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Abstract. In this paper, we prove the inequality between the generalized normalized δ-Casorati curvatures
and the normalized scalar curvature for the bi-slant submanifolds in T−space forms and consider the
equality case of the inequality. We also develop same results for semi-slant submanifolds, hemi-slant
submanifolds, CR-submanifolds, slant submanifolds, invariant and anti-invariant submanifolds in T−space
forms.

1. Introduction

In 1993, Chen [9] establish the simple relationships between the main intrinsic invariants and the main
extrinsic invariants of the submanifolds know as the theory of Chen invariants, which is one of the most
interesting research area of differential geometry. Chen has given a basic inequality in terms of the intrinsic
invariant δM and the squared mean curvature ‖H‖2 of the immersion as

δM ≤
m2(m − 2)
2(m − 1)

‖H‖2 +
1
2

(m + 1)(m − 2)c,

for m−dimensional submanifold M of a real space form M(c).This inequality also holds good if M in anti-
invariant submanifold of complex space form M(c)[10]. Similar inequality is also obtained for C−totally
real submanifolds of a Sasakian space form with constant ϕ−sectional curvature c [15], given by

δM ≤
m2(m − 2)
2(m − 1)

‖H‖2 −
1
2

(m + 1)(m − 2)
c + 3

4
.

In the initial paper Chen established inequalities between the scalar curvature, the sectional curvature
and the squared norm of the mean curvature of a submanifold in a real space form. He also obtained
the inequalities between k-Ricci curvature, the squared mean curvature and the shape operator for the
submanifolds in the real space form with arbitrary codimension [8]. Since then different geometers obtained
the similar inequalities for different submanifolds and ambient spaces [6, 7, 23, 27, 28].
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In 2002, Carraiazzo [3] introduced bi-slant submanifolds of an almost Hermitian manifold as a natural
generalization of semi-slant submanifolds.

Casorati [4] introduced Casorati curvature (extrinsic invariant) of a submanifold of a Riemannian man-
ifold and defined as the normalized square length of the second fundamental form, which extends the con-
cept of the principal direction of a hypersurfaces of a Riemannian manifold [19]. The geometrical meaning
and the importance of the Casorati curvature discussed by some distinguished geometers [13, 14, 22, 32, 33].
Therefore it attracts the attention of geometers to obtain the optimal inequalities for the Casorati curvatures
of the submanifolds of different ambient spaces [17, 24, 25, 31].

In this paper, we will study the optimal inequalities for the generalized normalized δ-Casorati curvature
for the bi-slant submanifolds of T−space forms. We also develop same results for semi-slant submanifolds,
hemi-slant submanifolds, CR-submanifolds, slant submanifolds, invariant and anti-invariant submanifolds
in T−space form.

2. Preliminaries

Let (M, 1) be a Riemannian manifold with dim(M) = 2m + s and the Lie algebra of vector field in M
denote by TM . Then M is said to be an S−Manifold if there exist on M an f−structure φ [34] of rank 2m
and s global vector fields ξ1, ..., ξs (structure vector fields) such that [2]
(i) if η1, ..., ηs are dual 1−forms of ξ1, ..., ξs, then:

φξi = 0, ηi
◦ φ = 0, φ2 = −I +

s∑
i=1

ηi
⊗ ξi (1)

1(φX, φY) = 1(X,Y) −
s∑

i=1

ηi(X)ηi(Y) (2)

1(X, ξi) = ηi(X) (3)

for any X,Y ∈ TM, i = 1, ..., s.
(ii) The f−structure φ is normal, that is

[φ,φ] + 2
s∑

i=1

ξi ⊗ dηi = 0

where [φ,φ] is the Nijenhuis tensor of φ.
(iii) η1

∧ ... ∧ ηs
∧ (dηi) , 0 and for each i, dηi = 0

In a T−manifold M, beside the relation (1) and (2) the following also hold:

(∇Xφ)Y = 0 (4)

∇Xξi = 0 (5)

for any vector fields X,Y ∈ TM
Let D denote the distribution determined by −φ2 and D

