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Abstract. In the present paper, we obtain several sufficient conditions for Carathéodory functions in the
open unit disk U = {z € C : |z] < 1}. We also obtain sufficient conditions for p-valent or starlike functions.
Moreover, we improve some results due to Nunokawa [Tsukuba ]. Math. 13 (1989), 453—455] as some special
cases of main results.

1. Introduction

Let A(p) denote the class of functions f of the form

fl2) =2+ Z a,z",

n=p+1

which are analytic in the open unit disk U = {z € C : |z| < 1} and A = A(1). A function f € A(p) is called
p-valent in U if f satisfies the following two conditions:

(i) for w € C, the equation f(z) = w has at most p roots in U;
(ii) there exists a wy € C such that the equation f(z) = wy has exactly p roots in U.
A function f € A(p) is said to be p-valent starlike if
R {Zf &)
f@)

If a function f € A is 1-valent starlike, then it is called starlike. It is known that that p-valent starlike
function in A(p) is p-valent.

Let P be the class of functions p which are analytic in the unit disk U, with p(0) = 1 and R {p(z)} > 0 in
U. If p € P, then we say that p is a Carathéodory function. It is well-known that if f € A with f’ € P, then

}>0 (z e U).
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the function f is univalent in U (cf. [1, 10]). In 1935, Ozaki [9] extended the above result as follows: if f is
analytic in a convex domain D and

R {exp(in)fP(2)} >0 (z€D), 1)
where a is a real constant, then f is at most p-valent in D. This shows that if f € A(p) with
RO} >0 (zew),

then f is at most p-valent in U. Nunokawa [3] (see also [4]) improved the above result to the following.

Theorem A ([3, Nunokawal]) Let p > 2. If f(z) = 2F + ):ff:p +13n2" is analytic in U and

3
) =z
‘arg{f” (z)}‘ <4 (zel),
then f is p-valent in U.

Recently, Nunokawa et al. [6] found some sufficient conditions for function to be p-valent by improving
Ozaki’s condition given by (1). Also, in [7] and [8], Nunokawa and Sokét obtained another p-valent
conditions by using geometric properties of functions in A(p).

The purpose of the present paper is to investigate some sufficient conditions for Carathéodory functions
and to find some conditions for p-valent functions or starlike functions. And we improve Theorem A
obtained by Nunokawa [3].

The following lemmas will be required for our results.

Lemma 1.1. ([5, Nunokawa]) Let p be analytic in U, p(z) # 0in U, p(0) = 1 and suppose that there exists a zg € U
such that

|argp(z)) < ga for |z| < |zol

and

|argp(zo)| = ga, a>0.
Then

20p'z0) _

p(zo0) '
where
1 T

k> (a + —), when arg {p(z0)} = Sa

and
1/ 1 I

k< -3 (a + E)' when  arg {p(zo)} = o

with

p(z0)V* = +ia.
Lemma 1.2. ([2, Nunokawal]) Let f € A(p). If there exists a (p — k + 1)-valent starlike function g(z) = J
Y p-ks2 buz" that satisfies
(k)
[0
9(2)
then f is p-valent in U.

}>0 (ze ),
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2. Main Results

Theorem 2.1. Let p be analytic in U, p(z) # 0in U, p(0) = 1 and suppose that

|arg {p(2) +zp'(2) - oc}| < g +arctan( V1 +2a) (z€ ), )
where 0 < a < 1. Then, we have
b4
|arg {p(z)}| <3 (zel),

or
Rip@)} >0 (ze).

Proof. If there exists a point zj (|zg] < 1) such that
largp@)}| <5 for |2l <lz

and
|arg (p(z0)} | = 5,

then, by Lemma 1.1 with @« = 1, we have

zop'(z0) _
p(zo)

For the case arg {p(z0)} = 7/2, p(z0) = ia and a > 0, we have

ik.

arg {p(zo) + zop’(20) — a}

2op'(20) @ }

= arg{p(zo)} + arg {1 + p(zo)  p(zo)

+arg{1+ik+i%}

+ar {1+i(a+ 1+20z)}
& 2 a

+ arctan( V1 + 2a),

which contradicts the hypothesis (2).
For the case arg {p(zo)} = —7/2, applying the same method as the above, we have

\%

v
N[aINR Na

arg {p(zo) + zop’(20) — a} < — (g + arctan( V1 + 20:)).

