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Abstract. We investigate issues of numerical solving of optimal control problems for second order elliptic
equations with non-self-adjoint operators - convection-diffusion problems. Control processes are described
by semi-linear convection-diffusion equation with discontinuous data and solutions (states) subject to the
boundary interface conditions of imperfect type (i.e., problems with a jump of the coefficients and the
solution on the interface; the jump of the solution is proportional to the normal component of the flux).
Controls are involved in the coefficients of diffusion and convective transfer. We prove differentiability and
Lipshitz continuity of the cost functional, depending on a state of the system and a control. The calculation
of the gradients uses the numerical solutions of direct problems for the state and adjoint problems.

1. Introduction

The main object of study in this paper is a semilinear elliptic equation of the second order with non-
self-adjoint operators, known as a stationary convection-diffusion equation, with discontinuous data and
solutions (states) (DCS) subject to the boundary interface conditions of imperfect type (i.e., problems with
a jump of the coefficients and the solution on the interface; the jump of the solution is proportional to the
normal component of the flux, see [3], [4]). Convection-diffusion problems are typical for mathematical
models of liquid and gas mechanics, since heat and impurities transfer can occur not only due to diffusion,
but also to the motion of the medium (see [5]). Convective-diffusion process can play a decisive role in
modeling of a wide variety of processes, in particular, of environmental problems associated with the
description of the impurities distribution processes in the atmosphere and water reservoirs, and modeling
of groundwater pollution. Basic models of many processes in gas- and fluid dynamics are boundary
value problems for stationary and non-stationary convection-diffusion equations - second-order elliptic or
parabolic equations with minor terms. Currently, the most profound results in the theory of numerical
solution to problem for PDEs and optimization problems are obtained for processes with self-adjoint
operators.

Gradient methods are very popular and reliable tool of solving minimization problems, and in particular,
optimal control problems (see, for example, [6], Chapter 8). And they require Lipschitz derivative of the
objective functional. Note that the subject of this article is related to [2]. The principal difference is that
controls are involved in the coefficients of diffusion and convective transfer. We prove differentiability and
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Lipshitz continuity of the cost functional, depending on a state of the system and a control, for the problem
of optimal control of a semilinear stationary convection-diffusion equation with DCS subject to the bound-
ary interface conditions of imperfect type. Effective procedures for calculating gradients of minimized
functionals using the solutions of direct problems for the state and adjoint problems are obtained.

2. Statement of the Problem

Let Q= {r =(r, ) €ER?*:0<r, <l,a = 1,2} be a rectangle in R? with a boundary JQ =I'. Suppose
that the domain () is splitted by an ”“internal contact boundary” S= {r1 =&, 0<n< lz}, where 0 < & < I3,
into subdomains Q; = Q™ = {0 <rn<§ 0<mn<bland QO = Qf = {5 <n <l, 0<r <Db}with
boundaries d0); = dQ~ and dQ, = JQ*. Thus, Q is the union of Q; and €, and the interior points of the
interface S between Q1 and Q,, while dQ is the outer boundary of Q. Let T« denote the boundaries of Q
without S, k = 1,2. Therefore dQ = Ty U S, where Iy, k = 1,2 are open nonempty subsets of dQ, k = 1,2;

andT; UT, = 9Q =T. Let 1y, @ = 1,2 denote the outward normal to the boundary dQ, of Q,, a =1,2. Let
n = n(x) be a unit normal to S at a point x € S, directed, for example, so that n is the outward normal on S
with respect to (y; i.e., n is directed inside ();. While formulating boundary value problems for states of
control processes below, we assume that S is a straight line along which the coefficients and solutions of
boundary value problems are discontinuous, while in domains )y and €, they possess certain smoothness.

