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Abstract. In this paper, a coincidence theorem is obtained which is generalization of Ky Fan’s fixed point
theorem in modular function spaces. A modular version of Fan’s minimax inequality is proved. Moreover,
some best approximation theorems are presented for multi-valued mappings.

1. Introduction

Modular function spaces are natural generalization of spaces like Lebesgue, Orlicz, Musielak-Orlicz,
Lorentz, Calderon-Lozanovskii and many others. The theory of mappings defined on convex subsets of
modular function spaces generalized by Khamsi et al. (see e.g. [3–5]). There is a large set of modular space
applications in various parts of analysis, probability and mathematical statistics (see e.g. [11–13]).

We need the following definitions in sequel, from [6, 7]:
Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω. Let P be a σ-ring of subsets of
Ω, such that E ∩ A ∈ P for any E ∈ P and A ∈ Σ. Assume that there exists an increasing sequence of sets
Kn ∈ P such that Ω =

⋃
Kn. By E, we denote the linear space of all simple functions with supports in P. By

M∞, we will denote the space of all extended measurable functions, i.e. all functions f : Ω → [−∞,+∞]
such that there exists a sequence {1n} ⊂ E, |1n| ≤ | f | and 1n(w) → f (w) for all w ∈ Ω. By 1A, we denote the
characteristic function of the set A.

Definition 1.1. Let ρ :M∞ → [0,∞] be a nontrivial, convex and even function. We say that ρ is a regular convex
function pseudomodular if

(i) ρ(0) = 0;

(ii) ρ is monotone, i.e. | f (w)| ≤ |1(w)| for all w ∈ Ω implies ρ( f ) ≤ ρ(1), where f , 1 ∈ M∞;

(iii) ρ is orthogonally subadditive, i.e. ρ( f 1A∪B) ≤ ρ( f 1A) +ρ( f 1B) for any A,B ∈ Σ such that A∩B , ∅, f ∈ M∞;

(iv) ρ has the Fatou property, i.e. | fn(w)| ↑ | f (w)| for all w ∈ Ω implies ρ( fn) ↑ ρ( f ), where f ∈ M∞;

(v) ρ is order continuous in E, i.e. 1n ∈ E and |1n(w)| ↓ 0 implies ρ(1n) ↓ 0.
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We say that A ∈ Σ is ρ-null if ρ(11A) = 0 for every 1 ∈ E. A property holds ρ-almost everywhere if the
exceptional set is ρ-null, we define

M(Ω,Σ,P, ρ) = { f ∈ M∞; | f (w)| < ∞ ρ − a.e.}.

We will writeM instead ofM(Ω,Σ,P, ρ).

Definition 1.2. Let ρ be a regular convex function pseudomodular. We say that ρ is a regular convex function
modular if ρ( f ) = 0 implies f = 0 ρ-a.e.

The class of all nonzero regular convex function modulars defined on Ω will be denoted by<.

Definition 1.3. Let ρ be a convex function modular. A modular function space is the vector space Lρ(Ω,Σ), or briefly
Lρ, defined by

Lρ = { f ∈ M;ρ(λ f )→ 0 as λ→ 0}.

The the formula

‖ f ‖ρ = inf{α > 0;ρ( f/α) ≤ 1}.

defines a norm in Lρ which is frequently called the Luxemburg norm.

The ‖.‖ρ-distance, from an f to a set Y ⊂ Lρ to be the quantity

dist‖.‖ρ ( f ,Y) = inf{‖ f − 1‖ρ : 1 ∈ Y}.

From [7], (Lρ, ‖ f ‖ρ) is a complete metric space and the norm ‖.‖ρ is monotone with respect to the natural
order inM. Therefore we can define the ‖.‖ρ-Hausdorff distance by

H‖.‖ρ (X,Y) = max
{

sup{dist‖.‖ρ ( f ,Y) : f ∈ X}, sup{dist‖.‖ρ (1,X) : 1 ∈ Y}
}
,

for each X,Y ⊆ Lρ.

Definition 1.4. Let ρ ∈ <.

(i) We say { fn} is ρ-convergent to f and write fn → f (ρ) if and only if ρ( fn − f )→ 0.

(ii) A subset B ⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the convergence fn → f (ρ) implies that f
belong to B.