This also contradicts the hypothesis (2) and therefore, it completes the proof of Theorem 2.1. O

Example 2.2. Consider a function p; : U — C defined by

o]

1 z"
pi() =~ log(l ~2) = Z:'a — 3)
Then we have
(0)+ 292~ 5 = g
Pia T ah® =5 = o0 -2

Hence p; satisfies the condition (2) with a = 1/2. Therefore, by Theorem 2.1, we have R {p1(z)} > 0in U.
Actually, the function p; satisfies that R {p1(z)} > log2 = 0.693147 - - - in U (See Figure 1 below)
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Figure 1: the image of p; on U

Applying Theorem 2.1, we have the following corollary.
Corollary 2.3. Let p > 2. If f € A(p) satisfies f*~V # 0in U and

|arg {f(”)(z) -a- p!}| < g + arctan( V1 + 2a) (z e U),

where 0 < a < 1, then f is p-valent in U.

Proof. Let us put

_ FPD(z) ~
PO =" pO=1.
Then it follows that

larg {p(z) + zp'(2) - )|

(2
arg{f;fz) —a}

= |arg {f(”)(z) - a‘p!}|
< g + arctan( V1 + 2a).

From Theorem 2.1, we have R {p(z)} > 0 in U, or equivalently,
-1
T R

This shows that f is p-valentin U. [
Example 2.4. Consider a function f; : U — C defined by

= - N DU U U S N B
fie)=20z+ (1 -2)log(Ll-2)] =22+ 32 + 22 + 2+
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Then, we have

, 1 T
arg {pl(z) +zpi(z) — 5}‘ < >

|arg{ 1(2) - 1}‘ =

where p; is the function defined by (3). Therefore, by Corollary 2.3 with p = 2 and a = 1/2, the function f;
is 2-valent in U.

Remark 2.5. For the case @ = 0 in Corollary 2.3, we have Theorem A as aforementioned.

Theorem 2.6. Let p be analytic in U, p(0) = 1, p(z) # 0 in U and suppose that
zp'(z) }
ar, z) + +a
g {P( ) o)

where 0 < o < oo, Then we have

< g — arctan (%) (ze ), (4)

T
larg (p(@))| < 5 (z€ ).
Proof. If there exists a point zj (|zg| < 1) such that
T
larg {p(z)}| < > for |z| < |zo|
and
14
jarg peo) = 3,

then, by Lemma 1.1 with @ = 1, we have

zop' (20) _

(o) ik.

For the case arg {p(z0)} = 7/2, p(z9) = ia and a > 0, we have

zop’ (20)
p(zo) " a}

arg {p(zo) +

zop’(20) a }

= arg {p(zo)} + arg {1 + ENE + (o)

+
o]
=
QaQ
—
—_
+
|
|
—
QR
——

o
w+p)
[
i)
which contradicts the hypothesis (4).
For the case arg {p(z9)} = —7/2, applying the same method as the above, we have

arg {P(Zo) + Z(;F:Z(OZ)O) + a} <- (g - arctan(%)).

This also contradicts the hypothesis (4) and therefore, it completes the proof of Theorem 2.6. [

\Y%
N[A N[A N[A
| |

o o

= =

(@) (@)

=+ -

I I

=] =)
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Corollary 2.7. Let f € A and suppose that

arg {1 + Z]{:;S) + a}

where 0 < a < oo. Then f is starlike in U.

2

< arctan(%) (ze W),

Proof. Let us put

_#'® _
PO = PO=1.
Then it follows that
zp'(2)

arg {p(z) + ) +a}‘
= |arg {1 + Z]]:;S) + a}’

< T_ arctan(i)

2 \3 ’

From Theorem 2.6, we have R {p(z)} > 0in U and

zf'(2)
ER{ 15 }>0 (z € W).

This shows that f is starlike in U. [J

Theorem 2.8. Let p be analytic in U, p(0) = 1 and p(z) # 0 in U and suppose that

m{m} >0 (zel).
Then we have
|arg {p(z)}| < gal (ze ),
where ay is the positive root of the equation
a+ 2 arctan(a) = 2
T
and 1.39 < aq < 1.40.
Proof. If there exists a point zg (|zo| < 1) such that
|argp@)}| < Zar for |2 <z
and
larg (plao)} | = 5o,
then, by Lemma 1.1 with @ = a1, we have

Zop'(20)
p(20)

= ialk.

1102

)
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For the case arg p(zo) = ma1/2, we have
arg { Vp(zo) + ZOP’(ZO)}

B zop’(20)
=5 (arg {p(z0)} + arg {1 + p(20) })

(gal +arg{l + i(xlk})
T
> (Eal + arctan(ocl))

4

NI DNI-N-

which implies that

R { Vp(z0) + ZoP'(Zo)} <0.

