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Core Partial Order in Rings with Involution
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Abstract. Let R be a unital ring with involution. Several characterizations and properties of core partial
order in R are given. In particular, we investigate the reverse order law (ab) #© = b #©a #© for two core invertible
elements a, b ∈ R. Some relationships between core partial order and other partial orders are obtained.

1. Introduction

The core inverse of a complex matrix was introduced by Baksalary and Trenkler [1]. Let Mn(C) be the
ring of all n × n complex matrices and let A ∈Mn(C). A matrix X ∈Mn(C) is called a core inverse of A, if it
satisfies AX = PA and R(X) ⊆ R(A), where R(A) denotes the column space of A, and PA is the orthogonal
projector onto R(A). If such a matrix X exists, then it is unique and denoted by A #©. The core partial order
for complex matrices was also introduced in [1]. Let CCM

n = {A ∈Mn(C) | rank(A) = rank(A2)}, A ∈ CCM
n and

B ∈Mn(C). The binary relation
#©

≤ is defined as follows:

A
#©

≤ B ⇔ A #©A = A #©B and AA #© = BA #©.

In [1, Theorem 6], it was proved that core partial order is a matrix partial order. Baksalary and Trenkler
gave several characterizations and various relationships between the matrix core partial order and other
matrix partial orders by using the decomposition of Hartwig and Spindelböck [4].

Throughout this paper, R is a ∗-ring, i.e., R is an associative ring with identity 1 and an involution
a 7→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗ for all a, b ∈ R. In [11], Rakić and Djordjević
generalized the core partial order from the setting of Mn(C) to that of an arbitrary ∗-ring. They gave various
equivalent conditions of core partial order and investigated relationships between the core partial order
and other partial orders in the general setting. Motivated by [1, 6, 7, 10, 11], in this paper, we give some new
equivalent conditions and properties for core partial order in ∗-rings. Moreover, some new relationships
between core partial order and other partial orders are obtained. As an application, we prove the reverse
law for two core invertible elements under the core partial order.

Let us recall some notations. An element a ∈ R is Moore–Penrose invertible if

axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa
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for some x ∈ R. Such x is unique and called the Moore–Penrose inverse of a and denoted by a†. The set of
all Moore–Penrose invertible elements in R will be denoted by R†. As usual, we write a{1} for the set of all
inner inverses of a ∈ R, i.e., a{1} = {x ∈ R | axa = a}. An element a ∈ R is said to be group invertible if there
exists x ∈ R such that

axa = a, xax = x and ax = xa.

In this case, x is also unique and called the group inverse of a and denoted by a#. The set of all group
invertible elements in R will be denoted by R#. An element a ∈ R is called an EP element if a ∈ R† ∩ R# and
a† = a#. The set of all EP elements in R will be denoted by REP. Note that an EP matrix A in Mn(C) is also
known as a range-Hermite matrix, (that is R(A) = R(A∗)), where A∗ is the conjugate transpose of A.

Following Rakić, Dinčić and Djordjević [12], an element a ∈ R is said to be core invertible if

axa = a, xR = aR and Rx = Ra∗

for some x ∈ R. In this case, x is called the core inverse of a and denoted by a #©, without ambiguity since
such x is unique. The set of all core invertible elements in R will be denoted by R #©.

For a, b ∈ R, the minus partial order a
−

≤ b, star partial order a
∗

≤ b, sharp partial order a
#
≤ b and core

partial order a
#©

≤ b are defined, respectively, as follows:

• a
−

≤ b if and only if a−a = a−b and aa− = ba− for some a− ∈ a{1};

• a
∗

≤ b if and only if a∗a = a∗b and aa∗ = ba∗;

• a
#
≤ b if and only if a#a = a#b and aa# = ba#;

• a
#©

≤ b if and only if a #©a = a #©b and aa #© = ba #©.

We refer the reader to [2, 3, 8, 11] for more details on these partial orders.

2. Equivalent Conditions and Properties of Core Partial Order

In this section, some new characterizations of the core partial order in a ∗-ring R are obtained. Let us
start with two auxiliary lemmas, which can be found in [8, Lemma 2.2] and [11, Lemma 2.3 and Theorem
2.6].

