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Quotient Structure of Interior-closure Texture Spaces
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Hacettepe University, Department of Secondary Science and Mathematics Education, Ankara, Turkey.

Abstract. In this paper, we consider quotient structure and quotient difunctions in the context of interior
and closure operators on textures in the sense of Dikranjan-Giuli. The generalizations of several results
concerning separation and quotient mapping are presented. It is shown that the category of interior-closure
spaces and bicontinuous difunctions has a T0 reflection. Finally, we introduce some classes of quotient
difunctions such as bi-initial and bi-final difunctions between interior-closure texture spaces.

1. Introduction

Closure spaces were introduced by Cech [9] and closure operators have been used intensively in some
branches of mathematics such as Topology and Algebra. In [15], a discussion was given on closure operators
in the sense of Cech on texture spaces. Besides, interior-closure operators on texture spaces in the sense of
Dikranjan-Giuli which give more suitable environments for different areas were discussed in [16]. In the
mentioned works, there is no a priori relation between interior and closure operators. As a result, continuity
and cocontinuity of difunctions was introduced by using interior and closure operators and so formed the
topological category dfICL of interior-closure spaces and bicontinuous difunctions.

In the categorical view, some special morphisms such as quotient, initial and final maps which are based
on closure operators were studied in [18].

The aim of this paper is to give quotient structure and their properties for interior-closure texture spaces.
Furthermore, initial and final morphisms with respect to interior and closure operators are studied.

The theory of texture spaces is an alternative setting for fuzzy sets and therefore, many properties of
Hutton algebras (known as fuzzy lattices) can be discussed in terms of textures. There is a considerable
literature on this subject, and an adequate introduction to the theory and the motivation for its study may
be obtained from [3–7].

Let S be a set. A texturing is a point-separating, complete, completely distributive lattice with respect
to inclusion, which contains S and ∅, and for which arbitrary meets coincide with intersections, and finite
joins with unions. If S is a texturing of S, then the pair (S, S) is called a texture space or shortly, texture [4].

For a texture (S, S), most properties are conveniently defined in terms of the p-sets Ps =
⋂
{A ∈ S | s ∈ A} and

dually, the q-sets, Qs =
∨
{A ∈ S | s < A}.
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Examples 1.1. (1) For any set X, (X,P(X)) is the discrete texture representing the usual set structure of X.
Clearly, Px = {x}, Qx = X \ {x} for all x ∈ X.

(2) (L,L) is a texture where L = (0, 1] and L = {(0, r] | r ∈ [0, 1]}. Here Pr = Qr = (0, r] for all r ∈ L.

(3) For I = [0, 1] define I = {[0, t] | t ∈ [0, 1]} ∪ {[0, t) | t ∈ [0, 1]}. (I, I) is a texture, which we will refer to as
the unit interval texture. Here Pt = [0, t] and Qt = [0, t) for all t ∈ I,

A ditopology [3] structure on the texture (S, S) is a pair (τ, κ) where τ contains S and ∅, and τ is closed
under finite intersections and arbitrary joins, dually , κ contains ∅ and S, and κ is closed under finite unions
and arbitrary intersections. The elements of τ are called open sets and the elements of κ are called closed
sets.

The closure and the interior of A ∈ S under (τ, κ) are defined by the equalities

[ A ] =
⋂
{K ∈ κ | A ⊆ K}, ] A [=

∨
{G ∈ τ | G ⊆ A}.

Obviously, A ∈ τ⇐⇒ A =] A [ and A ∈ κ⇐⇒ A = [ A ].

Now let us recall from [15] the definition of interior-closure texture space. Let (S, S) be a texture space.
A pair (int, cl) is called a generalized interior-closure structure (gic-structure) where int : S→ S and cl : S→ S

are two set- valued mappings on (S, S). A gic-structure (int, cl) is called

(i) grounded if int(S) = S and cl(∅) = ∅.
(ii) isotonic if ∀A,B ∈ S,A ⊆ B =⇒ int(A) ⊆ int(B) and cl(A) ⊆ cl(B).

(iii) idempotent if ∀A ∈ S, int(int(A)) = int(A) and cl(cl(A)) = cl(A).
(iv) (int, cl) is called contractive-expansive if ∀A ∈ S, int(A) ⊆ A and A ⊆ cl(A).

Note that if (int, cl) and (int′, cl′) are gic-structures on (S, S), then (int, cl) is said to be finer than (int′, cl′), if
cl(A) ⊆ cl′(A) and int′(A) ⊆ int(A) for each A ∈ S.

A gic-structure (int, cl) on (S, S) is called an interior-closure texture space or shortly, i-c space if (int, cl) is
grounded, isotonic, idempotent and contractive-expansive. Then a pair (int, cl) on (S, S) is called i-c-
structure if (S, S, int, cl) is an i-c space.

One of the most useful notions in the theory of texture spaces is that of difunction. A difunction is a
special type of direlation [6]. Specifically, if (S, S), (T,T) are textures, we will denote by P(s,t), Q(s,t) respectively
the p-sets and q-sets for the product texture (S × T,P(S) ⊗ T) [4]. Then:

1. r ∈ P(S) ⊗ T is called a relation from (S, S) to (T,T) if it satisfies

R1 r * Q(s,t),Ps′ * Qs =⇒ r * Q(s′,t).

R2 r * Q(s,t) =⇒ ∃s′ ∈ S such that Ps * Qs′ and r * Q(s′,t).

2. R ∈ P(S) ⊗ T is called a corelation from (S, S) to (T,T) if it satisfies

CR1 P(s,t) * R,Ps * Qs′ =⇒ P(s′,t) * R.
CR2 P(s,t) * R =⇒ ∃s′ ∈ S such that Ps′ * Qs and P(s′,t) * R.

3. A pair (r,R), where r is a relation and R a corelation from (S, S) to (T,T), is called a direlation from (S, S)
to (T,T).

Example 1.2. For any texture (S, S) the identity direlation on (S, S) is given by

i =
∨
{P(s,s) | s ∈ S}, I =

⋂
{Q(s,s) | s ∈ S[}
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Direlations are ordered by (r1,R1) v (r2,R2) ⇐⇒ r1 ⊆ r2 and R2 ⊆ R1, and the direlation (r,R) on (S, S) is
called reflexive if (i, I) v (r,R).