(iii) A nonempty subset K of Lρ is said to be ρ-compact if for any family {Aα; Aα ∈ 2Lρ , α ∈ Γ} of ρ-closed subsets
with K ∩ Aα1 ∩ · · · ∩ Aαn , ∅, for any α1, · · · , αn ∈ Γ, we have

K ∩

⋂
α∈Γ

Aα

 , ∅.
Let ρ ∈ <. We have ρ( f ) ≤ lim infρ( fn), whenever fn → f ρ − a.e. This property is equivalent to the Fatou
property [6, Theorem 2.1].

The concept of KKM-mapping in modular function spaces, was introduced by Khamsi, Latif and Al-
Sulami in 2011 [6]. They proved an analogue of Ky Fan’s fixed point theorem in these spaces:
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Definition 1.5. Let ρ ∈ < and let C ⊂ Lρ be nonempty. A multi-valued mapping G : C ( Lρ is called a KKM
mapping if

conv({ f1, · · · , fn}) ⊂
⋃

1≤i≤n

G( fi)

for any f1, · · · , fn ∈ C, where the notation conv(A) describes the convex hull of A.

Theorem 1.6. [6, Theorem 3.2] Let ρ ∈ < and C ⊂ Lρ be nonempty and G : C( Lρ be a KKM mapping such that
for any f ∈ C, G( f ) is nonempty and ρ-closed. Assume there exists f0 ∈ C such that G( f0) is ρ-compact. Then, we
have ⋂

f∈C

G( f ) , ∅.

Definition 1.7. Let ρ ∈ < and let C be nonempty ρ-closed subset of Lρ. Let T : G → Lρ be a map. T is called ρ-
continuous if {T( fn)} ρ-converges to T( f ) whenever { fn} ρ-converges to f . Also T will be called strongly ρ-continuous
if T is ρ-continuous and

lim inf
n→∞

ρ(1 − T( fn)) = ρ(1 − T( f )),

for any sequence { fn} ⊂ C which ρ-converges to f and for any 1 ∈ C.

In Section 2, we generalized some results of Khamsi et al. in [6]. In the next section, we proved a
minimax inequality. Section 4 is devoted to some best approximation theorems for multi-valued mappings.

2. KKM-mapping and Coincidence Theorem

Here, we generalize the Ky Fan’s fixed point theorem which established in [6].

Lemma 2.1. Let ρ ∈ <. Let K ⊂ Lρ be nonempty convex and ρ-compact. Let T : K→ Lρ be strongly ρ-continuous
and F : K→ K be ρ-continuous. Then, there exists f0 ∈ K such that

ρ(F( f0) − T( f0)) = inf
f∈K
ρ(F( f ) − T( f0)).

Proof. Consider the map G : K( Lρ defined by

G(1) =
{

f ∈ K;ρ(F( f ) − T( f )) ≤ ρ(F(1) − T( f ))
}
.

Clearly, for each 1 ∈ K, G(1) , ∅. For any sequence { fn} ⊂ G(1) which ρ-converges to f , by Fatou property,
we have

ρ(F( f ) − T( f )) ≤ lim inf
n→∞

ρ(F( fn) − T( fn)),

but { fn} ⊂ G(1), so

lim inf
n→∞

ρ(F( fn) − T( fn)) ≤ lim inf
n→∞

ρ(F(1) − T( fn)).

Since T is strongly ρ-continuous and F is ρ-continuous

lim inf
n→∞

ρ(F(1) − T( fn)) = ρ(F(1) − T( f )).

Therefore

ρ(F( f ) − T( f )) ≤ ρ(F(1) − T( f )),
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namely f ∈ G(1). Since for any sequence { fn} ⊂ G(1) which ρ-converges to f , we have f ∈ G(1), then G(1)
is ρ-closed for any 1 ∈ K. Now, we show that G is a KKM-mapping. If not, then there exists {11, ..., 1n} ⊂ K
and f ∈ conv({1i}) such that f <

⋃
1≤i≤n

G(1i).