⊥

the complementary distribution. D
⊥

is
determined by φ2 + I and spanned by ξ1, ..., ξn. If X ∈ D, then ηi(X) = 0 for any i and if X ∈ D

⊥

, then φX = 0.
A plane section Π in TpM of an T−manifold M is called a φ−section if π ⊥ D

⊥

and φ(π) = π. M is of
constant φ−sectional curvature [2] if at each point p ∈ K(π), the sectional curvature K(π) does depend on
the choice of the φ−section π of TpM. If K(π) is constant for all non-null vectors in π, we call M to be of
constant φ−sectional curvature at point p. The function of c defined by c(p) = K(π) is called the φ−sectional
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curvature of M. A T−manifold M with constant φ−sectional curvature c is said to be a T−space form and
is denoted by M(c).

The curvature tensor R of a T−space form M(c) is given in [20]

1(R(X,Y)Z,W) =
c
4
{1(X,Z)1(Y,W) − 1(Y,Z)1(X,W) − 1(X,Z)

∑
ui(Y)ui(W)

−1(Y,W)
∑

ui(Z)ui(X) + 1(X,W)
∑

ui(Y)ui(Z) + 1(Y,Z)
∑

ui(X)ui(W)

+(
∑

ui(Z)ui(X))(
∑

ui(Y)ui(W)) − (
∑

ui(W)ui(X)) + (
∑

ui(Y)ui(Z))

+1(W, φX)1(Y, φZ) + 1(Y, φW)1(X, φZ) − 21(X, φY)1(W, φZ)}.
(6)

When s = 0, a T−manifold M becomes a Kaehler manifold. When s = 1, a T−manifold M becomes a
cosymplectic manifold [20].

The Equation of Gauss for submanifold M of M(c) is given by

R(X,Y,Z,W) = R(X,Y,Z,W) + 1(h(X,Z), h(Y,W)) − 1(h(X,W), h(Y,Z)), (7)

for any vectors X, Y,Z and W tangent to M, where we denote as usual R(X,Y,Z,W) = 1(R(X,Y)Z,W).
From (6) and Gauss equation (7), we have

R(X,Y,Z,W) =
c
4
{1(X,Z)1(Y,W) − 1(Y,Z)1(X,W) − 1(X,Z)

∑
ui(Y)ui(W)

−1(Y,W)
∑

ui(Z)ui(X) + 1(X,W)
∑

ui(Y)ui(Z) + 1(Y,Z)
∑

ui(X)ui(W)

+(
∑

ui(Z)ui(X))(
∑

ui(Y)ui(W)) − (
∑

ui(W)ui(X)) + (
∑

ui(Y)ui(Z))

+1(W, φX)1(Y, φZ) + 1(Y, φW)1(X, φZ) − 21(X, φY)1(W, φZ)}
−1(h(X,Z), h(Y,W)) + 1(h(X,W), h(Y,Z)). (8)

From now on, we suppose that the structure vector fields are tangent to M and we denote by n + s the
dimension of M. We consider n ≥ 2. Hence, if we denote by L = D1 ⊕D2 the orthogonal distribution to D

⊥

in TM. We can write orthogonal direct decomposition TM = L ⊕D
⊥

.
For any orthonormal basis {e1, ..., en, ..., en+s} of TpM, the scalar curvature

τ =
∑
i< j

K(ei ∧ e j) (9)

where K(ei ∧ e j) denoted the sectional curvature of M associated with the plane section spanned by ei,e j. In
particular, if we put en+α = ξα for α = 1, 2, ..., s, then (9) implies

2τ =
∑
i, j

K(ei ∧ e j) + 2
n∑

i=1

s∑
α=1

K(ei ∧ ξα) (10)

Let M be an (n + s)-dimensional submanifold of a T−space form M(c) of dimension 2m + s. Let ∇ and
∇ be the Levi-Civita connection on M and M(c) respectively. The Gauss and Weingarten equations are
respectively defined as