Let (r,R) be a direlation from (S, S) to (T,T). Then the inverse of (r,R) from (S, S) to (T,T) is the direlation
(r,R)← = (R←, r←) from (T,T) to (S, S) given by

r← =
⋂
{Q(t,s) | r * Q(s,t)}, R← =

∨
{P(t,s) | P(s,t) * R }

The direlation (r,R) on (S, S) is called symmetric if (r,R)← = (r,R).

For A ∈ S, the A−sections of r and R are given by [6]:

r→(A) =
⋂
{Qt | ∀ s, r * Q(s,t) =⇒ A ⊆ Qs} ∈ T,

R→(A) =
∨
{Pt | ∀ s, P(s,t) * R =⇒ Ps ⊆ A} ∈ T.

For B ∈ T, the B−presections of r and R are given by [6]:

r←(B) =
∨
{Ps | ∀ t, r * Q(s,t) =⇒ Pt ⊆ B} ∈ S,

R←(B) =
⋂
{Qs | ∀ t, P(s,t) * R =⇒ B ⊆ Qt} ∈ S.

Another important concept for direlations is that of composition [6]: If (p,P): (S1, S1) → (S2, S2) and
(q,Q): (S2, S2) → (S3, S3) are direlations then their composition (q,Q) ◦ (p,P) = (q ◦ p,Q ◦ P) from (S1, S1) to
(S3, S3) is given by

q ◦ p =
∨
{P(s,u) | ∃ t ∈ T with p * Q(s,t) and q * Q(t,u)},

Q ◦ P =
⋂
{Q(s,u) | ∃ t ∈ T with P(s,t) * P and P(t,u) * Q}.

The direlation (r,R) on (S, S) is transitive if (r,R) ◦ (r,R) v (r,R).

Composition combines with sections and presections as one would expect.

Lemma 1.3. Let (p,P) : (S1, S1)→ (S2, S2) and (q,Q) : (S2, S2)→ (S3, S3) be direlations. Then:

(i) (q ◦ p)→A = q→(p→A) and (Q ◦ P)→A = Q→(P→A) ∀A ∈ S1.
(ii) (q ◦ p)←B = p←(q←B) and (Q ◦ P)←B = P←(Q←B) ∀B ∈ S3.

Definition 1.4 ( [6] ). Let ( f ,F) be a direlation from (S, S) to (T,T). Then ( f ,F) is called a difunction from (S, S)
to (T,T) if it satisfies the following two conditions.

DF1 For s, s′ ∈ S, Ps * Qs′ =⇒ ∃ t ∈ T with f * Q(s,t) and P(s′,t) * F.

DF2 For t, t′ ∈ T and s ∈ S, f * Q(s,t) and P(s,t′) * F =⇒ Pt′ * Qt.

Theorem 1.5. Let ( f ,F) : (S, S)→ (T,T) be a difunction. Then:

∀A ∈ S, f←(F→A) ⊆ A ⊆ F←( f→A) ⇐⇒

∀B ∈ T, f→(F←B) ⊆ B ⊆ F→( f←B) ⇐⇒

∀B ∈ T, f←B = F←B

Definition 1.6 ( [6] ). Let ( f ,F) : (S, S)→ (T,T) be a difunction. Then ( f ,F) is called surjective if it satisfies the
condition
SUR. For t, t′ ∈ T, Pt * Qt′ =⇒ ∃ s ∈ S with f * Q(s,t′) and P(s,t) * F.

Likewise, ( f ,F) is called injective if it satisfies the condition

INJ. For s, s′ ∈ S and t ∈ T, f * Q(s,t) and P(s′,t) * F =⇒ Ps * Qs′ .
If ( f ,F) is both injective and surjective then it is called bijective. Note that the image and co-image are

equal under bijective difunction.
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The following corollary gives some basic properties of surjective and injective difunctions.

Corollary 1.7. Let ( f ,F) be a difunction from (S, S) to (T,T).

(1) If ( f ,F) is surjective then F→( f←B) = B = f→(F←B) for all B ∈ T.
(2) If ( f ,F) is injective then F←( f→A) = A = f←(F→A) for all A ∈ S.

Definition 1.8. Let (S, S, intS, clS) and (T,T, intT, clT) be i-c spaces and ( f ,F) be a difunction from (S, S) to
(T,T). Then ( f ,F) is called

(i) continuous if ∀B ∈ T, F←intT(B) ⊆ intS(F←B).
(ii) cocontinuous if ∀B ∈ T, clS( f←B) ⊆ f←clT(B).

(iii) bicontinuous if it is continuous and cocontinuous.

Further ( f ,F) is called dihomeorphism [17] if it is bijective and, with its inverse, is bicontinuous. The next
characterization of dihomeomorphism [17] is useful in this study:

Proposition 1.9. Let ( f ,F) : (S, S, intS, clS) → (T,T, intT, clT) be a bijective difunction. Then the following
conditions are equivalent.
(1) ( f ,F) is a dihomeomorphism.
(2) A = intS(A)⇐⇒ f→A = intT( f→A), and A = clS(A)⇐⇒ F→(A) = clT(F→(A)), ∀A ∈ S.
(3) B = intT(B)⇐⇒ F←(B) = intS(F←B), and B = clT(B)⇐⇒ clT(B) = clT( f←B), ∀B ∈ T.

In general, difunctions are not directly related to ordinary (point) functions between the base sets. But,
we recall from [6, Lemma 3.4] that if (S, S), (T,T) are textures and the point function ϕ : S → T satisfies
condition

(a) s, s′ ∈ S,Ps * Qs′ =⇒ Pϕ(s) * Qϕ(s′)

then the equalities

fϕ =
∨
{P(s,t) | ∃u ∈ S satisfying Ps * Qu and Pϕ(u) * Qt},

Fϕ =
⋂
{Q(s,t) | ∃u ∈ S satisfying Pu * Qs and Pt * Qϕ(u)}

(1.1)

define a difunction ( fϕ,Fϕ) from (S, S) to (T,T). Moreover by [6, Lemma 3.9], if ϕ also satisfies

(b) s ∈ S, Pϕ(s) * B, B ∈ T, =⇒ ∃s′ ∈ S with Pϕ(s′) * B

then f←ϕ (B) = ϕ−1[B] =
∨
{Pu | ϕ(u) ⊆ B} = F←ϕ (B) for all B ∈ T.

