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Visualization of Enneper’s Surface by Line Graphics

Vesna Veli¢kovié?

?Department of Computer Science, Faculty of Sciences and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia

Abstract. Here we study Enneper’s minimal surface and some of its properties. We compute and visualize
the lines of self-intersection, lines of intersections with planes, lines of curvature, asymptotic and geodesic
lines of Enneper’s surface. For the graphical representations of all the results we use our own software for
line graphics.

1. Introduction and Known Results

The study of minimal surfaces plays an important role in differential geometry. Minimal surfaces are
surfaces with identically vanishing mean curvature [1, 2]. The term minimal comes from the fact that if
a surface which is bounded by a closed curve has minimal surface area then it has identically vanishing
mean curvature. Due to their attractive shapes and other properties, they have applications in areas such
as architecture, design and material science [3-5].

One example of a minimal surface is Enneper’s surface. It has a non-trivial shape and some interesting
properties such as symmetry, containing straight lines and self-intersections. Some of the recent results on
Enneper’s surface are given in [6-9].

The main stream to represent surfaces in modern computer graphics is their approximation by a polygon
mesh. A problem in this approach arises when we want to represent curves on surfaces. We can draw
curves rather precisely, but, if the surface is approximated, the curves look as if they are not exactly on the
represented surface, but rather as if they “float” around the surface. To overcome this disadvantage we use
line graphics. We do not approximate surfaces, but represent them by families of curves on them.

Unlike the wire model, line graphics take into account the visibility of the surface. For this we need
to compute the intersections of straight line segments and the surface. The visibility problem is treated in
Section 2.

To complete the representation of a surface in line graphics we need to draw the contour by which we
mean the curve of all points of the surface at which the surface normal vector is orthogonal to the projection
ray. Analytically this means we have to find the zeros of a real valued function of two variables on a
rectangle. The corresponding numerical method can be found in [10]. We implemented the procedure for
representing the contour line of Enneper’s surface with the appropriate function in our software.

In this paper we also compute the lines of self-intersection of Ennepers surface. Furthermore, we
visualize the lines of intersections with planes. In the last section we compute and visualize the lines of
curvature, asymptotic and geodesic lines.
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We use our own software to visualize the results. The basic principles of the software are given in [10].
Some of its extensions are applied in the papers [11, 12].

Enneper’s surface ES is given by a parametric representation

') = {ul - @ +ul (), u - @ + 1t (u')?, (u')? - (uZ)Z} (', u*) € R?). (1)

It is a minimal surface.
First, we prove a few results that will be used in the sequel.

Lemma 1.1. We introduce polar coordinates p and ¢ in IR* by
ul(p,¢) =pcos¢ and u*(p,P) =psing for (p,¢) € (0,00) X (0,27).

Then ES has a parametric representation

3 3

p, ) = {p cos ) - % cos (3¢p), psin + % sin (3¢, p? cos (2¢)} (0, ®) € (0, 00) X (0, 210)). @)

Proof. We write x*(u’) and x*(p, ¢) (k = 1,2, 3) for the components of the parametric representations of ES in
(1) and (2), respectivly. Then we obtain

(p, ) = X W'(p, 0)) = (' (p, d)* = W (p, ) = p? (COS2 ¢ — sin? qb) = p? cos (2¢),

and using
cos (3¢) = Re(exp (i¢h)) = Re (cos ¢ +isin )’ = cos’ ¢ — 3 cos psin ¢
and
cos (3¢) = Im(exp (i) = Im (cos ¢ + i sin ¢)3 = —sin® ¢ + 3 cos? ¢ cos ¢,

we conclude

3
2(p, ) = X' (p, §)) = pcosp - % cos’ ¢ + p® cos P sin®
p’ Jo
=pcos — 3 (Cos3q5 —3cosqbsin2q§) =pcosp — 3 cos 3¢

and

3
P(p, ) = X(u'(p, ¢)) = psing - % sin’ ¢ + p sin @ cos® ¢
3 3
=psing - % (sin3 ¢ — 3sin ¢ cos® ¢) =psing + % sin (3¢).

Lemma 1.2. The components x*(p, ¢) of the parametric representation (2) satisfy the relation

3,2
(0] + (o) + 5 00) = (o5 o
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Proof. We have
2 f—

(#0.0) + (20 0)) + 5 (20.9)