We consider the following problem: Find a function u(r), defined on Q, satisfying in each subdomain
)y and (), the equation

2 2
Lu() ==Y a% (k(r)%) +Y s“*)g% +d(Nq) = f(r), 1= (r,12) € Q Uy, (1)

a=1 a=1

and the conditions

u(r) =0, redQ =T, UT,,

[k(r)%] =0, G(r)= (kl(r)g—brlll) =0(rp)[u], xe€85, 2)
_[wm@), reqy; @), &ER;
whereu) = { 110 TRV g ={ P B ER
@ | 0,00, 10,900, reQ;
k(r), d(r), f(r), (r) —{ (), 3, (1), Sgl“’(r), reQ, a=1,2. (3)

Here [u] = uy(r) — ui(r) = u*(r) — u=(r) is the jump of the function u(r) on S; d(r), f(r) ) are given functions
defined independently in )y and (),, and having a first kind jump at S; 8(2” (), p = 1,2 are given functions
defined in (; g,(&,), @ = 1,2 are given functions defined for £, € R, a = 1,2; O(r,) is a given function on S;
and g(r) = (g1(), g2(r), g3(r), ga(r)) = (k1 (1), ka(1), Sgl)(r), 8(2)(7)) is a control-vector.

The given functions are assumed to satisfy the following conditions: d(r) € Loo(€21) X Leo((22), f(r) €
La(Q1) X La(Q2), 6(r2) € Lo(S), S (1) € La(Q), p = 1,2, 0 < dg < d(r) < do, 7 € Q1 U ;0 < 6y < 6(r2) < 6B,
12 €S, Cpya < Sép )(r) < zp+2f p=12r¢ey,d, Eo, Oo, 50, Cpe2s Zp+2, — are given constants; functions q,(&y),
a = 1,2 defined on R with values on R satisfy the conditions 4,(0) = 0,0 < go < (§a(&1) — §a(&2))/ (&1 — &2) <
Ly < ooforall &1,& € R, & # &, Ly = Const.

4
We introduce the set of admissible controls U = H Uy € WL(Q1) X WL (Qy) X Leo(Q1) X Leo(Qq) = B,
k=1
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agﬁ( r)
o
p=12, g3 €Us = 7307 = 9 € Lo(@1) = B3 : &y < 95() < Ty, ae. on ), @

ga(r) € Us = {ga(r) = 92(r) € Lo(@1) = By : & < 9a(r) < Gy, ae. on Oy},

where B, = W;(Qp), p = 1,2, are the sets of controls g,(r) = k,(r), p = 1,2, defined in Q; and Q,, and
By = Loo((h), p =3, 4 - are the sets of controls g,42(r) = S(p)(r) p = 1,2, defined in (1 and (), respectively,

2
() e U, = {gp —k, € WL(Q) =B, : 0 <v, < g,(r) < 7, g’;(r) <R,
1

)
< Rp a.e. on Qp},

where v, 17,,, R(p) Cp, Cp, p = 1,2, are given numbers. We assume that: —m; < {3 < Zl < my,
m<G<G<p, —m2<C3<C3<m2 —p2 < Uy < Uy < po, Mg, po = Const >0, = 1,2,
2

Vo — (€1 + €2 m
Oq = max {¥+ —4—0‘ I“}>0 a=1,2,
€1,6>0 o, €1 €2
€1+€ <V,

-1 -1

here Cél = (% + l%) , Céz = ((11—%1)2 + l%) ; A is any of the following constants: 1) A = gody, do > 0;
1 h 2

fi.

g J(g) = f s, 723 9) — D OPAQ = (u(r: ), ©)

O

2) A = dy is an arbitrary constant as q(u) = u; 3) A = —L,;Co, where (o = max{

We introduce the cost functional | : U — R! as

where uél)(r) € Wi(Cy) is a given function.
The problem of optimal control is to find a control g € U, that minimizes the functional g — J(g) on set
U C B, more precisely, we need to minimize functional (5) on the solutions u(r) = u(r; g) to problem (1)-(5),

associated with all admissible controls g(r) = (kl(r),kz(r), Sm(r), 8(2)(r)) e U.
Under a solution to direct problem (1)-(5) for each fixed control g(r) € U we understand a function

u(r) = u(r; 9) e\olr] T, (QU2), satisfying for all v E‘O/r1 T, (Q1?) the identity

Z( (r &” 871 ZS(“)—v+d(r)q(u)U

a=1

on+f9(x)[u][v]dS: f f(rodQy.