2. Quotient Textures

The equivalence direlations and the quotient texture are introduced in [2]. A direlation (r,R) on (S, S) is
called an equivalence direlation if it is reflexive, symmetric and transitive. From [2, Theorem 3.5], the sense
in which an equivalence direlation gives rise to a quotient texture is described in the following theorem.

Theorem 2.1. Let (r,R) be an equivalence direlation on (S, S). Then there exists a point equivalence relation ρ on S,
a texturing U of the quotient set U = S/ρ and surjective difunction ( f ,F) from (S, S) to (U,U) satisfying r = F← ◦ f
and R = f← ◦ F.
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According to this theorem:

(1) The equivalence point relation ρ on S is given by

sρt⇐⇒ r * Q(s,v)∀v with Pt * Qv, P(u,t) * R ∀u with Ps * Qu.

(2) For all s, t ∈ S, sρt⇐⇒ Ps ⊆ r→(Pt) and Pt ⊆ r→(Ps).

(3) For A ∈ S, r→A = A⇐⇒ R→A = A⇐⇒ r→A = R→A. It is denoted by R the family of all A ∈ S satisfying
these equivalent conditions. The elements of R are saturated with respect to ρ.

(4) Let ϕ be the canonical quotient mapping ϕ : S→ U, s→ s̄. By [2, Lemma 3.8], U = {A | ϕ−1[A] ∈ R} is a
texturing of U. The mapping ϕ satisfies the conditions (a) and (b) mentioned earlier. It follows that ϕ gives
rise to a difunction ( f ,F) = ( fϕ,Fϕ) : (S, S)→ (U,U), which is called the canonical quotient difunction. Since ϕ
is onto, ( f ,F) is surjective. Moreover, for ∀B ∈ U and ∀A ∈ R,

f←(B) = ϕ−1[B] = F←(B), f→(A) = ϕ[A] = F→(A) (2.1)

Now let us give the following results [2] which will be useful in this study:

Theorem 2.2. Let (1,G) : (S, S) → (T,T) be a difunction. Then (r,R) defined by r = G← ◦ 1 and R = 1← ◦ G
is an equivalence direlation on (S, S). Moreover if (U,U) is the quotient texture associated with (r,R) and ( f ,F) :
(S, S) → (U,U) is the canonical quotient difunction as in mentioned earlier then (h,H) = (1,G) ◦ ( f ,F)← is an
injective difunction. Finally, if (1,G) is surjective then (h,H) is bijective.

Theorem 2.3. Let (rk,Rk) be an equivalence direlation on (Sk, Sk) and (Uk,Uk) the corresponding quotient texture for
k = 1, 2. If (1,G) : (S1, S1)→ (S2, S2) is a difunction which is compatible in the sense that A ∈ R2 =⇒ 1←A ∈ R1,
then there exists a difunction (1̄, Ḡ) : (U1,U1) → (U2,U2) such that ( f2,F2) ◦ (1,G) = (1̄, Ḡ) ◦ ( f1,F1), where
( fk,Fk) : (Sk, Sk)→ (Uk,Uk) are canonical quotient difunctions in the sense of (2.1) for k = 1, 2.

Proposition 2.4. Let (S, S) be a texture and B ⊆ S. We set

r =
∨
{P(s,t) | ∃Ps * Quwith Pt ⊆ B or B ⊆ Qu,∀B ∈ B}

R =
⋂
{Q(s,t) | ∃Pv * Qswith Pv ⊆ B or B ⊆ Qt,∀B ∈ B}

Then (r,R) is an equivalence direlation on (S, S). Moreover, B generates the set R for (r,R) in the sense that B ⊆ R

and every element of R can be written as an intersection of joins of elements of B.

3. Interior-closure Quotient Space

Textures offer a convenient setting for the investigation of complement-free concepts in general, so much
of the recent work [11–14] has proceeded independently of the fuzzy setting. In particular, the notion of
interior-closure space has been introduced in [15, 16] and Section 2. The study of quotient structure in
ditopological texture spaces was begun in [4] and continued in [2]. The aim of this section is to carry
over the concepts and some of the results given in quotient ditopological texture spaces to the much more
general framework of interior-closure texture spaces.

Firstly, let us recall [16, Lemma 1.2] that if (S, S) is a texture and ∅ ∈ F ⊆ S is closed under arbitrary
intersections and S ∈ G ⊆ S is closed under arbitrary joins then (S, S, int, cl) is a interior-closure texture space
where

int(A) =
∨
{H ∈ G | H ⊆ A}, cl(A) =

⋂
{K ∈ F | A ⊆ K},∀A ∈ S
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Proposition 3.1. Let (S, S, int, cl) be i-c space and (r,R) be an equivalence direlation on (S, S), (U,U) the corresponding
quotient texture modulo (r,R) and ( f ,F) : (S, S)→ (U,U) the canonical quotient difunction. Then the pair (intU, clU)
is the finest i-c- structure on the quotient texture (U,U) for which the difunction ( f ,F) is bicontinuous where for all
B ∈ U,

intU(B) =
∨
{G ∈ U | G ⊆ B, int F←G = F←G},

clU(B) =
⋂
{K ∈ U | B ⊆ K, cl f←K = f←K}.

Proof. We consider the families η = {G ∈ U | int F←G = F←G} and µ = {K ∈ U | cl f←K = f←K}. Let
K j ∈ µ, j ∈ J where J is any index set. Since (int, cl) is isotonic, we have cl(

⋂
j∈J K j) ⊆ cl(K j) ⊆ K j and so

cl(
⋂

j∈J K j) ⊆
⋂

j∈J K j. Hence, the family µ is closed under arbitrary intersections. By using similar argument,
it is showed that the family η is closed under arbitrary joins. Thus, (intU, clU) is the i − c structure on (U,U)
by [16, Lemma 1.2]. The canonical difunction ( f ,F) is automatically continuous and cocontinuous.

Now suppose that (int′, cl′) is an i-c operator on (U,U) and, let ( f ,F) : (S, S, int, cl)→ (U,U, int′, cl′) be a
bicontinuous difunction. By cocontinuity of ( f ,F),

cl( f←B) ⊆ f←cl′(B)

and so

cl( f←cl′(B)) ⊆ f←cl′(cl′(B)) = f←cl′(B), ∀B ∈ U.