∇XY = ∇XY + h(X,Y),

∇Xξ = −SξX + ∇⊥XY,
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for vector fields X,Y ∈ TM and ξ ∈ T⊥M. Where h, S and ∇⊥ is the second fundamental form, the shape
operator and the normal connection respectively. The second fundamental form and the shape operator
are related by the following equation

1(h(X,Y), ξ) = 1(SξX,Y),

for vector fields X,Y ∈ TM and ξ ∈ T⊥M.
Let M be an (n + s)-dimensional submanifold of a T−space form M(c) of dimension 2m + s. For any

tangent vector field X ∈ TM, we can write φX = PX + FX, where PX and FX are the tangential and normal
components of φX respectively. If P = 0, the submanifold is said to be an anti-invariant submanifold and if
F = 0, the submanifold is said to be an invariant submanifold. The squared norm of P at p ∈M is defined as

‖P‖2 =

n+s∑
i, j=1

12(φei, e j), (11)

where {e1, . . . , en} is any orthonormal basis of the tangent space TpM.
A submanifold M of an almost Hermitian manifold M is said to be a slant submanifold if for any p ∈M

and a non zero vector X ∈ TpM, the angle between JX and TpM is constant, i.e., the angle does not depend
on the choice of p ∈M and X ∈ TpM. The angle θ ∈ [0, π2 ] is called the slant angle of M in M.

A submanifold M of an almost Hermitian manifold M is said to be a bi-slant submanifold, if there exist
two orthogonal distributions D1 and D2, such that (i) TM admits the orthogonal direct decomposition i.e
TM = D1 + D2. (ii) For i=1,2, Di is the slant distribution with slant angle θi.

In fact, semi-slant submanifolds, hemi-slant submanifolds, CR-submanifolds, slant submanifolds can
be obtained from bi-slant submanifolds in particular. We can see the case in the following table:

Table 1: Defination

S.N.
M(c) M D1 D2 θ1 θ2

(1) M semi-slant invariant slant 0 slant angle
(2) M hemi-slant slant anti-invariant slant angle π

2
(3) M CR invariant anti-invariant 0 π

2
(4) M slant either D1 = 0 or D2 = 0 either θ1 = θ2 = θ or θ1 = θ2 , θ

Invariant and anti-invariant submanifolds are the slant submanifolds with slant angle θ = 0 and θ = π
2

respectively and when 0 < θ < π
2 , then slant submanifold is called proper slant submanifold.

If M is a bi-slant submanifold in T−space form M(c), then one can easily see that

‖P‖2 =

n+s∑
i, j

12(Pei, e j) = 2(d1cos2θ1 + d2cos2θ2). (12)

Let M be a Riemannian manifold and K(π) denotes the sectional curvature of M of the plane section
π ⊂ TpM at a point p ∈M. If {e1, . . . , en+s} and {en+s+1, . . . , e2m+s} be the orthonormal basis of TpM and T⊥p M at
any p ∈M, then the scalar curvature τ at that point is given by
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τ(p) =
∑

1≤i< j≤n+s

K(ei ∧ e j)

and the normalized scalar curvature ρ is defined as

ρ =
2τ

(n + s)(n + s − 1)
.

The mean curvature vector denoted by H is defined as

H =
1

n + s

n+s∑
i, j=1

h(ei, ei).

We also put
hγi j = 1(h(ei, e j), eγ), i, j ∈ 1, 2, ..,n + s, γ ∈ {n + s + 1,n + s + 2, ..., 2m + s}.

The norm of the squared mean curvature of the submanifold is defined by

‖H‖2 =
1

(n + s)2

2m+s∑
γ=n+s+1

( n+s∑
i=1

hγii

)2

and the squared norm of second fundamental form h is denoted by C defined as

C =
1

n + s

2m+s∑
γ=n+s+1

n+s∑
i, j=1

(
hγi j

)2

known as Casorati curvature of the submanifold.
If we suppose that L is an r-dimensional subspace of TM, r ≥ 2, and {e1, e2, . . . , er} is an orthonormal basis

of L. Then the scalar curvature of the r-plane section L is given as

τ(L) =
∑

1≤γ<β≤r

K(eγ ∧ eβ)

and the Casorati curvature C of the subspace L is as follows

C(L) =
1
r

2m+s∑
γ=n+s+1

n+s∑
i, j=1

(
hγi j

)2
.