Lemma 2.1. Let a ∈ R# and b ∈ R. Then

(1) a#a = a#b if and only if a2 = ab;

(2) aa# = ba# if and only if a2 = ba;

(3) a
#
≤ b if and only if a2 = ab = ba;

(4) a
#
≤ b if and only if a = pb = bp for some idempotent p ∈ R.

Lemma 2.2. Let a ∈ R #© and b ∈ R. Then

(1) a #©a = a #©b if and only if a∗a = a∗b;

(2) aa #© = ba #© if and only if a2 = ba if and only if aa# = ba#.

We will use the following notations aR = {ax | x ∈ R}, Ra = {xa | x ∈ R}, ◦a = {x ∈ R | xa = 0} and

a◦ = {x ∈ R | ax = 0}. In [5, Lemma 8], Lebtahi et al. proved that a
−

≤ b if and only if there exists
c ∈ {x ∈ R | axa = a, xax = x} such that b− a ∈ ◦c∩ c◦. For the core partial order, we have the following result.
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Theorem 2.3. Let a ∈ R #© and b ∈ R. Then the following conditions are equivalent:

(1) a
#©

≤ b;

(2) ba #©b = a and a #©ba #© = a #©;

(3) aa #©b = a = ba #©a;

(4) b − a ∈ ◦a ∩ (a∗)◦;

(5) b − a ∈ (1 − aa #©)R ∩ R(1 − aa #©);

(6) b − a ∈ ◦(aa #©) ∩ (aa #©)◦.

Proof. (1)⇔(2) Suppose that a
#©

≤ b. Then ba #©b = aa #©b = aa #©a = a and a #©ba #© = a #©aa #© = a #©. Conversely, if
ba #©b = a and a #©ba #© = a #©, then aa #© = ba #©ba #© = ba #© and a #©a = a #©ba #©b = a #©b.

(1)⇔(3) Suppose that a
#©

≤ b. Then a #©a = a #©b and aa #© = ba #©. Thus aa #©b = aa #©a = a and ba #©a = aa #©a = a.
Conversely, if aa #©b = a = ba #©a, then pre-multiplication by a #© on aa #©b = a yields a #©b = a #©a. Similarly we have

ba #© = aa #©, thus a
#©

≤ b.
(1)⇔ (4) follows by Lemma 2.2.
(4)⇔ (5) Since a ∈ R #©, we have ◦a = R(1− aa #©) and (a∗)◦ = (1− (a∗) #©a∗)R = (1− (a #©)∗a∗)R = (1− (aa #©)∗)R =

(1 − aa #©)R.
(5)⇔ (6) Since (aa #©)2 = aa #©, it is easy to see that (1 − aa #©)R = (aa #©)◦ and R(1 − aa #©) = ◦(aa #©).

Given two idempotents p and q in R, it is well known that every element a ∈ R can be written as

a = paq + pa(1 − q) + (1 − p)aq + (1 − p)a(1 − q)

with respect to p and q. In this case, it is convenient to write a as a matrix

a =
(
a11 a12
a21 a22

)
p×q
,

where a11 = paq, a12 = pa(1− q), a21 = (1− p)aq and a22 = (1− p)a(1− q). Thus, the operations of addition and
multiplication in R are compatible with the usual matrix operations.

In [11, Theorem 2.6], Rakić and Djordjević proved that a
#©

≤ b if and only if there exist self-adjoint
idempotent p ∈ R and idempotent q ∈ R such that a = pb = bq and qa = a. We now provide some new
characterizations for the core partial order in terms of self-adjoint idempotents.