Hence, cl′(B) ∈ µ. Because of B ⊆ cl′(B), we find cl(B) ⊆ cl′(B).
Further, since ( f ,F) is continuous,

F←int′(B) ⊆ int(F←B)

and then

F←int′(B) = F←int′(int′(B) ⊆ int(F←int′(B)),∀B ∈ U.

that is int′(B) ∈ η. Because of int′(B) ⊆ B we have int′(B) ⊆ int(B).

Definition 3.2. With the notation above, (U,U, intU, clU) is called the quotient i-c space of (S, S, int, cl)
modulo (r,R).

Consider the following diagram:

(S, S, intS, clS)
( f ,F) //

(1,G)◦( f ,F)
))SSS

SSSS
SSSS

SSSS
SSS

(U,U, intU, clU)

(1,G)

��
(T,T, intT, clT)

Proposition 3.3. Let ( f ,F) : (S, S, intS, clS) → (U,U, intU, clU) be canonical quotient difunction. Then arbitrary
difunction (1,G) : (U,U, intU, clU) → (T,T, intT, clT) is continuous (cocontinuous, bicontinuous) if and only if
(1,G) ◦ ( f ,F) is continuous (cocontinuous, bicontinuous).

Proof. (=⇒) Let B ∈ T. Because of (G ◦ F)←B = F←(G←B) and (1,G) is continuous,

(G ◦ F)←intT(B) = F←(G←intT(B)) ⊆ F←intU(G←B)
⊆ int(F←G←(B)) ⊆ int((G ◦ F)←B),
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As a result, (1,G) ◦ ( f ,F) is continuous.

(⇐=) Take B ∈ T. We must show that G←intT(B) ⊆ intU(G←B). Since (intT, clT) is isotonic, intT(B) ⊆ B and
so G←intT(B) ⊆ G←B. Then we may write F←G←intT(B) ⊆ F←G←B and since (1 ◦ f ,G ◦ F) is continuous, we
have int(F←G←intT(B)) = F←G←intT(B). From the definition of intU it is obtained G←intT(B) ⊆ intU(G←B).

By using dual argument, a proof is obtained for cocontinuity and bicontinuity.

Remark 3.4. Let (1,G) : (S, S, intS, clS) → (T,T, intT, clT) be a bicontinuous difunction between i-c spaces.
Then (r,R) defined by r = G← ◦ 1 and R = 1← ◦ G is an equivalence direlation on (S, S) from Theorem 2.2.
Hence, (1,G) gives rise a quotient texture (U,U) associated with (r,R) and a canonical quotient difunction
( f ,F) together with an injective difunction (h,H) : (U,U)→ (T,T) satisfying (h,H) ◦ ( f ,F) = (1,G).

Now, let us take the quotient i-c operator (intU, clU) on (U,U).

(S, S, intS, clS)
(1,G) //

( f ,F)
))SSS

SSSS
SSSS

SSSS
SSS

(T,T, intT, clT)

(U,U, intU, clU)

(h,H)

OO

Since (1,G) is bicontinuous, the difunction (h,H) is also bicontinuous by Proposition 3.3. Furthermore, if
(1,G) is surjective then (h,H) is a bijection, but in general it need not to be dihomeomorpsim as the inverse
may not be bicontinuous.

Now we may give the next definition:

Definition 3.5. Suppose (S, S, intS, clS) and (T,T, intT, clT) are i-c spaces and (1,G) : (S, S)→ (T,T) a difunc-
tion. Then it is called a quotient difunction if it can be expressed as the composition of a canonical quotient
difunction on (S, S, intS, clS) and a dihomeomorphism onto (T,T, intT, clT).

Now consider the following families for any i-c space (S, S, intS, clS):

Oint = {A ∈ S | int(A) = A} and Ccl = {B ∈ S | cl(B) = B}.

Proposition 3.6. Let (S, S, intS, clS) and (T,T, intT, clT) be i-c spaces and (1,G) : (S, S) → (T,T) a surjective
difunction. Then the following are equivalent:

1. (1,G) is a quotient difunction.
2. G←B ∈ OintS ⇐⇒ B ∈ OintT and 1←B ∈ CclS ⇐⇒ B ∈ CclT

3. The difunction (h,H) which is in the above diagram, is a dihomemorphism.

Proof. (1) =⇒ (2) Suppose that (1,G) is quotient difunction. Then we may write (1,G) = (h,H)◦ ( f ,F), where
( f ,F) : (S, S, intS, clS) → (U,U, intU, clU) is a canonical quotient difunction and (h,H) : (U,U, intU, clU) →
(T,T, intT, clT) a dihomeomorphism. Let G←B ∈ OintS . Then intS(G←B) = G←B. From the definiton of
(intU, clU) we have:

G←B = F←(H←B) ∈ OintS ⇐⇒ H←B ∈ OU

From Proposition 1.9 (3), we have H←B ∈ OintU ⇐⇒ B ∈ OintT .
By using dual arguments, the second equivalence is obtained.

(2) =⇒ (3) Since (1,G) is surjective, (h,H) is bijective. We will show that Proposition 1.9 (3): Let A ∈ U.
Since (h,H) is injective we have:

(3.1) G←(h→(A)) = (H ◦ F)←(h→(A)) = F←(H←(h→A)) = F←A.
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Hence,

A ∈ OintU ⇐⇒ F←A ∈ OintS ⇐⇒ G←(h→A) ∈ OintS ⇐⇒ h→A ∈ OintT

by (2) and (3.1). Likewise, A ∈ CclU ⇐⇒ H→A ∈ CclT .
(3) =⇒ (1) It is clear.

Examples 3.7. (1) Let (S, S, int, cl) be an i-c space and (i, I) the identity difunction on (S, S). Note that
i→(A) = A = I→(A) and i←(A) = A = I←(A) for all A ∈ S. From Proposition 3.6, (i, I) is a quotient difunction.

(2) Let us consider the texture (L,L) of Examples 1.1 (2). Then it can be easily seen that (r,R) is a equivalence
direlation where

r = {(s, t) | 0 < t ≤
1
2

or
1
2
< s ≤ 1},

R = {(s, t) | 0 < t ≤
1
2

or
1
2
≤ s ≤ 1}.