S O1UQ,

0QUQ,

For the definition of spaces Vr,n (Q02) see work [1].

3. Difference Approximation of Optimal Control Problems

Optimization problems (5), (1)-(4) are associated with the following difference approximations: mini-
mize the grid functional

Tn@n) = ) ly(e @) = uly) Prnka = lly (e @) = a2 o (6)

xeo®

provided that the grid function y(®;) ev o (@), which is the solution of the difference boundary

Y0,
value problem for problem (1)-(4), satisfies, for any grid function v €V, o (@1?), the summation identity

Z{Z Y 6 @t 52D sz + (Y ) B @ant, ¥, o bt

a=1 Uf+ (a7 @ @k
w; 2
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+5 Z B @an(€, 22) s (&, X2)0ass (€, xz)hlhz)} + ) On)IY(E, x)] [0(E, x2) o+

1 2
) Z Roszn(@Y,y 01nhs + 5 ) Y Purai(€ %)y (E32)01(E x)hala+

o) a= 1 w2 a 1
) Z 85 Wy Woaih + 3 Y Z O5(E X2)y (& X2)0a(E, X2+ %
@ a=1 wy a=1
2
1
+ Y (Y deaa Do (i + 5 ) At 5200, 520 (E, 22z =
a=1 (L)(U‘) (o))

= Z(Z forRYoa(e)hhy + 5 2 & ¥2)0uE, 2l ),

(Yla)”‘

while the grid controls @y, = {®y, Oy, 3y, Py} are such that

Uy, = H U, € WL (@D) x WL (@®@) X Leo(@D) X Lo (@) = By,
k=1
Dp(x) € Upy = {qn,,h(x) € WL(@Y) = By, : 0 < vy < Dpy(x) < 7y, x € @), (8)
(D, ()] < R, x € 0P X @, [Dpiy (0] < RP, x € 0 x @3], p=1,2,

q)ph(x) € Uph = {q)ph(x) € Lm(d)(l)) = Bph : Cp—Z < q)ph(x) < Cp—er € w(l)}/ p= 3,4,

where By, = WL (@), By, = WL (@?) are the sets of grid controls @y, @y, defined on the grids @V, @@,
equipped with the norms

“q)och(x)“W1 (@W) — max |(Dah(x)| + (max |(Dahx1 (X)| + maX |q)ah~cz(x)|1 a=1,2, (9)

)" X@n ><w
respectively. Here

( 12)(x) +® -1, 12)(3() +CD+12)(x)+(I)( 1y, +12)( ) ®1h(X)+fD( 12)(3()

by (@1, x2)) = 7 , B (@1, x2)) = > ,
( 12)(x) +® 11 12)(x) +CD(+12)(X) +(I)( 1y, +12)( ) D, (x) +q)(—12)(x)
b (D1, X2)) = T , B (@(x1,72)) = T

O @) = Dy = by, X = ho), B (%) = D1, X = ha), BN (0) = Duy(ry = I, xa + o), DY (x) =

Dyp(rr, x2+ha), @17 (x) = Doy (1 iy, X2~ ha), @, (%) = oy 52~ ), @ 11D (x) = Dy (1 iy, X2 +h2),
(+1Z)(x) Dy,(x1, %2 + hp), and 9(2‘;) (x), dan(x), @ = 1,2, Oy(x2), fan(x), @ = 1,2, u&)(x) are grid approximations

of the functions 3W(r), dy(r), a = 1,2, 0(r2), fu(r), a = 1,2, uél)(r), defined via Steklov averages (see [1]). For

(1,2)

the definition of grids @', w® U y5, @ = 1,2 and grid spaces \()/7,<1)V(z> @"?) see work [1].