4 6

20" P° 2p p 4
p? cos® p— —cos ¢ cos (3¢)+ Yy cos? (3¢)+p* sin? p+ = sin ¢ sin (3¢p) + ry sin? (3¢) + §p4 cos® (2¢) =
6 2 4 6 2 4
p2+%—%<cos¢cos (3¢)—sin(psin(3(p))+;l—)p4 cos? (2¢) :102+%—%C05(4¢))+§p4 cos? (2¢) =
6 4 6 4
2, P2 2 .2 44 2 _ 2 P2 2 44 2 _
p +§—T(Cos 2¢) — sin (2q§))+§p cos® (2¢) = p +3—?(2cos (2¢)—1)+§p cos® (2¢)) =
6 4 3
2 L% (P
Prg+t—H5 = (p+ 3)

Next result gives us the lines of self-intersection of Enneper’s surface. (Figure 1). We also visualize the
lines of intersections of Enneper’s surface with planes (Figure 2).

Lemma 1.3. The lines of self-intersection of Enneper’s surface with the parametric representation (2) are given by

2

2
filp, ) = cosp — % cos(3p) =0 and fo(p,¢P) =sin¢ + % sin (3¢) = 0; 4)
consequently they are in the planes x = 0 and y = 0, respectively (Figure 1).

Proof. The points of self-intersection of Enneper’s surface given by a the parametric representation (2) must
satisfy

X1, ¢1) = ¥(pa, d2), thatis (o1, 1) = ¥(p2, ¢2) fork=1,2,3, (5)

and it follows from (3) that

N
pl 3 p2 3 °
Since the function f : R — R with f(t) = t + £*/3 obviously is one-to-one, this implies p; = p» = p. Thus it
follows from x*(p, ¢1) = x*(p, ), that cos (2¢1) = cos (2¢h2), hence ¢ = T — 1 or Py = 21 — ¢y.
If o = 1 — ¢y, then x1(p, P1) = x1(p, m — ¢1) implies

2 2 2

cos ¢y — % cos (3¢1) = cos (1 — 1) — % cos (3(m — 1)) = —|cos p1 — % cos (3¢1)

that is x}(p, ¢1) = =x(p, ¢1) = fi(p, 1) = 0.
If ¢ = 27 — ¢y, then it can similarly be shown that x*(p, ¢1) = —x*(p, ¢1) = fo(p, 1) = 0.
It is easy to see that if ¢ = 7T — 1 or ¢ = 27t — ¢y, then X(p, ¢1) = Xp, p2). O
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2. The Visibility Problem for Enneper’s Surface

391

Now we deal with the visibility problem for Enneper’s surface ES. First we find the points of intersection

of a straight line y with ES.
We need the following result.

Lemma 2.1. Let § = {p!,p?, p®} and T = {v!,v?, 0%} be vectors with ||7)| = 1. We put

@)

=1+ —
“ 3

3 3,2
,b=pev+ pv and  c(p) = |IpI* + (P) (p+%).

(a) Then we have

b* —ac(p) >0
if and only if
p> ZSinh( log( (3d+ Vo + )))
where
1 2 > - 2 2
(7P + 5 7)) - (70 7+ 5p707)
d= > > L
a

(b) We also have c(p) = 0 if and only if

1. |3 (173)2 9 (273)2
—2ainh| = 2 2, V) 2 2. V) )
p > p1 =2sinh 31og 5 P11z + 3 + 1 112 + 3 +11f

furthermore, p1 > po.

Proof. Obviously the condition in (7) means
312 2
P~ (2132)_(»»133)

a(p+3) 2a||ﬂ|+3(p) petv+zpv).
We put

7 2, 1 30 o 15, ’

d:a(llﬁll +§(p ) )—(pov+5p v) ,
and observe that by the Cauchy-Schwarz inequality and the fact that ||7]] = 1

5 312 2 7 e 3.3
d= (1 + @)(”ﬂp + 1(;73)2) _ (ﬁ. ?7)2 _ (PTT?)?U _ %(p3)2(y3)2

27 e )’ (pP)A(°)

B 3)2 3)2 ( S)Z(PS)Z . )

—( )nm S - (Fey - — - T
32 7 e 3.3

s (p o3 2Fedp’P  (p)

3 + 3 :%(03(;5)077)—;73)220.



V. Veli¢kovié / Filomat 31:2 (2017), 387-405 392
So we may write d = Vd/a, and since a > 0 and p > 0, the condition in (7) is equivalent to

g(p)=p*>+3p—3d >0.