A point p ∈M is said to be an invariantly quasi-umbilical point if there exist 2m−n mutually orthogonal
unit normal vectors ξn+s+1, . . . , ξ2m+s such that the shape operators with respect to all directions ξγ have an
eigenvalue of multiplicity n + s − 1 and that for each ξγ the distinguished eigne direction is the same. The
submanifold is said to be an invariantly quasi-umbilical submanifold if each of its points is an invariantly
quasi-umbilical point.

The normalized δ-Casorati curvature δc(n + s − 1) and δ̂c(n + s − 1) are defined as

[δc(n + s − 1)]p =
1
2
Cp +

n + s + 1
2(n + s)

in f {C(L)|L : a hyperplane of TpM} (13)

and

[δ̂c(n + s − 1)]p = 2Cp +
2(n + s) − 1

2(n + s)
sup{C(L)|L : a hyperplane of TpM}. (14)
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For a positive real number t , (n + s)(n + s − 1), put

a(t) =
1

(n + s)t
(n + s − 1)(n + s + t)((n + s)2

− (n + s) − t), (15)

then the generalized normalized δ-Casorati curvatures δc(t; n + s − 1) and δ̂c(t; n + s − 1) are given as

[δc(t; n + s − 1)]p = tCp + a(t)in f {C(L)|L : a hyperplane of TpM},

if 0 < t < (n + s)2
− (n + s), and

[δ̂c(t; n + s − 1)]p = tCp + a(t)sup{C(L)|L : a hyperplane of TpM},

if t > (n + s)2
− (n + s).

3. Main Theorem

Theorem 3.1. Let M be a (n + s)-dimensional bi-slant submanifold in T−space forms M(c) of dimension 2m + s.
Then

(i) The generalized normalized δ-Casorati curvature δc(t; n + s − 1) satisfies

ρ ≤
δc(t; n + s − 1)

(n + s)(n + s − 1)
+

c
4(n + s)(n + s − 1)

{(n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))} (16)

for any real number t such that 0 < t < (n + s)(n + s − 1).
(ii) The generalized normalized δ-Casorati curvature δ̂c(t; n + s − 1) satisfies

ρ ≤
δ̂c(t; n + s − 1)

(n + s)(n + s − 1)
+

c
4(n + s)(n + s − 1)

{(n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))} (17)

for any real number t > (n + s)(n + s − 1). Moreover , the equality holds in (16) and (17) iff M is an invariantly quasi-umbilical
submanifold with trivial normal connection in M(c), such that with respect to suitable tangent orthonormal frame {e1, . . . , en+s}

and normal orthonormal frame {en+s+1, . . . , e2m+s}, the shape operator Sr ≡ Ser , r ∈ {n + s + 1, . . . , 2m + s}, take the following form

Sn+s+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...
...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 (n+s)(n+s−1)

t a


, Sn+s+2 = · · · = S2m+s = 0. (18)

Proof. Let {e1, . . . , en, en+1 = ξ1, . . . , en+s = ξs} and {en+s+1, . . . , e2m+s} be the orthonormal basis of TpM and T⊥p M
respectively at any point p ∈M. Then from (8), (10) and (12), we have

2τ = (n + s)2
‖H‖2 − (n + s)C +

c
4
{n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))}. (19)

Define the following function, denoted by Q, a quadratic polynomial in the components of the second
fundamental form

Q = tC + a(t)C(L) − 2τ +
c
4
{n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))}, (20)

where L is the hyperplane of TpM. Without loss of generality, we suppose that L is spanned by e1, . . . , en+s−1,
it follows from (20) that
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Q =
n + s + t

n + s

2m+s∑
γ=n+s+1

n+s∑
i, j=1

(hγi j)
2 +

a(t)
n + s − 1

2m+s∑
γ=n+s+1

n+s−1∑
i, j=1

(hγi j)
2
−

2m+s∑
γ=n+s+1

( n+s∑
i=1

hγii

)2

,

which can be easily written as

Q =

2m+s∑
γ=n+s+1

n+s−1∑
i=1

[(n + s + t
n + s

+
a(t)

n + s − 1

)
(hγii)