And this contradicts the hypothesis (5).
For the case arg p(z9) = —ma1/2, applying the same method as the above, we have

arg{ p(z0) + zop’(zo)} < —%n, or ‘R{\/p(zo) + zop’(zo)} <0.

This also contradicts the hypothesis (5) and therefore it completes the proof of Theorem 2.8. [

Example 2.9. Consider a function p, : U — C defined by

5-z 4
p2(2) = E+Elog(1—z)
:1+22+§zz+323+%z4

A simple calculation leads us to the equation

10
+ 325 +

, 1+z)\?
p2(z) + zpy(z) = (m) .
Therefore the function p; satisfy the inequality (5) and it follows from Theorem 2.8 that
T
|arg {pz(z)}| <5m (z e ).
Let us put

OESAACH)
=3+ 2cosBlog(2 —2cos ) —4sin6arctan(ﬂ) (8 €(0,m)
B & 1—cos6 ’

and

9(6) := 3 {p2 ()}
3sin O

T 1 _cosO _251n910g(2—2c059)—4cos€arctan(

sin O
1- COSQ) (0 € ©m).

Then we have

|arg {pz (eie)}' < ‘arg {pz (eie“)}| <2022 (0€(0,mn),
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Figure 2: the image of p, on U

where 6 (0.804 < 6y < 0.805) is the root of the equation ¢'(0)f(0) = f'(0)g(0) (See figure 2 above). Thus,
this implies that

farg (22} < Fe1 ze L),

Applying Theorem 2.8, we have the following corollary.
Corollary 2.10. Let p > 4. Let f € A(p) satisfy f® #0fork=p—1,p—-2andp-3inU. If

|arg {f(p)(z)}| <7n (zel),

then f is p-valent in U.

Proof. Let us put

(-1
m@=fmw,m@=1

Then it follows that

®)
71(2) + zq,(z) = f p!(z)'

Applying Theorem 2.8, we have

al2)

where a7 (1.39 < a; < 1.40) is the positive root of the equation given by (6).
Next, let us put

= larg {01 @))] < T e L), @)

-2
q2(2) = T 720) = 1.
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Then it follows that

zqé(z)) B 2f(77—1)

20n) + 200 = o) 2+ ) = 2

Let ar; be the positive root of the equation
2 ( a )
a+ —arctan|{= | =m
e 2

and
1.08 < ay < 1.09.

If there exists a point z;, |z1| < 1 such that
T
Jarg (122)}] < Sz for |zl <zl
and

farg g2(z0))| = S,

then we have

21%(21) .
= imok.
q2(z1)

For the case arg q»(z1) = na, /2, we have

(-1
arg {Zqz(zl) + 21‘75(21)} =arg {fZ—l(Zl)}

21%(21)}

= + 2+ ——
arg q»(z1) + arg { P

= gaz + arg {2 + iaok}

> T + t [0%) Tt
> —ap + arctan — = —a
2 2 27

which contradicts (7)
For the case arg q»(z1) = —ntaz /2, we have

arg {Zqz(zl) + Z1E]§_(Zl)}
(2| ()
= arg{ o } = arg{ 7 }

< na
S —=ag.
2

This also contradicts (7) and therefore, we have

{1522}

72

< 3“2 (z € L),

Jarg {7} =

where

2 [0%)
ap + —arctan — =
i 2

1105
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and
1.08 < ap < 1.09.
Let

6fP-3
‘13(2)2%/ 43(0) = 1.

Then it follows that

6 f(p*2) (2)

3q3(2) + zq5(2) = e

Applying the same method as the above, we have

‘arg {3q3(z) + zqg(z)}’
zqg(z)}‘
= + 3+
arg {q3(z)} arg{ G
6 f(p—2) (2)
- s
f(p—Z)(Z)
)
< E( + %ar tan(%))— T
p \W T paran(z))= 7%
where
0.903 < a3 < 0.904.
This shows that
(p-3) (p-3)
arg{%}' = |arg{]%} < gag <3 (zel),
or

m{‘w}w (z € U).

74

1106

(®)

It is trivial that g(z) = z* is 4-valent starlike function in U. Therefore, from (8) and Lemma 1.2, we see that

f is p-valent in U. This completes our proof of Corollary 2.10. [

Remark 2.11. We remark that Corollary 2.10 improves Theorem A for the case p > 4.
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