This implies

ρ(F(1i) − T( f )) ≤ ρ(F( f ) − T( f )), f or i = 1, · · · ,n

Let ε > 0 be such that ρ(F(1i) − T( f )) ≤ ρ(F( f ) − T( f )) − ε, for i = 1, · · · ,n. Since ρ is convex, for any
1 ∈ conv({1i}), we have

ρ(F(1) − T( f )) ≤ ρ(F( f ) − T( f )) − ε.

On the other hand f ∈ conv({1i}), so we get

ρ(F( f ) − T( f )) ≤ ρ(F( f ) − T( f )) − ε,

which is a contradiction. Therefore, G is a KKM-mapping. By the ρ-compactness of K, we deduce that G(1)
is a compact for any 1 ∈ K. Theorem 1.6 implies the existence of f0 ∈

⋂
1∈K

G(1). Hence, ρ(F( f0) − T( f0)) ≤

ρ(F(1) − T( f0)) for any 1 ∈ K. So, we have ρ(F( f0) − T( f0)) = inf
1∈K

ρ(F(1) − T( f0)).

Theorem 2.2. Let ρ ∈ < and K ⊂ Lρ be nonempty convex and ρ-compact. Let T : K→ Lρ be strongly ρ-continuous,
F : K → K be ρ-continuous and F(K) is ρ-compact. Assume that for any f ∈ K, with F( f ) , T( f ), there exists
α ∈ (0, 1) such that

F(K)
⋂

Bρ
(
F( f ), αρ(F( f ) − T( f ))

)⋂
Bρ

(
T( f ), (1 − α)ρ(F( f ) − T( f ))

)
, ∅.

Then, T(1) = F(1) for some 1 ∈ K.

Proof. From the previous lemma, there exists f0 ∈ K such that

ρ(F( f0) − T( f0)) = inf
1∈K

ρ(F(1) − T( f0)).

We claim that T( f0) = F( f0). If T( f0) , F( f0), then by the ρ-compactness of F(K), there exists α ∈ (0, 1) such
that

K0 = F(K)
⋂

Bρ(F( f0), αρ(F( f0) − T( f0)))
⋂

Bρ(T( f0), (1 − α)ρ(F( f0) − T( f0))) , ∅.

Let F(1) ∈ K0. Then, ρ(F(1) − T( f0)) ≤ (1 − α)ρ(F( f0) − T( f0)), which is a contradiction.

Corollary 2.3. Let ρ ∈ < and K ⊂ Lρ be nonempty convex and ρ-compact. Let F : K → K be ρ-continuous and
F(K) is ρ-compact. If T : K→ F(K) be strongly ρ-continuous, then T(1) = F(1) for some 1 ∈ K.

3. A Minimax Inequality

In this section, a modular version of Fan’s minimax inequality [2] is obtained.

Definition 3.1. Let ρ ∈ <, Lρ be a modular function space and C be a convex subset of Lρ. A function f : C → R
is said to be metrically quasi-concave (resp., metrically quasi-convex) if for each λ ∈ R, the set {1 ∈ C : f (1) > λ}
(resp., {1 ∈ C : f (1) < λ}) is convex.

Lemma 3.2. Let ρ ∈ <. Suppose C is a convex subset of a modular function space Lρ, and the function f : C×C→ R
satisfies the following conditions:
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1) for each 1 ∈ C, the function f (., 1) : C→ R is metrically quasi-concave (resp., metrically quasi-convex) and

2) there exists γ ∈ R such that f (1, 1) ≤ γ (resp., f (1, 1) ≥ γ) for each 1 ∈ C.

Then, the mapping G : C( Lρ, which is defined by

G(1) = {h ∈ C : f (1, h) ≤ γ}(resp.,G(1) = {h ∈ C : f (1, h) ≥ γ}),

is a KKM-mapping.

Proof. The conclusion is proved for the concave case, the convex case is completely similar. Assume that G
is not a KKM-mapping. Then there exists a finite subset A = {11, · · · , 1n} of C and a point 10 ∈ conv(A) such
that 10 < G(1i) for each i = 1, · · · ,n. We set

λ = min{ f (1i, 10) : i = 1, · · · ,n} > γ,

and B = {e ∈ C : f (e, 10) > λ0}, where λ > λ0 > γ. For each i, we have 1i ∈ B. By hypothesis 1), B is convex
and hence conv(A) ⊆ B. So, 10 ∈ B, and we have f (10, 10) > λ0 > γ, which is a contradiction by assumption
2). Thus, G is a KKM-mapping.