2 +
2(n + s + t)

n + s
(hγin+s)

2
]

+

2m+s∑
n+s+1

[
2
(n + s + t

n + s
+

a(t)
n + s − 1

) n+s∑
(i< j)=1

(hγi j)
2
− 2

n+s∑
(i< j)=1

hγiih
γ
j j +

t
n + s

(hγn+sn+s)
2
]
.

(21)

From (21), we can see that the critical points

hc = (hn+s+1
11 , hn+s+1

12 , . . . , hn+s+1
n+sn+s, . . . , h

2m+s
11 , . . . , h2m+s

n+sn+s)

of Q are the solutions of the following system of homogenous equations:

∂Q
∂hγii

= 2
(

n+s+t
n+s +

a(t)
n+s−1

)
(hγii) − 2

∑n+s
k=1 hγkk = 0

∂Q
∂hγn+sn+s

= 2t
n+s hγn+sn+s − 2

∑n+s−1
k=1 hγkk = 0

∂Q
∂hγi j

= 4
(

n+s+t
n+s +

a(t)
n+s−1

)
(hγi j) = 0

∂Q
∂hγin+s

= 4( n+s+t
n+s (hγin+s) = 0,

(22)

where i, j = {1, 2, . . . ,n + s − 1}, i , j, and γ ∈ {n + s + 1, . . . , 2m + s}.
Hence, every solution hc has hγi j = 0 for i , j and the corresponding determinant to the first two equations

of the above system is zero. Moreover, the Hessian matrix of Q is of the following form

H(Q) =

 H1 O O
O H2 O
O O H3

 ,
where

H1 =



2
(

n+s+t
n+s + a(t)

n+s−1

)
− 2 −2 . . . −2 −2

−2 2
(

n+s+t
n+s + a(t)

n+s−1

)
− 2 . . . −2 −2

...
...

. . .
...

...

−2 −2 . . . 2
(

n+s+t
n+s + a(t)

n+s−1

)
− 2 −2

−2 −2 . . . −2 2t
n+s


,

H2 and H3 are the diagonal matrices and O is the null matrix of the respective dimensions. H2 and H3 are
respectively given as

H2 = dia1
(
4
(n + s + t

n + s
+

a(t)
n + s − 1

)
, 4

(n + s + t
n + s

+
a(t)

n + s − 1

)
, . . . , 4

(n + s + t
n + s

+
a(t)

n + s − 1

))
,
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and

H3 = dia1
(4(n + s + t)

n + s
,

4(n + s + t)
n + s

, . . . ,
4(n + s + t)

n + s

)
.

Hence, we find thatH(Q) has the following eigenvalues

λ11 = 0, λ22 = 2
( 2t

n + s
+

a(t)
n + s − 1

)
, λ33 = · · · = λn+sn+s = 2

(n + s + t
n + s

+
a(t)

n + s − 1

)
,

λi j = 4
(n + s + t

n + s
+

a(t)
n + s − 1

)
, λin =

4(n + s + t)
n + s

, ∀ i, j ∈ {1, 2, . . . ,n + s − 1}, i , j.

Thus, Q is parabolic and reaches at minimum Q(hc) = 0 for the solution hc of the system (22). Hence Q ≥ 0
and hence

2τ ≤ tC + a(t)C(L) +
c
4
{n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))},

whereby, we obtain

ρ ≤
t

(n + s)(n + s − 1)
C +

a(t)
(n + s)(n + s − 1)

C(L)

+
c

4(n + s)(n + s − 1)
{n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))}

for every tangent hyperplane L of M. If we take the infimum over all tangent hyperplanes L, the result
trivially follows. Moreover the equality sign holds iff

hγi j = 0, ∀ i, j ∈ {1, . . . ,n + s}, i , j and γ ∈ {n + s + 1, . . . , 2m + s} (23)

and

hγn+sn+s =
(n + s)(n + s − 1)

t
hγ11 = · · · =

(n + s)(n + s − 1)
t

hγn+s−1n+s−1,

∀γ ∈ {n + s + 1, . . . , 2m + s}. (24)

From (23) and (24), we obtain that the equality holds if and only if the submanifold is invariantly quasi-
umbilical with normal connections in M, such that the shape operator takes the form (18) with respect to
the orthonormal tangent and orthonormal normal frames.