Theorem 2.4. Let a ∈ R #© and b ∈ R. Then the following conditions are equivalent:

(1) a
#©

≤ b;

(2) there exists a self-adjoint idempotent p ∈ R such that a = pb, ap = bp and aR = pR;

(3) there exists a self-adjoint idempotent p ∈ R such that a = pb and ap = bp;

(4) there exists a self-adjoint idempotent p ∈ R such that a and b can be written as

a =
(
a1 a2
0 0

)
p×p

and b =
(
a1 a2
0 b4

)
p×p
.
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Proof. (1)⇒(2) Let p = aa #©, then p2 = p = p∗, pb = aa #©b = aa #©a = a and ap = a2a #© = aa #©a2a #© = ba #©a2a #© = baa #© =
bp. Moreover, we have aR = pR in view of p = aa #©

∈ aR and a = aa #©a = pa ∈ pR.
(2)⇒(3) is trivial.
(3)⇒(1) Suppose that a = pb and ap = bp, where p2 = p = p∗. Then a2 = apb = bpb = ba and

a∗a = (pb)∗pb = b∗p∗pb = b∗p∗b = (pb)∗b = a∗b. Thus a
#©

≤ b by Lemma 2.2.
(3)⇒(4) Suppose that a = pb and ap = bp. Then it is straightforward to check that pap = pbp, pa(1 − p) =

pb(1−p), (1−p)ap = (1−p)bp = 0 and (1−p)a(1−p) = 0. Now, let a1 = pap, a2 = pa(1−p) and b4 = (1−p)b(1−p).
Then (4) follows.

(4)⇒(3) Note that p can written as p =
(
p 0
0 0

)
p×p

. Therefore, it is easy to see that a = pb and ap = bp.

The following characterizations of the minus partial order will be used in the proof of Theorem 2.6,
which plays an important role in the sequel.

Lemma 2.5. [9, Lemma 3.4] Given a, b ∈ R such that a{1} and b{1} are nonempty. The following conditions are
equivalent:

(1) a
−

≤ b;

(2) a = bb−a = ab−b = ab−a for some b− ∈ b{1};

(3) a = bb−a = ab−b = ab−a for any b− ∈ b{1}.

Theorem 2.6. Let a, b ∈ R #© with a
#©

≤ b. Then:

(1) ba #© = ab #©, a #©b = b #©a;

(2) b #©ba #© = a #©bb #© = a #©ba #© = a #©;

(3) b #©aa #© = a #©ab #© = b #©ab #© = a #©.

Proof. Suppose that a
#©

≤ b. Then a
−

≤ b since a #©
∈ a{1}. Consequently a = bb #©a = bb#a by Lemma 2.5.

(1) We have ba #© = aa #© = bb #©aa #© = (bb #©aa #©)∗ = aa #©bb #© = aa #©ab #© = ab #© and a #©b = b #©ab #©b = b #©ba #©b =
b #©aa #©b = b #©aa #©a = b #©a.

(2) It is obvious that b #©ba #© = b #©ab #© = a #©, a #©bb #© = b #©ab #© = a #© and a #©ba #© = a #©aa #© = a #©.
(3) is similar to (2), we have b #©aa #© = b #©ba #© = a #©, a #©ab #© = a #©bb #© = a #© and b #©ab #© = b #©ba #© = a #©.

Remark 2.7. In [6, Theorem 2.4], it is claimed that the following are equivalent for two complex matrices A
and B of index 1 with the same order:

(1) A #©BA #© = A #©;

(2) A†BA# = A #©.

While the implication(2)⇒(1) is always valid, the converse is not true in general. In fact, let A = B =(
1 1
0 0

)
∈ M2(C), we have A# = A, A† =

(
1/2 0
1/2 0

)
and A #© =

(
1 0
0 0

)
. Whence A #©BA #© = A #©AA #© = A #©.

However, A†BA# , A #©. Note that (1)⇒(2) holds in case A is an EP matrix.

Proposition 2.8. Let a, b ∈ R #©. Then a
#©

≤ b if and only if a #©b = b #©a, ba #© = ab #© and ab #©a = a hold.

Proof. If a
#©

≤ b, then we have a #©b = b #©a and ba #© = ab #© by Theorem 2.6. Hence ab #©a = ba #©a = aa #©a = a.
Conversely, this follows a #©a = a #©ab #©a = a #©aa #©b = a #©b and aa #© = ab #©aa #© = ba #©aa #© = ba #©.



X. Zhang et al. / Filomat 31:18 (2017), 5695–5701 5699

In [7, Theorem 2.5] Malik et al. investigated the reverse order law for two core invertible complex
matrices under the matrix core partial order. In view of [14, Theorem 3.1], the equations axa = a and xax = x
in [12, Theorem 2,14] are redundant.