4. Differentiability of the Grid Functional J,(®y)

Theorem 4.1. Assume that the function q(s) : R — R satisfies the conditions: q(0) = 0, q(s) is differentiable in s,
and 0 < go < q(s) < Ly < o0, |g5(s1) — qs(sz)| <L gls1 —s2l,  forallsy,s; € R, Lq, g = Const > 0. Suppose that
d € Loo(Q1) X Loo(Qa), f € La(Q1) X Lo(Q2), O(r2) € Leo(S), 8V € Lo(Qa), p = 1,2, and ug € WL(Q1). Then the

_ 2
grid functional J;,(®y) is Fréchet-differentiable at @y, on Uy, in the space B, = Loo(@™M) X Loo(@®) X (Lz(w(l) U ys)) ,
and a functional gradient [, (®y) at the point (®y) = (D1, Doy, P3p, Pyy) is given by

" Z(a(gzh AP h) ’

Ly (w®MUys)

i

,AD

<T@, AP, >= Z(

Lo(@@)
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(M2 @pP @ + @@ + y P + P g )4
(yaxz(x)lpaxz(x) + y(+12)(x)1/’£y;2)(x))/2, fOT’ X € a)(a);
Y@ + @@ )2 + y P @), for x e ol x (0]

Y Py @) + T )sv;;?”lz><x>)/2 Y@, xew® x{h), a=12

PP + v @90 )2 + (1P 0w @) + e s )12, ¥ € 1€ x @

(
(
[
(

I _ | (W Pl @) 4y T g 12’<x>)/z, for x € {0} x ws; 10)
a(I)uzh
v @Y @), fora= 0,0 Y g o) + Y@ @), forx = (£,0);
@ T @), forx = 0,1 Y @PEP 0 + v, (0is, (0, for x = (& L)
N SR N - N o L R N L e
> > , for x € {&} X wy;
(A0 @ + v (x))/z, for x € o} X wn;
Ve, PO T@) + Y Y (), forx = (E,0) yor? PR (), forx = (11, 0);
Ve TP @YE T @) + o @Y (), for v = (1) YR (WP (), forx = (1, 1)
)
Ty N, =y @), xew Uy,
using the numerical solution y(x; ®y) of the grid state problem (7), and a solution Y(x; Py) of an adjoint problem:
2
- (b(llh)(q)lh) 1,11121) (b(lh)((blh )lPlxz ot Z DPusop P, o * din q1y, Y1 = —2(y1(X) - u&)(x)), xeawl,
lpl(x) O X € )/(1) = dwV \vs;
—(lv(zzh)(CDzh)l,Dzazl)x1 ( (2)(®2h)¢2x2 o Z S(“)ylj o a2, P2(x) =0, x € w?,
Pa(0)=0, x ey = 30)(2) \7s;
y (1D

,f—l |53 (@un(Er, )1z, (£1,22) + On(x2) (&, 32)| + Z} P&, 0209, (€32)=
- (B&)(@m(é,xg)wm(é, x2)), + du(E x2)1 (€ x2) = =2(1(E,x2) — 1 (€, 32)) + ;911(962)1!}2(5, 1),
-~ [b (©an(Ex + hr, 32))on, (€, %2) = Ou(x2)a(E, )| + Z O5(E X (&%)

al

—(b§33<<1>2h(5,xz»wyz(é,xz)) + dop(&, %)y, 2 (€, 2) = —9h<xz>¢1(é,xz) X €7s.
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Proof. Let @), and @y, + A, be arbitrary controls in Uy, and let y(®;) and y(Py, + AD,) be the solutions of the
state problems in optimization problem (7), corresponding the controls @, and @), + A®y, and let [,(P;,) and
Jn(@y+ADy) be the corresponding values of the grid functional J,. We define Ay(x) = y(x; @, +ADy) -y (x; Py),
AJn(@p) = Ju(©p + ADy) — Ju(Dp).