In the same way, we can prove (ii).

Corollary 3.2. Let M be a (n + s)-dimensional bi-slant submanifold in T−space form M. Then
(i) The normalized δ-Casorati curvature δc(n + s − 1) satisfies

ρ ≤ δc(n + s − 1) +
c

4(n + s)(n + s − 1)
{n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))}.

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with trivial normal connection
in M(c), such that with respect to suitable tangent orthonormal frame {e1, . . . , en+s} and normal orthonormal frame
{en+s+1, . . . , e2m+s}, the shape operator Sr ≡ Ser , r ∈ {n + 1, . . . , 2m + s}, take the following form

Sn+s+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...
...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 2a


, Sn+s+2 = · · · = S2m+s = 0.
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(ii) The normalized δ-Casorati curvature δ̂c(n + s − 1) satisfies

ρ ≤ δ̂c(n + s − 1) +
c

4(n + s)(n + s − 1)
{n(n − 1) + 3(d1cos2θ1 + d2cos2θ2 + s(1 − s))}.

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with trivial normal connection
in M(c), such that with respect to suitable tangent orthonormal frame {e1, . . . , en+s} a and normal orthonormal frame
{en+s+1, . . . , e2m+s}, the shape operator Sr ≡ Ser , r ∈ {n + s + 1, . . . , 2m + s}, take the following form

Sn+s+1 =



2a 0 0 . . . 0 0
0 2a 0 . . . 0 0
0 0 2a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2a 0
0 0 0 . . . 0 a


,Sn+s+2 = · · · = S2m+s = 0.

Theorem 3.3. Let M be a (n + s)-dimensional submanifold in T−space form M(c) of dimension 2m + s. Then we
have the following table for generalized normalized δ−Casorati curvatures:

Generalized Normalized δ−Casorati curvatures
S.N. M(c) M Inequality
(1) M(c) semi-slant

1. ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) +

c
4(n+s)(n+s−1) {(n(n−1)+3(d1+d2cos2θ2+s(1−s))}

2. ρ ≤ δ̂c(t;n+s−1)
(n+s)(n+s−1) +

c
4(n+s)(n+s−1) {(n(n−1)+3(d1+d2cos2θ2+s(1−s))}

(2) M(c) hemi-slant

1. ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3(d1cos2θ1 + s(1 − s))}

2. ρ ≤ δ̂c(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3(d1cos2θ1 + s(1 − s))}

(3) M(c) CR

1. ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3(d1 + s(1 − s))}

2. ρ ≤ δ̂c(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3(d1 + s(1 − s))}

(4) M(c) slant

1. ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n−1)+3((n+s)cos2θ+s(1−s))}

2. ρ ≤ δ̂c(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n−1)+3((n+s)cos2θ+s(1−s))}

(5) M(c) invariant

1. ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 2) + 3s(2 − s))}

2. ρ ≤ δ̂c(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 2) + 3s(2 − s))}
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S.N. M(c) M Inequality
(6) M(c) anti-invariant

1. ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3s(1 − s))}

2. ρ ≤ δ̂c(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3s(1 − s))}

Moreover, the equality holds iff M is an invariantly quasi-umbilical submanifold with trivial normal connection
in M(c), such that with respect to suitable tangent orthonormal frame {e1, . . . , en+s} and normal orthonormal frame
{en+s+1, . . . , e2m+s}, the shape operator Sr ≡ Ser , r ∈ {n + s + 1, . . . , 2m + s}, take the following form

Sn+s+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...
...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 (n+s)(n+s−1)

t a


, Sn+s+2 = · · · = S2m+s = 0. (25)

Proof. First four results of the Theorem 3.3 can be simply obtained with the help of Table 1 and the results
in Theorem 3.1. And the next two results of the Theorem 3.3 can be seen by putting θ = 0 and θ = π

2 in case
of invariant and anti-invariant submanifold respectively in result of slant submanifold given in Theorem
3.3.