3:

We putp =1, § = —(3/2)d, r =sgn(g) = —1 and sinh(¢p) = §/r
one real solution, given by

—g. Then the cubic equation g(p) = 0 has

po = —2rsinh (%) = 2sinh (%Arsinh(—q)).
Therefore, the condition in (7) is equivalent to p > po, but
(1 . ~ (1 1
Po = 2s1nh(§ log (—q + A7+ 1)) = 231nh(§ log (5 (3d + V942 + 4)))

Thus we have shown that the conditions in (7) and (8) are equivalent.
We observe that

po=i/%(3d+ Vod2 + 4) - - ! .

(b) We put

2

dv = AP + )
1 p 3

Since p > 0, the condition ¢(p) > 0 is equivalent to

p3+3ﬁp+2q=0 where p=1 and q:—gdl,

Putting r = —1 and sinh i = §/r*, we obtain, as in the proof of Part (a), that c¢(p) = 0 if and only if

_ py = —2sinh (L) = 25inh| L 10g[ L + /T
p=p1= Zsmh(3 = 2sinh 3log i r6+1

()

32
p
=2sinn| 3 log | 3 \IP + - + Z[”ﬂ'“( )J+1 ,

2
3 3

which is (9).
Furthermore, since p* + 3p = 3d if and only if p = py by Part (a), p* + 3p = 3d; if and only if p = p; by what
we have just shown, and d; > 4, it follows that p; > po. O

2.1. The intersection of Enneper’s surface with a straight line

We need to determine the points of intersection of Enneper’s surface ES with an arbitrary straight line
(Figure 3) to be able to solve the visibility problem for Enneper’s surface.
Let y be a straight line given by a parametric representation

Jt)=F+17 (teR),
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where 7 = {p', p?, p®} is the position vector of a point P of y, and 7 = {v!,v?,v%} is a unit vector along y. To

find the points of intersection of y and ES when ES is given by a parametric representation (2), we have to
find (p, @) € I, X I and t € R such that

Hp, ) = y(t). (10)
It follows from (2) in Lemma 1.1 and (10) that
2
()
IFOIF + Q = 7 +2(7 « D)t + 1A + %(( ) +2p0t+ v“‘tZ)

p3
2 2
() o () oy
- 24 0(pei+ L 2 o+ 2
—[1+ 3 Jt+2(pov+ 3 )t+||ﬁ]|+ 3 (p+3).

Using the notations of (6) in Lemma 2.1, we have to solve the quadratic equation
at® +2bt* + c(p) = 0, (1)

which, by Lemma 2.1 (a), has real solutions given by

—b + /b? —ac(p)

te(p) = p if and only if p > po, (12)
where py is given by (8); we also note that by Lemma 2.1 (b),
—bbl . .
to(p) = p if and only if p = py, (13)

where p; is given by (9). We define the interval I, = [po, ) N I,. Now it follows from the equation of the
third component in (10) that

p* + te(p)o?
2

cos (2¢) = P

/ (14)

and so
2 = cos (2¢) +1 _ P>+t (p)o? + p?
2 2p? ’

cos (15)

Furthermore, since
cos (3¢) = cos (2¢) cos P — sin (2¢) sin p = cos ¢ (cos (29) -2 sin? qb)
=cos ¢ (cos (29) -2 (1 — cos® d))) =cos¢ (cos (2¢) — 2 + cos (2¢9) + 1)
= cos ¢ (2 cos (2¢) — 1) ,
the equation for the first component in (10) yields

3 2(2cos (2¢9) — 1
pcosq)—%cos(?xp):pcosqb[l— P ( COSS( P )]=p1+t+(p)vl.

Squaring the last identity and substituting (14) and (15), we obtain

2 2 3 3 2 2 2
p2 cOs2 (P (] — % COSZ (3@)) = w (1 _ % (2 (p3 + ti(P)Us) _ 1))

2
P 2 2P )]
_f 1+?—f —(p +ttv).
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We define the functions f, and f_ on I,, by

2
P Ht(p) +p? p? 2(P3 + ti(P)U3) ) N2
fi(p)_f 1+7_f —(p +tiv),

where t.(p) is given by (12) for p € I, \ {p1} and by (13) for p = p;, and determine the zeros of f.(p).
Let p(k) denote the zeros of f.. By (14), we have to check

P + (o)

()

Let p(] ) denote the zeros of fx that satisfy (16). Since

COS¢:i1'%,

we obtain the values

<1. (16)

P+ (00 +(p 1>)2

M+ _
¢, =arccos|+ ,

27

(]) + =2 — CP i+

p +t (p(]) 3)+( (/))

\ 2(p?Y ’

(1) (4=
qbi];Z =2m - (P] .