First of all, we note that the increment Ay satisfies for any v €V, 0,0 @"?) the problem:

2
Y (00 ) b @ + A Aoz, vam It + Y | Y B (@ + ADs)(AY)s, Oz, o+

a=l @+ @ @ @}
#3 2B+ AR 1) A € 30 € o))
+ Z Qh(xz)[A]/] [U](é, x2)hy + ZZ‘ Z((Da+2,h + Aq)a+2,h)A]/1§(“ (x) v1()h1h2+
w2 a=1 M
£ )Y (Dasanl,32) + ADap(E, %)) Ay, (E,22) 01(E, 22)aho+
a=1 oM
£ 27 ) 95 Ay ()02 + Z Y S80(E, 1) (Aya(E, 12));. va(E, X2)ha+ )
a=1 o a=1 @, 12
+ ; ;: dah(x)[%(ya(x; Oy + ADy)) — ga(Yalx; th))]Ua(x)hlthr

2 2 d[’th 5/ xZ)[Qa (ya (é/ xZ/ (Dh + A(Dh)) ‘7& (]/a (é/ xZ/ (Dh))]va (6/ xz)hlhz)

=- Z Y Y A6 @) Yoz, (@)oaz ity = Y Y A (@a) Yoz, (1), 1

+ +
(fY () w(lﬂ) u)z

-5 Z Abijf (Pan)(E, x2) Yoz, (€, X2)0az, (, xz)hlhz)—

2
- 2 Z ADyizp Yye (@) 01 = Y Y ADaia(E,32) Y, (&30 D) 01(E, x2)hi o

a=1 oM a=1 w;
Then the increment of the functional J;,(®;) can be represented as:
2
AT @) = Jn( @ + ADy) = Ju(@3) =2 ) (y(@y) = 1) () Ay Ffia + )" (Ay) Ta. (13)
=0 O

To transform the functional increment (13) let us introduce the function 1(®;,) as the solution of the
auxiliary boundary value problem (adjoint problem) (11). The solution of adjoint problem (11) is a function

P(®n) €V, 0050 @), satisfying for any grid function v(x) €V, @"?) the summation identity:

2
Z( Z Z bgl)(q)ah)lubaﬂ Uax, hihy + Z Z E((;;,)(q)ah)ll)aizvafzhlhfi'

a=1 @+ w (a) wt
1 2

Z B &, 2003 Py (E,02)0, (€, 32)aha) + Y O30 (E, %) [(E, 32) o+
, ; w3 (14)
Z Y Pasan (0, ()01l + Z Y Pasan(& 20, : (€ x2) 01(E, XY+

a=1 oM

al wy

2
Z Y O @y () 0@l + Z Y ONE Xy (€,32) 02(E, )l
w®

a=1 w2
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2 2
#3 Y dan(ay, - Yol + % Y Y dan(E 00y, - PalE, x2)0a(E, x2)Iha =

a=1 @@ a=1 w;

- ‘ZZ (y(0) = uf}) () 01 ()l Z (v(&, x2) = Ul (&, x2)) 01(&, x2)haha, Vo) eVymym @),

w® Wy

We set v = ¢ in (12) and v = Ay in (14), and subtract one from the other and paste the results into (13).
Then the increment of the grid functional can be represented as

AJul@n) = (@ + ADy) = (D) = Z Y Y A6 (@) Yo, Yz o+

a=1 (Ut)+ w2

+) 2 A (@) Yoz, Wz lha + 5 Z Abff;@ah)(é 1) Yoita (&, X2) Wz, (€, x2) o) + (15)

(1) a)

+ Z Z ADyio) Yo Yr(x)hy + Z Z ADy12),(E, X2) Yy (,%2) Pr(E, x2)ha + Ry,

a=1 oM a=1 wz

11
where Rh = Z th, Rhl = Z (Ayl)zhlhz;

k=1 wﬁ”*sz

Rpz = Z di(x)1(x) [6]1(y1 +Ay1) —q1(y1) - 41ylAy1]hlh2)
m)(a)z

Ryz = Z dan(x)2(x) [lh(yz +Ay2) = q2(y2) - 42y2Ay2] hiho;
w? )sz

Rps = Z din(&, x2)P1 (&, xz)[%(%(]/l + Ay1) = (1)) = Gy, Ay &, xz)]h1hz;