From Theorem 2.1, the corresponding equivalence point relation ρ on L is obtained as

sρt⇐⇒ 0 < s ≤
1
2
, 0 < t ≤

1
2

or
1
2
< s ≤ 1,

1
2
< t ≤ 1

There are two equivalence classes which are [ 1
2 ] and [1]. Hence, we have the quotient set L/ρ = U = {[ 1

2 ], [1]}
and the canonical quotient mapping ϕ : L→ U, where

ϕ(s) =

[ 1
2 ] , 0 < s ≤ 1

2

[1] , 1
2 < s ≤ 1

Moreover, the quotient texturing is U = {∅, {[ 1
2 ]},U}, and from (1.1), the corresponding quotient difunction

is given by

fϕ = {(s, [
1
2

]) | 0 < s ≤
1
2
} ∪ {(s, [1]) |

1
2
< s ≤ 1},

Fϕ = {(s, [1]) | 0 < s ≤
1
2
} ∪ {(s, [

1
2

]) |
1
2
< s ≤ 1}.

Corollary 3.8. Let (1 j,G j), j = 1, 2 be difunctions.

(1) If (1 j,G j), j = 1, 2 are quotient difunctions then the composition (12,G2) ◦ (11,G1) = (12 ◦ 11,G2 ◦ G1) is also
quotient difunction.

(2) If (1 j,G j), j = 1, 2 are bicontinuous difunctions and the composition (12,G2) ◦ (11,G1) is a quotient difunction
then (12,G2) is a quotient difunction.

Proof. Since the proof is independent of structure of i-c spaces, we omit the proof which follows the same
lines of [2, Corollary 4.7].

Corollary 3.9. An injective quotient difunction is dihomeomorphism.

Proof. Let (1,G) be injective quotient difunction. Since (1,G) is surjective, (1,G) is bijective difunction. Let
( f ,F) be quotient difunction of the quotient texture generated by (1,G) as in Remark 3.4. Then we have
r = G← ◦ 1 = i and R = 1← ◦ G = I since (G←, 1←) is the inverse of (1,G). By Theorem 2.1, we may write

sρt⇐⇒ Ps = Pt ⇐⇒ s = t

It follows that (U,U, intU, clU) may be identified with (S, S, intS, clS). Thus, ϕ becomes the identity and so
( f ,F) = (i, I), which is a dihomeomorphism.
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Now recall from [17] that if (S, S, intS, clS) and (T,T, intT, clT) are gic-spaces and (1,G) is a difunction
from (S, S) to (T,T) then (1,G) is called open (co-open) if ∀A ∈ S, 1→(intS(A)) = intT(1→(A)) ( G→(intS(A)) =
intT(G→(A)) ).
On the other hand, (1,G) is called closed (coclosed) if ∀B ∈ S, 1→(clS(B)) = clT(1→(B)) ( G→(clS(B)) =
clT(G→(B)) ).

Corollary 3.10. Let ( f ,F) : (S, S, intS, clS)→ (T,T, intT, clT) be a surjective bicontinuous difunction.
(1) If ( f ,F) is open and closed difunction then it is quotient.
(2) If ( f ,F) is co-open and coclosed difunction then it is quotient.

Proof. We prove only (1), leaving the dual proof of (2) to the interested reader. We will use Proposition
3.6 (2). Suppose that ( f ,F) is surjective bicontinuous difunction which is open and closed. Let B ∈ OintT .
Then B = intT(B) and so F←(B) = F←(intT(B)). Since ( f ,F) is continuous, we have F←(B) ⊆ intS(F←(B)) and
so F←(B) ∈ OintS .
Conversely, take F←(B) ∈ OintT . Then F←(B) = intS(F←(B)) and, by [6, Corollary 2.33(1)]

B = f→(F←(B)) = f→(intS(F←(B)))

Since ( f ,F) is open and by intS(F←(B)) ∈ OintS , we have

B = intT( f→(intS(F←(B)))) ⊆ intT( f→(F←(B))) = intT(B)

Hence, B = intT(B) and so B ∈ OintT . By using dual arguments, it can be showed that f←B ∈ CclS ⇐⇒ B ∈
CclT .

Definition 3.11. An equivalence direlation (r,R) on an i-c space is called open(co-open, closed, coclosed) if
the canonical quotient difunction is open(co-open, closed, coclosed).

Now we may give the relationship between separation axioms and equivalence direlations. Firstly let
us recall the following definition of bi-T1 i-c spaces [17].

Definition 3.12. An i-c space (S, S, int, cl) is called
T1 if ∀A ∈ S can be written as A =

∨
j∈J K j, K j ∈ Ccl,

co-T1 if ∀A ∈ S can be written as A =
⋂

j∈J G j, G j ∈ Oint,
bi-T1 if it is both T1 and co-T1.

Proposition 3.13. Let (S, S, int, cl) be an i-c space and (r,R) an equivalence direlation on (S, S). We denote by R the
family of saturated elements of S modulo (r,R).

(1) If (S, S, int, cl) is T1 and (r,R) is closed then every set in R can be written as a join of closed sets in R.
(2) If (S, S, int, cl) is co-T1 and (r,R) is co-open then every set in R can be written as an intersection of open sets

in R.

Proof. (1) Let (S, S, int, cl) be a T1 space and (r,R) be a closed equivalence direlation. Take A ∈ R. From the
definition of T1 axiom we can write

A =
∨
j∈J

K j, K j ∈ Ccl,

and by [6, Corollary 2.12(2)] we have r→(
∨

j∈J K j) =
∨

j∈J r→(K j).
Now we show that B ∈ Ccl =⇒ r→(B) ∈ Ccl for all B ∈ S. Firstly we note that the canonical quotient
difunction ( f ,F) is closed and r = F← ◦ f since (r,R) is closed direlation. If B ∈ Ccl then r→(B) = F←( f→(B)).
Since ( f ,F) is cocontinuous, f→(B) ∈ Ccl and F←( f→(B)) ∈ CclU . By Theorem 2.1, R = {r→(A) | A ∈ S} and the
required result follows at once.
(2) The characteristic property of co-T1 axiom is that every element of S can be written as an intersection of
the elements in Oint. On the other hand, B ∈ Oint =⇒ R→(B) ∈ Oint for all B ∈ S. Thus, the proof is dual to
(1).
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In order to discuss reflectors in the category dfICL we will require the next theorem. Firstly, let us recall
the definition of the notion T0 i-c space given in [17].