Lemma 2.9. [14, Theorem 3.1] Let a, x ∈ R, then x is the core inverse of a if and only if the following three equalities
hold

(ax)∗ = ax, xa2 = a and ax2 = x.

Theorem 2.10. Let a, b ∈ R #© with a
#©

≤ b. Then:

(1) (ab) #© = b #©a #© = (a #©)2 = (a2) #© = (ba) #©;

(2) ab ∈ REP whenever a ∈ REP.

Proof. (1) Suppose that a
#©

≤ b. Then a #©b = b #©a by Proposition 2.8. Thus, b #©a #© = b #©aa #©a #© = a #©ba #©a #© =
a #©aa #©a #© = a #©a #© = (a #©)2 = (a2) #© = (ba) #©. Let x = b #©a #©. Then

abx = abb #©a #© = aba #©a #© = aaa #©a #© = aa #© = (aa #©)∗ = (abb #©a #©)∗;
x(ab)2 = b #©a #©(ab)2 = b #©a #©a(ba)b = a #©a #©aa2b = a #©a2b = ab;
abx2 = ab(b #©a #©)2 = a(ba #©)a #©(a #©)2 = (a #©)2 = b #©a #©.

Thus (ab) #© = b #©a #© by Lemma 2.9.
(2) Suppose that a ∈ REP. Then a #©a = aa #©. Consequently,

b #©a #©ab = b #©aa #©b = a #©ba #©b = a #©b = a #©a;
abb #©a #© = abb #©a(a #©)2 = aba #©b(a #©)2 = aaa #©a(a #©)2 = aa #©.

By (1), we have b #©a #©ab = (ab) #©ab = ab(ab) #© = abb #©a #©. Therefore, ab ∈ REP.

3. Relationships between the Core Partial Order and Other Partial Orders

In this section, we consider the relationships between core partial order and other partial orders. Recall
that the left star partial order a ∗≤ b in R is defined by: a∗a = a∗b and aR ⊆ bR. The right sharp partial order
a ≤# b in R# is defined by: aa# = ba# and Ra ⊆ Rb. Let us start with a auxiliary lemma.

Lemma 3.1. [1] Let a ∈ R #© and b ∈ R. Then a
#©

≤ b if and only if a ∗≤ b and a ≤# b.

In [11, Theorem 4.10], Rakić and Djordjević gave the relationship between the core partial order and the

minus partial order for a, b ∈ R #©. For instance, it is proved that a
#©

≤ b if and only if a
−

≤ b and b #©ab #© = a #©.
By Lemma 3.1, the core partial order implies the left star partial order and the right sharp partial order.
Motivated by [11, Theorem 4.10], we have the following theorem.

Theorem 3.2. Let a, b ∈ R #©. Then the following are equivalent:

(1) a
#©

≤ b;

(2) a ∗≤ b and ba #©b = a;

(3) a ∗≤ b and b #©aa #© = a #©;

(4) a ∗≤ b and b #©ab #© = a #©;

(5) a ≤# b and ba #©b = a;

(6) a ≤# b and a #©ab #© = a #©.



X. Zhang et al. / Filomat 31:18 (2017), 5695–5701 5700

Proof. (1)⇒(2)-(6) is obvious by Theorem 2.3, Theorem 2.6 and Lemma 3.1.
(2)⇒(1) Suppose that a ∗≤ b and ba #©b = a. Then a∗a = a∗b and aR ⊆ bR. Note that a∗a = a∗b if and only if

a #©a = a #©b by Lemma 2.2. So we have aa #© = ba #©ba #© = ba #©aa #© = ba #©.
(3)⇒(1) Suppose that a ∗≤ b. Then we have a = bs for some s ∈ R and hence a = bs = bb #©bs = bb #©a. Now,

it follows that aa #© = bb #©aa #© = ba #©.
(4)⇒(1) Suppose that a ∗≤ b and b #©ab #© = a #©. Then a∗a = a∗b. By Lemma 2.2, we have a #©a = a #©b.