W= _
¢, =arccos|—

Finally, the points of intersection of Enneper’s surface with the straight line y are given by the pairs

(0, 97 ) € I, x I, that satisfy

(Pi])rdh 1, 2 (]) H

Now let COP denote the center of projection and P be a point in IR®. We write {7 for the position
vector of P and 7 for the unit vector from P to COP. Then P is hidden by Enneper’s surface, if we find
(p,¢) € 1, X1y and t > 0 by the methods described above, such that (10) is satisfied; in the same way, a point
P on Enneper’s surface is invisible with respect to Enneper’s surface ES; now t.(p) is given by (13) on I,
since P € ES implies c(p) = 0 (Figure 3).

Next we represent the intersections of Enneper’s surface with spheres. Similarly as in a case of the
contour, analytically this means to find the zeros of real valued functions of two variables on a rectangle.
We implemented the procedure for drawing the lines of intersection of spheres with Enneper’s surface in
our software (Figure 4).
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3. Lines of Curvature, Asymptotic and Geodesic Lines on Enneper’s surface

Here we determine the lines of curvature, and the asymptotic and geodesic lines on Enneper’s surface.
We need the following results.

Lemma 3.1. Let Enneper’s surface be given by a parametric representation (1).
(a) Then the first fundamental coefficients are given by

gu,12) = gt 1) = (14 @ + 022), gualul,u2) = 0 and g(u',u?) = (1+ @2+ 2?) . (17)
(b) The second fundamental coefficients are given by
Lin(u!, u?) = Lo (u', u?) = 2, Lip(u',u?) =0 and L(u',u*) = —4. (18)
Proof. (a) it follows from (1) that
B, u?) = {1 — () + W?)?, 2utu?, 2u1},
B, u?) = {2u1u2, 1— ?)? + uh)?, —2u2} ,
g, u?) = 2 (ut, u?) e Br(ut, u?)
_ (1 _ ((ul)z _ (uz)z))2 + 422 + A2
=1-2@w)? +2w?)? + (WhH* = 2 W?)? + W?)* + 4> (u?)? + 4(u')?
= 1420 + 202 + (uh)* + 2’ () + (u')*
= 14200 4262 + () + @22) = (14 () + @)
g, u?) = A, u?) e Hu',u’)
=2u'y? (1 - ((ul)2 - (uz)z) - (1 + ((ul)2 - (uz)z)» — 4u?
=4dul? — 4ulu? = 0,
g (ut, u?) = B (u', u?)  Br(u', u?)
— 42 + (1 _ ((uz)z _ (ul)Z))z + 4G22
=4 @) + 1 -2 +2u')? + @) = 2’ @) + W)t + 4y

= 1 )+ 022+ (@) + 2P) = (14 @)+ (2?)

2
s

and

4
g, u?) = gu @, uP)ga(u', 1) — gy, 1) = (1+ @) + @2)?) .
(b) Furthermore, we obtain

9?11(”1/ uZ) = 2{-”1, uzr 1}/ 3?12(”1/ uZ) = Z{uzl ull 0}/ -7?22(”11 uz) = 2{1/{1, _uzl _1} = _9?11(”1/ uz)r

B, u?) x B(ut, u?) =

{40! () = 20" + 20! (WP)? - 20u)?, 207 = 2" + (u2)? + A(uh)r?,

(1 _ ((M1)2 _ (1/[2)2)) (1 + ((ul)Z _ (uZ)Z)) _ 4(u1)2(u2)2} —

{—2u1 (1+ G222, 262 (1 + @ 2622), 1 - (') - @22 - 4(u1)2(u2)2} =
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{20! (1+ @)P??), 202 (1 + @"20A)?), 1= @) + 20 202 - () — 4! PP} =
{2 (14 @ RGRR), 202 (1 4+ @ PGAR), 1 - (02 + GAF) | =
(1+ @ + @A) {20!, 202, 1 - (@) + (2))},
Pt u?) e (9?1(141, u?) X % (u', uz))

Vo(ut, u?)