Definition 3.14. The i-c texture space (S, S, int, cl) is T0 if given Qs * Qt there exists B ∈ Oint ∪ Ccl satisfying
Ps * B * Qt.

Theorem 3.15. Let (S, S, int, cl) be an i-c space, (r,R) the equivalence direlation generated by B = Oint ∪ Ccl as in
Proposition 2.4. Then the quotient i-c space (U,U, intU, clU) is T0.

Proof. Let ϕ : S → U, s → s̄ be surjective canonical point function corresponding to the direlation (r,R) by
Theorem 2.1. Firstly we show that ϕ[Oint ∪ Ccl] = OintU ∪ CclU : Let M ∈ OintU ∪ CclU . Then M ∈ OintU or
M ∈ CclU . If M ∈ OintU then intU(F←M) = F←M and so F←M ∈ Oint by definition of OintU . Since ( f ,F) is
surjective we haveϕ[F←M] = f→(F←M) = M ∈ ϕ[Oint∪Ccl] by [6, Corollary 2.33(1)]. Likewise, it is obtained
that if M ∈ CclU then M ∈ ϕ[Oint ∪ Ccl].
Conversely, take M ∈ ϕ[Oint∪Ccl]. Then there exists N ∈ Oint∪Ccl such that M = ϕ[N]. Suppose that N ∈ Oint.
By (2.1), we have M = ϕ[N] = F→(N) since N ∈ B ⊆ R. By Theorem 2.1, f←M = f←F→(N) = R→N = N and
so f←M = N = int(N) = int( f←M). Thus, it is obtained that M ⊆ intU(M) and so M ∈ OintU . Dually, it can
be easily proved that N ∈ Ccl implies N ∈ CclU .
In order to verify the property T0 of (intU, clU), we take s, t ∈ S with Qs * Qt. Similar to the proof of
[2, Theorem 5.2] there exists B ∈ Oint ∪ Ccl such that Ps * ϕ[B] and ϕ[B] * Qt. Because of the equality
ϕ[B] ∈ ϕ[B] = ϕ[Oint ∪ Ccl], we have established that (U,U, intU, clU) is T0.

In [16], the category of i-c spaces and bicontinuous difunctions was denoted by dfICL. Now, if in this
category we restrict the objects to T0 i-c spaces we obtain the subcategory dfICL0.

Theorem 3.16. The category dfICL0 is a full reflective subcategory of dfICL.

Proof. Since the morphisms of categories are same, dfICL0 is a full subcategory of dfICL. Let (S, S, int, cl) ∈
Ob(dfICL). By Theorem 3.15, the quotient texture space (U,U, intU, clU) is an object in dfICL0. Now we
prove that the canonical difunction ( f ,F) : (S, S, int, cl) → (U,U, intU, clU) is a reflection [1] for the object
(S, S, int, cl). To establish the universal property, let (S0, S0, int0, cl0) ∈ Ob(dfICL0) and (1,G) : (S, S, int, cl)→
(S0, S0, int0, cl0) be a morphism in dfICL. We must show that the existence of a dfICL0 morphism (h,H)
making the following diagram commutative.

(S, S, int, cl)
( f ,F) //

(1,G)
))SSS

SSS
SSS

SSS
SSS

SS
(U,U, intU, clU)

(h,H)

��
(S0, S0, int0, cl0)

We setB0 = int0∪cl0. Consider the corresponding equivalence direlation (r0,R0) which is in Proposition 2.4.
By [2, Theorem 5.3], (r0,R0) is the identity (i0, I0) on (S0, S0). From the proof of Corollary 3.9 we may identify
the quotient with (S0, S0, int0, cl0) and thus, canonical quotient difunction becomes (i0, I0). Since (1,G) is
bicontinuous, we have 1←(Oint0 ∪ Ccl0 ) ⊆ Oint ∪ Ccl = B ⊆ R and so, Theorem 2.3 gives a difunction (h,H)
making the diagram

(S, S, int, cl)
( f ,F) //

(1,G)

��

(U,U, intU, clU)

(h,H)

��
(S0, S0, int0, cl0)

(i0,I0)
// (S0, S0, int0, cl0)

commutative. To complete the proof we need to verify that (h,H) is a dfICL0 morphism. For this, (h,H)
must be bicontinuous.
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Take A ∈ S0. Then, by Theorem 2.3, h←A = H←A = ϕ[1←A]. We observe that if A ∈ Oint0 or A ∈ Ccl0 then
1←A ∈ Oint ∪ Ccl = B ⊆ R so the set 1←A is saturated with respect to ρ. Hence,

F←(H←A) = f←(h←A) = ϕ−1[ϕ[1←A]] = 1←A = G←A

As a result,

A ∈ Oint0 =⇒ G←A ∈ Oint =⇒ F←(H←A) ∈ Oint =⇒ H←A ∈ OintU

which proves that (h,H) is continuous. The cocontinuity is dual and it is left to the reader.

4. Bi-initial and Bi-final Difunctions

In the categorical setting, some special morphisms such as initial and final maps which are based on
closure operators were worked in [10, 18]. In this section, we introduce initiality and finality of a difunction
in a interior-closure texture space.

We begin by recalling that [15, Theorem 3.4] which gives the useful characterization of bicontinuity.

Theorem 4.1. Let ( f ,F) : (S1, S1, int1, cl1)→ (S2, S2, int2, cl2) be a difunction.

(i) ( f ,F) is continuous if and only if int2(F→(A)) ⊆ F→(int1(A)), ∀A ∈ S1,
(ii) ( f ,F) is cocontinuous if and only if f→(cl1(A)) ⊆ cl2( f→(A)), ∀A ∈ S1.

Note 4.2. By Theorem 1.5, we have:

( f ,F) is continuous⇐⇒ f←(int2(F→(A))) ⊆ int1(A),
( f ,F) is cocontinuous⇐⇒ cl1(A) ⊆ F←(cl2( f→(A))).

Now we recall [10] that a function f : (X, clX) → (Y, clY) between closure spaces is called initial if
f−1(clY f (A)) = clX(A), ∀A ⊆ X. This leads to the following concepts for a difunction between i-c tex-
ture spaces.