Definition 3.3. Let ρ ∈ <. A real-valued function f : Lρ × Lρ → R is said to be ρ-generally lower (resp., upper)
semi continuous on Lρ whenever, for each 1 ∈ Lρ, {h ∈ Lρ : f (1, h) ≤ λ} (resp., {h ∈ Lρ : f (1, h) ≥ λ}) is ρ-closed for
each λ ∈ R.

The following is the analogue of Fan’s minimax inequality in modular function spaces.

Theorem 3.4. Let ρ ∈ <. Suppose C is a nonempty, ρ-compact and convex subset of a complete modular function
space Lρ and f : C × C→ R satisfies the following

1) f is a ρ-generally lower (resp., upper) semi continuous ;

2) for each h ∈ C, the function f (., h) : C→ R is metrically quasi-concave (resp., metrically quasi-convex) and

3) there exists γ ∈ R such that f (1, 1) ≤ γ (resp., f (1, 1) ≥ γ) for each 1 ∈ C.

Then, there exists an h0 ∈ C such that

sup
1∈C

f (1, h0) ≤ sup
1∈C

f (1, 1),

(resp., inf
1∈C

f (1, h0) ≥ inf
1∈C

f (1, 1)).

for each 1 ∈ C.

Proof. By hypothesis 3), λ = sup
1∈C f (1, 1) < ∞. For each 1 ∈ C, we define the mapping G : C( C by

G(1) = {h ∈ C : f (1, h) ≤ λ},

which is ρ-closed by assumption 1). By Lemma 3.2, G is a KKM-mapping. So by using Theorem 1.6, we
have ⋂

1∈C

G(1) , ∅.

Therefore, there exists an h0 ∈
⋂
1∈C

G(1). Thus, f (1, h0) ≤ λ for every 1 ∈ C. Hence,

sup
1∈C

f (1, h0) ≤ sup
1∈C

f (1, 1).

This completes the proof.



N. Karamikabir, A. Razani / Filomat 28:7 (2014), 1307–1313 1312

4. Some Best Approximation Theorems

In this section, we prove some best approximation theorems for multi-valued mappings in modular
function spaces.

Definition 4.1. Let X,Y ⊆ Lρ.

(i) A map F : X( Y is said to be ρ-upper semi continuous if for each ρ-closed set B ⊆ Y, F−(B) is ρ-closed in X.

(ii) A map G : D ⊆ X( X is called quasi-convex if the set G−(C) is convex for each convex subset C of X.

First, note that the ‖.‖ρ-Hausdorff distance can be rewritten as follows

H‖.‖ρ (X,Y) = inf{ε > o : X ⊂ Oε(Y) and Y ⊂ Oε(X)},

where, for each A ⊂ Lρ, Oε(A) = { f ∈ Lρ : dist‖.‖ρ ( f ,A) < ε}.
Also, by definitions of ρ-closed and ρ-compact sets in modular function spaces with ‖.‖ρ-Hausdorff distance
and by [8, Proposition 14.11] we conclude that, if F( f ) is ρ-compact for each f ∈ X, then F is ρ-upper semi
continuous if and only if for each f ∈ X and ε > 0, there exist δ > 0 such that for each f ′ ∈ B( f , δ), we have
F( f ′) ⊆ B(F( f ), ε).

Theorem 4.2. Let ρ ∈ <. Suppose X is a ρ-compact subset of Lρ and F,G : X ( Lρ are ρ-upper semi continuous
maps with nonempty ρ-compact convex values and G is quasi-convex. Then, there exists f0 ∈ X such that

H‖.‖ρ (G( f0),F( f0)) = inf
f∈X

H‖.‖ρ (G( f ),F( f0)).

Proof. Let S : X( X be defined by

S(1) =
{

f ∈ X : H‖.‖ρ (G( f ),F( f )) ≤ H‖.‖ρ (G(1),F( f ))
}
.