Corollary 3.4. Let M be a (n+s)-dimensional submanifold in T−space form M(c). Then for the normalized δ−Casorati
we have the following table

Normalized δ−Casorati curvatures
S.N. M(c) M Inequality
(1) M(c) semi-slant

1. ρ ≤ δc(t; n+s−1)+ c
4(n+s)(n+s−1) {(n(n−1)+3(d1 +d2cos2θ2 +s(1−s))}

2. ρ ≤ δ̂c(t; n+s−1)+ c
4(n+s)(n+s−1) {(n(n−1)+3(d1 +d2cos2θ2 +s(1−s))}

(2) M(c) hemi-slant

1. ρ ≤ δc(t; n + s− 1) + c
4(n+s)(n+s−1) {(n(n− 1) + 3(d1cos2θ1 + s(1− s))}

2. ρ ≤ δ̂c(t; n + s− 1) + c
4(n+s)(n+s−1) {(n(n− 1) + 3(d1cos2θ1 + s(1− s))}

(3) M(c) CR

1. ρ ≤ δc(t; n + s − 1) + c
4(n+s)(n+s−1) {(n(n − 1) + 3(d1 + s(1 − s))}

2. ρ ≤ δ̂c(t; n + s − 1) + c
4(n+s)(n+s−1) {(n(n − 1) + 3(d1 + s(1 − s))}

(4) M(c) slant

1. ρ ≤ δc(t; n+s−1)+ c
4(n+s)(n+s−1) {(n(n−1)+3((n+s)cos2θ+s(1−s))}

2. ρ ≤ δ̂c(t; n+s−1)+ c
4(n+s)(n+s−1) {(n(n−1)+3((n+s)cos2θ+s(1−s))}
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S.N. M(c) M Inequality
(5) M(c) invariant

1. ρ ≤ δc(t; n + s − 1) + c
4(n+s)(n+s−1) {(n(n − 2) + 3s(2 − s))}

2. ρ ≤ δ̂c(t; n + s − 1) + c
4(n+s)(n+s−1) {(n(n − 2) + 3s(2 − s))}

(6) M(c) anti-invariant

1. ρ ≤ δc(t; n + s − 1) + c
4(n+s)(n+s−1) {(n(n − 1) + 3s(1 − s))}

2. ρ ≤ δ̂c(t; n + s − 1) + c
4(n+s)(n+s−1) {(n(n − 1) + 3s(1 − s))}

Moreover, the equality sign for the inequalities δc in the above holds iff M is an invariantly quasi-umbilical
submanifold with trivial normal connection in M(c), such that with respect to suitable tangent orthonormal frame
{e1, . . . , en+s} and normal orthonormal frame {en+s+1, . . . , e2m+s}, the shape operator Sr ≡ Ser , r ∈ {n+s+1, . . . , 2m+s},
take the following form

Sn+s+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...
...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 2a


, Sn+s+2 = · · · = S2m+s = 0.

and the equality sign for the inequalities δ̂c in the above table holds iff M is an invariantly quasi-umbilical submanifold
with trivial normal connection in M(c), such that with respect to suitable tangent orthonormal frame {e1, . . . , en+s}

and normal orthonormal frame {en+s+1, . . . , e2m+s}, the shape operator Sr ≡ Ser , r ∈ {n + s + 1, . . . , 2m + s}, take the
following form

Sn+s+1 =



2a 0 0 . . . 0 0
0 2a 0 . . . 0 0
0 0 2a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2a 0
0 0 0 . . . 0 a


,Sn+s+2 = · · · = S2m+s = 0.
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