Definition 4.3. Let (int j, cl j) be i-c structure on (S j, S j), j = 1, 2, and ( f ,F) : (S1, S1)→ (S2, S2) be a difunction.
Then ( f ,F) is called

(i) initial if F→(int1( f←(B))) = int2(B), ∀B ∈ S2,
(ii) co-initial if F←(cl2( f→(A))) = cl1(A), ∀A ∈ S1,

(iii) bi-initial if it is initial and co-initial.

Because of f→(F←(B)) ⊆ B, and A ⊆ F←( f→(A)), it is easily obtained that every (co)-initial difunction is
(co)-continuous.

Proposition 4.4. In the category dfIC:

(i) Every retraction is initial.
(ii) Every section is co-initial.

Proof. We prove (ii), leaving the dual proof of (i) to the interested reader. Let ( f ,F) : (S1, S1, int1, cl1) →
(S2, S2, int2, cl2) be a section in the category dfIC. Then there exists a difunction (1,G) : (S2, S2, int2, cl2) →
(S1, S1, int1, cl1) satisfying

(1,G) ◦ ( f ,F) = (1 ◦ f ,G ◦ F) = (iS1 , IS1 ).

By Theorem 1.5 and the cocontinuity of (1,G), we have:

F←(cl2 f→(A)) = 1→( f→(F←(cl2 f→(A))))
⊆1→(cl2( f→(A)))
⊆cl1(1→( f→(A))) = cl1(A).

Since ( f ,F) is cocontinuous, cl1(A) ⊆ F←(cl2( f→(A))). It shows co-initiality of ( f ,F).
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Examples 4.5. (1) Let (S, S, int, cl) be an i-c space and (i, I) the identity difunction on (S, S). Clearly, (i, I) is
an initial and co-initial difunction.

(2) Let S = T = {a, b} and define an i-c structure (intS, clS) on (S,P(S)) by clS(∅) = ∅, clS({a}) = {a}, clS({b}) =
clS(S) = S, and intS(S) = S, intS({a}) = intS(∅) = ∅, intS({b}) = {b}.

On the other hand, define an i-c structure (intT, clT) on (T,P(T)) by clT(∅) = ∅, clT({a}) = {a}, clT({b}) = {b},
clT(T) = T and intT(T) = T, int({a}) = {a}, intT({b}) = {b}, intT(∅) = ∅.
Now we consider a difunction from (S,P(S)) to (T,P(T)) where

f = {(a, a), (b, a)} , F = {(a, b), (b, b)}.

It can be obviously seen that ( f ,F) is initial and co-initial difunction.

Now we recall [10] that a function f : (X, clX) → (Y, clY) between closure spaces is called final if
f (clX f−1(B)) = clY(B), ∀B ⊆ Y. This leads to the following concepts for a difunction between i-c texture
spaces.

Definition 4.6. Let (int j, cl j) be i-c structure on (S j, S j) , j = 1, 2 and ( f ,F) : (S1, S1)→ (S2, S2) be a difunction.
Then ( f ,F) is called

(i) final if f←(int2(F→(A))) = int1(A), ∀A ∈ S1

(ii) co-final if f→(cl1(F←(B))) = cl2(B), ∀B ∈ S2

(iii) bi-final if it is final and co-final.

By Note 4.2, every (co)-final difunction is (co)-continuous.

Example 4.7. Let S = {a, b, c} and T = {a, b}. We define an i-c structure (intS, clS) on (S,P(S)) where clS(∅) = ∅,
clS({a}) = {a, c}, clS({b}) = {a, b}, clS({c}) = {b, c}, clS({a, b}) = clS({a, c}) = clS({b, c}) = clS(S) = S, and
intS({a}) = intS({b}) = intS({c}) = intS(∅) = ∅, intS({b, c}) = {b}, intS({a, c}) = {c}, intS({a, b}) = {a}.

On the other hand, we define an i-c structure (intT, clT) on (T,P(T)) where clT(∅) = ∅, clT({a}) = clT({b}) =
clT(T) = T, and intT(T) = T, intT({a}) = intT({b}) = intT(∅) = ∅.
Now we consider a difunction from (S,P(S)) to (T,P(T)) where

f = {(a, a), (b, a), (c, b)} , F = {(a, b), (b, b), (c, a)}.

It can be easily check that ( f ,F) is final and co-final difunction.

Proposition 4.8. In the category dfICL:

(i) Every section is final.
(ii) Every retraction is co-final.

Proof. We prove (ii), leaving the dual proof of (i) to the interested reader. Let ( f ,F) : (S1, S1, int1, cl1) →
(S2, S2, int2, cl2) be a retraction in the category dfICL. Then there exists a difunction (1,G) : (S2, S2, int2, cl2)→
(S1, S1, int1, cl1) satisfying

( f ,F) ◦ (1,G) = ( f ◦ 1,F ◦ G) = (iS2 , IS2 ).

By [6, Theorem 2.23] and the cocontinuity of ( f ,F),

f→(cl1(F←(B))) ⊆ cl2( f→(F←(B))) ⊆ cl2(B)

and
f→(cl1(F←(B))) = f→(cl1F←( f→(1→(B))))

⊇ f→(cl11
→(B)) ⊇ f→(1→(cl2(B))) ( (1,G) is cocontinuous)

= cl2(B)

These inclusions show the co-finality of ( f ,F).
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Proposition 4.9. Let ( f ,F) be a difunction from (S, S, int1, cl1) to (T,T, int2, cl2) and (1,G) be a difunction from
(T,T, int2, cl2) to (U,U, int3, cl3). Then
(i) If (1,G) and ( f ,F) are (co)-initial, then (1,G) ◦ ( f ,F) is also (co)-initial.
(ii) If (1,G) and ( f ,F) are (co)-final then (1,G) ◦ ( f ,F) is also (co)-final.

Proof. (i) We prove co-initiality of (1,G) ◦ ( f ,F). For A ∈ S,

(G ◦ F)←(cl3(1 ◦ f )→(A)) = F←(G←(cl3(1→( f→(A)))))
= F←(cl2 f←(A)) ( (1,G) is co − initial)
= cl1(A) ( ( f ,F) is co − initial)

Using a similar argument it is easy to see that the initiality of (1,G) ◦ ( f ,F).

(ii) Let us prove the finality of (1,G) ◦ ( f ,F).