Meanwhile, we have a = bb #©a, which gives

ba #© = b(b #©ab #©) = ab #©.

Pre-multiplying b #©ab #© = a #© by a and post-multiplying b #©ab #© = a #© by bb #© yield

aa #©bb #© = ab #©ab #©bb #© = aa #©.

Since a #©a = a #©b, one can see that aa #© = aa #©bb #© = aa #©ab #© = ab #©. Thus, by the equality ba #© = ab #© and the

definition of core partial order, we have a
#©

≤ b.
(5)⇒(1) Suppose that a ≤# b and ba #©b = a. Then aa# = ba# and Ra ⊆ Rb. By Lemma 2.2, we know that

aa# = ba# if and only if aa #© = ba #©. Thus a #©a = a #©ba #©b = a #©aa #©b = a #©b.
(6)⇒(1) In view of (5)⇒(1), we only need to prove a #©a = a #©b. Since Ra ⊆ Rb is equivalent to a = ab #©b, we

have a #©a = a #©ab #©b = a #©b.

Recall that the right star partial order a ≤∗ b is defined as: aa∗ = ba∗ and Ra ⊆ Rb.

Remark 3.3. In view of (1)⇔(4) in Theorem 3.2, one may ask whether the condition a ∗≤ b can be replaced

by a ≤∗ b or not. In [6, Theorem 2.9], it is claimed that A
#©

≤ B if and only if A ≤∗ B and B #©AB #© = A #©, where A
is a square complex matrix of index 1 and B is an EP matrix having same order as A. However, it is not true.

In fact, let A =
(
1 1
0 0

)
, B =

(
1 1
0 1

)
∈ M2(C), then A is core invertible, B is an EP matrix and the condition

A
#©

≤ B is satisfied, but AA∗ , BA∗.

The equivalence of (2)-(4) in the following proposition for the complex matrices has been proved by
Malik et al. in [7, Lemma 19].

Proposition 3.4. Let a ∈ R #©, b ∈ R with a
#©

≤ b. Then the following conditions are equivalent:

(1) a
#
≤ b;

(2) ab = ba;

(3) a2
#©

≤ b2;

(4) ak
#©

≤ bk, for any k ≥ 2.

Proof. By Lemma 2.2, we have a
#©

≤ b if and only if both a∗a = a∗b and a2 = ba hold.
(1)⇒ (2) is obvious by Lemma 2.1.
(2) ⇒ (4) If ab = ba, then ab = ba = a2 by Lemma 2.2. If k ≥ 2, we first show that abk−1 = ak. When

k = 2, ab = ba = a2. Suppose that ak−1 = abk−2, then ak = aak−1 = abbk−2 = abk−1. Thus we have abk−1 = ak by
induction. We will show that (ak) #©ak = (ak) #©bk. Indeed, (ak) #©bk = (a #©)kbk = (a #©)k−1a #©bbk−1 = (a #©)k−1a #©abk−1 =
(a #©)kabk−1 = (ak) #©abk−1 = (ak) #©ak. Similarly, bk(ak) #© = ak(ak) #©.

(4)⇒ (3) is trivial.

(3)⇒ (1) If a2
#©

≤ b2, then (a2) #©a2 = (a2) #©b2. And

(a2) #©a2 = (a #©)2a2 = a #©a #©a2 = a #©a = a#a,
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(a2) #©b2 = (a #©)2b2 = a #©a #©bb = a #©a #©ab = a#b,

thus a#a = a#b. Hence a2 = aaa#a = aaa#b = ab = ba by ba = a2.

In [1, Theorem 7], Baksalary and Trenker proved that for complex matrices A and B, if A is an EP matrix,

then A
#©

≤ B if and only if A
∗

≤ B. In [6, Theorem 3.3], Mailk proved that for complex matrices A and B, if A

is an EP matrix, then A
#©

≤ B if and only if A
#
≤ B. It is easy to check that the following proposition is valid

for elements in rings by [12, Theorem 3.1].

Proposition 3.5. Let a ∈ REP and b ∈ R. Then the following are equivalent:

(1) a
#©

≤ b;

(2) a
#
≤ b;

(3) a
∗

≤ b.
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