem for the Poisson equation in
the disk and prove its well-posedness.

Let Ω =
{
x ∈ R2 : |x| < 1

}
be a unit disk, r = |x|, ϕ = arctan (x2/x1), 0 < α ≤ 1 .Consider in Ω the following

problem.
Problem 3. Find a solution of the Poisson equation

∆u(r, ϕ) = f (r, ϕ), (r, ϕ) ∈ Ω (21)

satisfying the boundary conditions

u(1, ϕ) = 11(ϕ), 0 ≤ ϕ ≤ π, (22)

Dαu(1, ϕ) −Dαu(1, 2π − ϕ) = 12(ϕ), 0 ≤ ϕ ≤ π. (23)

It is obvious that necessary condition for the solution existence of problem (21) - (23) from the class
u ∈ C(Ω̄),Dαu ∈ C(Ω̄) is fulfillment of matching conditions:

12(0) = 12(π) (24)

The problem (21) - (23) in the case α = 1 have been studied in [10, 11].

Theorem 5.1. If a solution of Problem 3 exists, then it is unique.

Proof. Suppose that there are two functions u1(r, ϕ) and u2(r, ϕ) satisfying the conditions of problem (21)-
(23).We show that the function u(r, ϕ) = u1(r, ϕ) − u2(r, ϕ) is equal to zero. It is obvious that the function
u(r, ϕ) is harmonic and satisfies the homogeneous conditions (22)-(23):

u(1, ϕ) = 0, 0 ≤ ϕ ≤ π, (25)

Dαu(1, ϕ) −Dαu(1, 2π − ϕ) = 0, 0 ≤ ϕ ≤ π. (26)

Let’s denote v(r, ϕ) = u(r, ϕ) − u(r, 2π − ϕ). Then, we get

v(r, ϕ) = u(r, ϕ) − u(r, 2π − ϕ) = −
[
u(r, 2π − ϕ) − u(r, ϕ)

]
= −v(r, 2π − ϕ), 0 ≤ ϕ ≤ 2π.

Therefore,
∆v(r, ϕ) = 0, (r, ϕ) ∈ Ω,Dαv(1, ϕ) = 0, 0 ≤ ϕ ≤ 2π.

Hence, v(r, ϕ) ≡ C. Since u(1, 0) = u(1, 2π), then v(1, ϕ) = u(1, ϕ) − u(1, 2π − ϕ) = 0, 0 ≤ ϕ ≤ 2π, i.e.
u(1, ϕ) = u(1, 2π−ϕ), 0 ≤ ϕ ≤ 2π. From this and (25), we have u(1, ϕ) = 0, 0 ≤ ϕ ≤ 2π. By the uniqueness of
solutions of the Dirichlet problem for harmonic functions, it follows that u(r, ϕ) ≡ 0.



M. Koshanova et al. / Filomat 32:3 (2018), 939–946 945

We introduce the auxiliary functions

v(r, ϕ) =
u(r, ϕ) + u(r, 2π − ϕ)

2
,w(r, ϕ) =

u(r, ϕ) − u(r, 2π − ϕ)
2

.

It is obvious that u(r, ϕ) = v(r, ϕ)+w(r, ϕ). By direct calculation we find the problems for these functions:
the function v(r, ϕ) is a solution of the Dirichlet problem

∆v(r, ϕ) = f +(r, ϕ), (r, ϕ) ∈ Ω, v(1, ϕ) = 1̃1(ϕ), (27)

and the function w(r, ϕ) is a solution of the Neumann type problem

∆w(r, ϕ) = f−(r, ϕ), (r, ϕ) ∈ Ω,Dαv(1, ϕ) = 1̃2(ϕ), 0 ≤ ϕ ≤ 2π. (28)

Here

f +(r, ϕ) =
f (r, ϕ) + f (r, 2π − ϕ)

2
, f−(r, ϕ) =

f (r, ϕ) − f (r, 2π − ϕ)
2

,

1̃1(ϕ) =

{
11(ϕ) − w(1, ϕ), 0 ≤ ϕ ≤ π
11(2π − ϕ) − w(1, 2π − ϕ), π ≤ ϕ ≤ 2π 1̃2(ϕ) =

 1 2(ϕ)
2 , 0 ≤ ϕ ≤ π
−
1 2(2π−ϕ)

2 , π ≤ ϕ ≤ 2π
.

The Dirichlet problem (27) has a unique solution. It is easily seen that the function v(r, ϕ) has the
symmetric property v(r, ϕ) = v(r, 2π − ϕ).

Since

∫
Ω

f−1−α(x)dx = 0,

2π∫
0

1̃2(ϕ)dϕ = 0.

then we apply the criterion of existence of solutions of the Neumann type problem (28). Its solution is not
unique up to an arbitrary C = constant . It is easily seen that the function w(r, ϕ) has the symmetric property
w(r, ϕ) = −w(r, 2π − ϕ) iff C = 0. Thus, we further assume that this condition holds. The smoothness of the
solution of the problem follows from the smoothness of solutions of the corresponding Dirichlet (27) and
Neumann type problems (28).

Thus, the following theorem is proved.

Theorem 5.2. Suppose f (r, ϕ) ∈ Cλ+1(Ω̄), 11(ϕ) ∈ Cλ+2[0, π], 12(ϕ) ∈ Cλ+2[0, π], 0 < λ < 1, and the consistency
conditions (24) hold. Then a solution of the problem 3 exists, is unique and belongs to the class Cλ+2(Ω̄).
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