(—u',u?, 1} o {—2u1,2u2, 1- ((ul)2 + (uz)z)}

Li(u!,u?) =

_ 2

1+ uh)? + (u?)?
_ 2

1+ u')? + (u?)?

2(1+ (') + (u2)?)

T+ @2+ @22 7
Xip(ut, u?) o (fl(ulr u?) X % (u', MZ))

Vo', u?)
= \/ﬁ{uz, u',0} e {—2u1,2u2, 1- ((141)2 + (uz)z)}
_ 4(—u'u? + u'u?) 0
T B

JE)22(1’11/ uZ) hd (f‘l(ulr uZ) X JE)2(1’11/ uZ))

Vo', u?)
B, u?) o (Al 1) x B, u?)) .
= =—Ln(u,u’)
gu',u?)

(20" + 202 + 1 = (u')? - (2)?)

Lip(u!,u?) =

Loo(u!, u?) =

and

L(ull uZ) = Lll(ulluz)LZZ(ulr uZ) - L%z(ull uz) =—4.

Theorem 3.2. Let Enneper’s surface be given by the parametric representation

13 2)3
X(u') = {ul - % +ut(u?)?,u? - % +utuh)?, wh)? - (u2)2} (', u?) € R?).
(a) The Gaussian curvature is given by
K@, u?) = - 4 (Figure 5).

(1+ ()2 + (2)2)*
(b) The mean curvature is
H(ul, uz) =0,

hence Enneper’s surface is a minimal surface.
(c) The principal curvatures are

2
R + (20
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(d) The asymptotic lines are given by

1

u' = +1?

+ ¢, wherec € IR is a constant.
(e) The lines of curvature are the parameter lines.
Proof. (a) It follows from (17) and (18) that

L', u?) 4

K(ulfuz) = g(ul,uz) a _(1 + (Ml)2 + (U2)2)4

(b) It follows from (17) and (18) that

1
H@u', u?) = W (Ln(ul, 1) g, u?) — 2L (u', u?)gra(u', u?) + Loa(ut, u?)g11 (u?, Mz))
1 1.2
- Zg(ul,uz)gn(u w)2=2)=0
(c) Since

1 (ut, u?) + 1o (u!, u?)
2 7

K, u?) = 1, uP)icot,u?)  and  H@u',u?) =

it follows from Parts (a) and (b) that

2 2

TR o O
(d) The differential equation for the asymptotic lines
Lac(u*, u®)du'du* = 0
reduces to
2(dut)? = 2(du?)? = 0,
and has the solutions
u'(u?) = 21> + ¢ (12 € R), where ¢ € R is a constant.
(e) Since g2 (1, u?) = Lip(u', u?) = 0 forall (u', u?) € IR?, the parameter lines are the lines of curvature. [

Lemma 3.3. Let Enneper’s surface be given by a parametric representation (2).
(a) Then the first fundamental coefficients are given by

gu(p,®) = (1+02) ) 92, 8) =0, gap,®) = p> (1+0%) and g(p, ) = p* (1+p?)".

(b) The second fundamental coefficients are given by

Lii(p, ) = 2cos (2¢), Lia(p, ) = —2psin (2), Laa(p, ) = —2p? cos 2¢p) and L(p, ) = —4p>. (20)

Proof. We put u*! = p and u* = ¢ and write

(19)

) = 2wt (), u*(w?)) where ul (1) = u! cos u? and u?(u*') = ul sinu?.
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Then we have

dut Jdut )
e (', u?) = cosu?, pwe: W, u?) = —ut sinu?,
u u
ou? , du?
ﬁ(u*l,u*z) =sinu? and ﬂ(u*l,u*z) =u cosu™
u u
and
du’ Ju'
1,2 A 2
k =, u) - W™, u)
ou oul o2
u u
D = det ﬁ = det 5 5
u o 4 o, out L,
ST ) 5w

_ det €08 u?  —ulsinu?) A
sinu?  u cosu? :

(a) The formulae of transformation for the first fundamental coefficients
Tu™) = gem(u' (), 1 (u” 1)) ( ’”) ( ") for jk=1,2

yield by Lemma 3.1 (a)