For each 1 ∈ X, S(1) , ∅. We show that S(1) is ρ-closed for each 1 ∈ X. Suppose that {1n} be a sequence
in S(1) such that 1n −→ 1

∗(ρ). We claim that 1∗ ∈ S(1). Let ε > 0 be arbitrary. Since F is ρ-upper semi
continuous with ρ-compact values, so there exists N1 such that for each n ≥ N1, we have

F(1n) ⊆ B̄(F(1∗), ε).

Similarly, there exists N2 such that for each n ≥ N2, we have

G(1n) ⊆ B̄(G(1∗), ε).

Let N = max{N1,N2}. Then, we have

H‖.‖ρ (G(1∗),F(1∗)) ≤ H‖.‖ρ (G(1∗),G(1n)) + H‖.‖ρ (G(1n),F(1n))

+ H‖.‖ρ (F(1n),F(1∗))

≤ 2ε + H‖.‖ρ (G(1n),F(1n))

≤ 2ε + H‖.‖ρ (G(1),F(1n))

≤ 2ε + H‖.‖ρ (G(1),F(1∗)) + H‖.‖ρ (F(1∗),F(1n))

≤ 3ε + H‖.‖ρ (G(1),F(1∗)).

Since ε was arbitrary, so

H‖.‖ρ (G(1∗),F(1∗)) ≤ H‖.‖ρ (G(1),F(1∗)),
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so 1∗ ∈ S(1). Now, we show that for each { f1, · · · , fn} ⊂ X, co({ f1, · · · , fn}) ⊂ S({ f1, · · · , fn}). Assume
to the contrary that, if there exists h ∈ co({ f1, · · · , fn}) such that h < S( f ) for each f ∈ { f1, · · · , fn}, then
H‖.‖ρ (G( f ),F(h)) < H‖.‖ρ (G(h),F(h)), for some f ∈ { f1, · · · , fn}. Moreover

G( f )
⋂( ⋃

h′∈F(h)

B
(
h′, max

f ′∈{ f1,··· , fn}
H‖.‖ρ (G( f ′),F(h))

))
, ∅,

for each f ∈ { f1, · · · , fn}. Since F(h) is convex, so⋃
h′∈F(h)

B
(
h′, max

f ′∈{ f1,··· , fn}
H‖.‖ρ (G( f ′),F(h))

)
is convex. Since G is quasi-convex, then

G(h)
⋂( ⋃

h′∈F(h)

B
(
h′, max

f ′∈{ f1,··· , fn}
H‖.‖ρ (G( f ′),F(h))

))
, ∅,

and so H‖.‖ρ (G(h),F(h)) ≤ max
f ′∈{ f1,··· , fn}

H‖.‖ρ (G( f ′),F(h)) < H‖.‖ρ (G(h),F(h)). This is a contradiction. Now, by

Theorem 1.6, there exists f0 ∈ X such that f0 ∈
⋂
f∈X

S( f ). Hence, H‖.‖ρ (G( f0),F( f0)) = inf
f∈X

H‖.‖ρ (G( f ),F( f0)).

Corollary 4.3. Let ρ ∈ <. Suppose X is a ρ-compact subset of Lρ and G : X ( X is an onto, quasi-convex and
ρ-upper semi continuous map with nonempty ρ-compact convex values and S : X→ X is a continuous single valued
map. Then, there exists f0 ∈ X such that S( f0) ∈ G( f0).

Corollary 4.4. Let ρ ∈ <. Suppose X is a ρ-compact subset of Lρ and G : X ( X is a quasi-convex and ρ-upper
semi continuous map with nonempty ρ-compact convex values. Then, there exists f0 ∈ X such that

H‖.‖ρ (G( f0), f0) = inf
f∈X

H‖.‖ρ (G( f ), f0).

Corollary 4.5. Let ρ ∈ <. Suppose X is a ρ-compact subset of Lρ and G : X( X is a ρ-upper semi continuous map
with nonempty ρ-compact convex values. If G( f ) ∩ X = ∅ for all f ∈ ∂X, then G has a fixed point.

Proof. If G does not have a fixed point then by Theorem 4.2, there exists f0 ∈ ∂X such that

0 < H‖.‖ρ ( f0,G( f0)) ≤ H‖.‖ρ ( f ,G( f0)),

for all f ∈ X. Since f0 ∈ ∂X, we have G( f0) ∩ X , ∅, which is a contradiction.
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