()

1
Rps = Z don(&, x2)2(&, JQ)[E 72(y2 + Aya) — 112(y2)) — G2y, A2(&, xz)]hlhz;

(16)
o= Y Y 6000 () - sl Rip = Y Z B (AD) (M), - Yz Inh;
(1)+ Wy a)(]
Ris = 5 Z B (AP (Ay1)s, (&,32) - Yy (&, 22l
) (2)
Ry = % Zb (AD2p) (Ay2)z, * Yoz, hh2; Ry = Zzb (AD2p) (Ay2)z, * Yoz, hha;
Rin = 5 Z B (AD) (A2)s, (&, %2) - Yo, (&, xz)hlhz-
By using inequality ||y (x; CDh)II @) S <M 2 Il finllLo @®uys), YO, € Uy, we get estimates for the increment
k=1
Ay and the solution ¢ of the aux111ary problem (14):
2 2
||Ay“{}y(l)y<2)@“2>) < CO(Z_;”A@M”LM(MW) + ﬁZ_;”Aq)ﬁ"'thHLz(m(l)Uys)) = COHAth| B’ (17)

||¢(q)’“>Hf’a<wz) ooy SM=Const, V@ € U

Since under the conditions of the theorem the function g(y) satisfies additional restriction

2i=12,

E’i
< 7|Ayl

‘Qi(yi + Ayi) — qi(yi) — 9:(yi) Ayi
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we have
IRl < Z 'd1h(x)¢1(x)[511(y1 +Ay1) - q1(v1) — ‘71y1]Ay1 Iy <
a_)(ll)sz
L, —
< Eq ; |Ay1|2|¢1’h1h2 < C“Ayl||?/V;(5(1))H¢“W;(a(l))}
;' Xwy

IRial < Cl“Al/z“i@(wm)||All/2||wé(w<z>);
Z din(E, x2)1(E, xz)[g(%(]ﬂ + Ay) — 111(%)) - q1y1A]/1(f§rx2)]hlh2 <

Wy

[Ria| =

< cllavallyy o191 g, + 1831y

ol <t {1 o)
Rl < 3 o't <l g,

a);'sz

Besides, we have

[Ris + Riz + Ris] < Cla@n |, {8 g 91y}

[Rio + Ritg + Rins| < Clla@an],_ o {1892l o [92] s -

Therefore, it follows that

AJu(@s) = Z D, D A @) el + ), ) AV @) Yo,

a=1 ()+ w2 wgf’f) “’2

+5 XAW(@M)(@ 2) Yo, (&, %2z, (€, %)) XZAGDMMM Y1 ()b +

a=1 oM

* Z Z ADan(E,22) Y, (&,20) Pr(E, x2)mha +of || Ay )

a=1 w2
Then
AJW(®r) =< J3,(@y), Ay, > +o([|Ady |z ), (18)
I n
here < J/ (@), AD;, >= ( A(IJa) + ( Acp) .
where < [} (®y), ADy, Z 9D, h o) Z 9D’ Bl 2 @Uye)

Thus, in formula (18) for the increment of the functional the first component is a bounded linear
functional on By, with respect to ®g;,, f = 1,4, while the last one is of the order O(HAth”E)‘ It means that the

functional [,(®y) is differentiable on the set U}, in the space Eh. And the functional gradient J,(®;,) at point
®y, € Uy, is given by (10). The theorem is proved. [J

Theorem 4.2. Let the conditions of the above theorem hold. Then the grid functional [;,(®y,) belongs to Cl’l(gh), that
is we have the estimate

(@ + ADy) = T1(@y)]| < Cl|yf5 -
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5. Concluding Remarks

The above results can be directly applied for solving the difference optimal control problems (6)-(8).
In particularly, one can implement difference analogues of gradient methods (see [6]) for solving optimal
control problems (6)-(8), using the calculated gradients of minimized grid functionals. The calculation of
the gradients uses the numerical solutions of direct problems for the state and adjoint problems, obtained
on the basis of the iterative method (see [2]).
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