1

i *f 20, % (9 *1 ’ *1 20 % & *
75, W) = gu (' (W), u*(u ))( (U )) + goo(ut (™), uP (u ))( 7 (u ))
= (1 + (u*l)Z) (Cos2 u? + sin? u*z) = (1 + (u"l)z)
£ 0wy _ L, iy 20, ou' *iaul %i 1y win L2y iy QU “i
g (W") = gu(u (™), u™(u ))(%{—H(M )ﬁ(“ ) + g (u™), u(u ))(h{—ﬂ(u )ﬁ(“ )
= (1 + (u"l)z)2 (—u’*1 sinu? cos 1™ + u! sin u* cos u*z) =0
ot .\ ou?
Pop () = gra(u' (), MZ(”’”))( W ’”)) + g (u' (u™), 2(M’”))( 5 (u *’))
= (1 + (u*l)z) ((u*l)2 cos® u? + (u!)? sin? u*z) Wy (1 + (u*l)z)
and
705 = g3, (g0 = graee) = (W (14 (w2)

Writing p = u*!, we obtain the formulae in (19).
(b) Since sgn(D) = 1, the formulae of transformation for the second fundamental coefficients

, ;  oul
() = Lonu ), 226 91 ) 3 )ogn(D) for ik =1,2
yield by Lemma 3.1 (b)

Ly, (™) =Ln(ul(u*’),uz(u*’))(&iﬂ(u*’)) + Lop(u' (u™), 1 (u ’”))( 7 (u ”))

=2 (cos2 u*? - sin? u*z) 2 cos (2u™?)
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w
81/[*1

=2 (—u"l sinu? cos u™? — ut sin u™ cos u*z) = —2ul sin (2u™?)

. . . Coul . ot . 4
Lo = L (), 12(0) S ) S5 ) o Lo a0, 12 0) S () 225 (0

ou?
ou?
, . out ) A o2 .\
* CA 1, 4 20,4 *] 1/, % 204 ]
Lip() = Lin ! (), 13 ))(ﬁ(u )) + Lo (), 12 >>(ﬁ<u ))
=-2 ((u*l)2 cos? u? — (u)? sin? u*2) = —2(u")? cos (2u?)
and
L'y = L}, ()L, (u) — Lip*(u™) = —4(u™)? cos? 2u™ — 4(uh)? sin? (2u*?) = —4(u*!)%.
Writing p = u*! and ¢ = u*?, we obtain the formulae in (20). [

Finally, we give the results of Theorem 3.2 in terms of the parameters p and ¢ of the parametric
representation (2).

Theorem 3.4. Let Enneper’s surface be given by the parametric representation
3 3

p, ¢) = {p cos ¢ — % cos (3¢), psin + % sin (3¢), p* cos (2¢)} (0, $) € (0, 00) X (0,270)).

(a) Then the Gaussian curvature is given by

K(p, ¢) = —m~

(b) The mean curvature is H(p, ¢) = 0.
(c) The principal curvatures are

1
4_-—2.
(1+p%)

(d) The asymptotic lines are given by

Wy = 0 [|BR@HDN o 1 T 31 Sm 7

PP =c cos (2¢) - ¢ | cos ¢ — sin @ for g # 4" 4747 47 @D
@) = @ 1 — @ 1 T 3m S 7m

PP =c \/tan(¢+n/4)cos(2gb)'_c |cos ¢ + sin @| for# 44747 4 (22)

where ¢V and ¢@ are positive constants, and the p-lines that correspond to ¢ = /4, 3n/4,57/4,77/4 (Figure 6).
(e) The lines of curvature are given by

e

| sin ¢p|

o)

p(l)(qb) = |COS ¢| and p(Z)(qb) =

for ¢ #m/2,m,3m/2,

where ¢V and ¢ are positive constants, and the p-lines that correspond to ¢ = 1/2, 1, 31/2 (Figure 7).
(f) Let (po, Po) € I, X Iy and ©q € (—1t/2, 1/2) be given. We put

¢ = po(1 + p§) cos O
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ot (1 (33 27¢?
p1—2\/gsmh[310g{ >t 1 + 1|

Then the geodesic line through (po, o) with an angle ©y to the ¢p—line through py is given by

and

p
d(p) = cf dt +¢o for p > py (Figure§8).

EA2(1 +12)2 = 2
Po

“‘s“s‘g ’0’0’0’1’
RG22

R Z
NN

Z

Figure 5: The Gaussian curvature of Enneper’s surface represented as a
Left: screw surface ¥(p, ¢) = {p cos ¢, psin$, K(p, ¢)}
Right: explicit surface ¥(u') = {ul, u?, K@u', u?)}.

Figure 6: Asymptotic lines on Enneper’s surface.
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Enneper’s s

e 7: Lines of curvature on

Figur

Figure 8: Geodesic lines on Enneper’s su
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Proof. Parts (a), (b) and (c) are immediate consequences of Theorem 3.2 (a), (b) and (c).
(d) The differential equation for the asymptotic lines is

Lui(p, 9)(dp)* + 2Lua(p, 9)dpdep + La(p, p)(dp)?
= 2cos (2¢)(dp)* — 4p sin (2p)dpdd — 2p* cos (2¢)(dp)* = 0.

3n 5n 7

If cos (2¢) = 0, thatis ¢ = g, T IT(, then the p-lines that correspond to these values of ¢ are asymptotic

line. Otherwise, we have

dp\? d
(%) ~2ptan (qu)ﬁ -p*=0,

or
Z—(Z = ptan (20) £ /p2tan? (2p)+1=p (tan (2¢) £ Vtan? +1)
_ p(sin(ZgZ)) . 1 )
cos (2¢) | cos (29)|
This implies

in (2 1
osr = [ S+ [ e
= —% log (cos (2¢)) = %log (tan (cp + n/4)) +logo,

where 6 > Oisa constant, and the firstidentities in (21) and (22) are an immediate consequence. Furthermore,
we have

tan(¢+n/4) sin(qb+n/4)

cos (2¢) - cos (gb + n/4) (cos2 ¢ — sin? qb)
% (sin ¢ + cos d))

% (sind) — cos gb) (cos2 ¢ — sin? ¢) (Cos ¢ —sin cp)z

1

and similarly

1 B cos (qb +7n /4)
tan ((p +7 /4) cos (2¢)  sin (¢ + n/4) (cos2 ¢ — sin? q))

% (sin ¢ — cos ¢))

) % (sian> + cos qb) (cos2 ¢ — sin? qb) (cos ¢ + sin ¢)2'

Thus the second identities in (21) and (22) also hold.
(e) The differential equation for the lines of curvature is

1

det (Ln(P/ ¢)dp + Lia(p, P)dp  gui(p, @)dp + g12(p, ¢)d¢) _
Liz2(p, ¢)dp + Loo(p, P)dd  gr2(p, P)dp + g22(p, P)d
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Lii(p, 0)g2(p, )dpdd + Lia(p, $)g22(p, d)(dp)*
= Lix(p, 9)g11(p, )(dp)* = Laz(p, d)g11(p, P)dpdep =
2p(1 + p?)? sin (29)(dp)* + 4p*(1 + p*)* cos 2p)dpdep — 2p°(1 + p?)* sin (2¢)(d¢p)*

If ¢ = 11/2, m,371/2 then the p-lines corresponding to ¢ = 1t/2, i, 37t/2 are lines of curvature. Otherwise, we
have

(dp)* +2p cot 2P)dpde — p*(d¢)* = 0

or

d _[cos(2¢) 1
i —pcot (2¢) + \/m N p(sin(2<p) * |sin(2¢)l)’
This implies

logp = —% log|sin (2¢)| + %log |tan ¢| + log 6,

where 6 > 0 is a constant. We obtain

i tand ) sin ¢ _ D
) = e \/sin 2g) \/ZCOSZ‘PSi“‘P  leosl

and

D 1 B cos ¢ @
@) =6 \/tan(p sin (2¢) - \/2 sin® ¢ cos ~ Isin o]

where ¢® = ¢,/ V2 fork =1,2.

(f) Since g11(p, @) = g11(p) = (1 + p*)%, g12p, ) = 0 and g (p, @) = g22(p) = p*(1 + p*)? by (19) in Lemma
3.3,[10, Satz 4.3.1, p. 359] yields for the geodesic line through (po, ¢0) at an angle of © to the ¢-line through

Po

Va1 (t)

() = ¥
o Cpo VI2(8) Vg22(t) — ¢ Po
p
B (1+ ) dt B dt
_Cpft(1+t2)\/m+¢o _C[[t\/m+¢01
where

¢ = g22(po) cos @ = po(1 + pj) cos Oy,

and the integral exists for all p € I, for which p*(1 + p?)* > 2, that is
p(1 + p?) > |c| which is equivalent to p® + p — [c| > 0.

As in the proof of Lemma 2.1, we obtain p > p;. [
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