(1 ◦ f )←(int3(G ◦ F)→(A)) = f←(1←(int3(G→(F→(A)))))
= f←(int2F→(A)) ( (1,G) is f inal)
= int1(A) ( ( f ,F) is f inal)

Dually, the co-finality of (1,G) ◦ ( f ,F) can be obtained.

We collect some minor observations which illustrate these notions:

Remark 4.10. (1) If ( f ,F) is surjective and co-initial then it is co-final:
Since ( f ,F) is surjective, f→(F←(B)) = B for all B ∈ S2. Hence,

cl2(B) = f→(F←(cl2( f→(F←(B))))) = f→(cl1(F←(B))).

Dually, if ( f ,F) is injective and initial then it is final.

(2) If ( f ,F) is injective and closed then it is co-initial:
By virtue of the fact that f→(cl2(A)) = cl1( f→(A)) and injectivity of ( f ,F), we have

F←(cl2( f→(A)) = F←( f→(cl1(A)) = cl1(A).

Dually, if ( f ,F) is surjective and co-open then it is initial.

(3) If ( f ,F) is surjective and closed then it is co-final: Indeed,

f→(cl1F←(B)) = cl2( f→(F←(B))) = cl2(B).

Dually, if ( f ,F) is injective and co-open then it is final.

Proposition 4.11. Let (S j, S j, int j, cl j), j = 1, 2 be i-c spaces and ( f ,F) : (S1, S1)→ (S2, S2) be a difunction.

(i) ( f ,F) is initial if and only if every G ∈ Oint1 is the form G = f←(H) for some H ∈ Oint2 .
(ii) ( f ,F) is co-initial if and only if every A ∈ Ccl1 is the form A = F←(B) for some B ∈ Ccl2 .

Proof. We prove (ii), leaving the dual proof of (i) to the interested reader.
(=⇒:) Let ( f ,F) be a co-initial difunction and A ∈ Ccl1 . We set B := cl2( f→(A)). Then B ∈ Ccl2 . Hence,

F←(B) = F←(cl2( f→(A))) = cl1(A) = A,

as requested.
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(⇐=:) Let A ∈ S1. Then cl1(A) ∈ Ccl1 since cl1 is idempotent. By assumption, there exists B ∈ Ccl2 such that
cl1(A) = F←(B) = F←(cl2(B)). Hence,

f→(A) = f→(cl1(A)) = f→(F←(B)) ⊆ B = cl2(B)
=⇒ cl2( f→(A)) ⊆ cl2( f→cl1(A)) ⊆ B
=⇒ F←(cl2( f→(A))) ⊆ F←(B) = cl1(A).

Because of ( f ,F) is cocontinuous we have cl1(A) ⊆ F←(cl2( f→(A))) and so ( f ,F) is co-initial.

Proposition 4.12. Let (S j, S j, int j, cl j), j = 1, 2 be i-c spaces and ( f ,F) : (S1, S1)→ (S2, S2) be a difunction.

(i) If ( f ,F) is final then G ∈ Oint2 if and only if F←(G) ∈ Oint2 , ∀G ∈ S2.
(ii) If ( f ,F) is co-final then B ∈ Ccl2 if and only if f←(B) ∈ Ccl1 , ∀B ∈ S2.

Proof. We prove (ii), leaving the dual proof of (i) to the interested reader.
(=⇒:) Let B ∈ Ccl2 . Since ( f ,F) is co-final, B = cl2(B) = f→(cl1F←(B)). Then we have

f←(B) = f←(cl2(B)) = f←( f→(cl1F←(B))) ⊇ cl1(F←(B)) = cl1( f←(B))

Considering the fact that f←(B) ⊆ cl1( f←(B)) we have f←(B) = cl1( f←(B)), and so f←(B) ∈ Ccl1 .
(⇐=:) Let f←(B) = cl1( f←(B)) for some B ∈ S2. Since ( f ,F) is co-final and F←(B) = f←(B), cl2(B) =
f→(cl1(F←(B))) = f→(F←(B)) ⊆ B. That is, cl2(B) = B.

Corollary 4.13. Every surjective bi-final difunction is quotient.

Proof. Suppose that ( f ,F) is a surjective bi-final difunction from (S, S, int1, cl1) to (T,T, int2, cl2). By finality
of ( f ,F), G ∈ Oint2 if and only if F←(G) ∈ Oint2 , ∀G ∈ S2. On the other hand, by co-finality of ( f ,F), B ∈ Ccl2 if
and only if f←(B) ∈ Ccl1 , ∀B ∈ S2. From Proposition 3.6, ( f ,F) is immediately quotient difunction.

Consider the following commutative diagram:

(S3, S3, int3, cl3)
( f ′,F′) //

(p′,P′)

��

(S4, S4, int4, cl4) (1)

(p,P)

��
(S1, S1, int1, cl1)

( f ,F)
// (S2, S2, int2, cl2)

Then (p ◦ f ′,P ◦ F′) = ( f ◦ p′,F ◦ P′). Moreover, for all A ∈ S4

p′→(F′←(A)) ⊆ F←(p→(A))
f ′→(P′←(A)) ⊆ P←( f→(A))

(4.1)

Recall from [6] that for given a texture (S, S), consider the category S whose objects are the sets A ∈ S

and for which there is just one morphism [A1,A2] : A1 → A2 if and only if A1 ⊆ A2, composition being
defined by [A2,A3] ◦ [A1,A2] = [A1,A3] ⇐⇒ A1 ⊆ A2 ⊆ A3. Then if T is the category associated with (T,T)
in the same way, and ( f ,F) is a difunction from (S, S) to (T,T), we may set F→([A1,A2]) = [F→A1,F→A2] and
f←([B1,B2]) = [ f←B1, f←B2] since sections and presections preserve inclusion and it is trivial to verify that
F→ is a functor from S to T and f← is a functor from T to S. From [6, Theorem 2.25], the functor f← = F← is
an adjoint of the functor f→ and the functor F→ is an adjoint of the functor f←.

The diagram (1) satisfies the Beck-Chevalley Property (BCP) stated in [18] if, in the last inclusions 4.1, ”⊆”
can be replaced by ”=”.

Now we are interested in the pullback behaviour of these morphisms.
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Theorem 4.14. (1) If ( f ,F) and (p′,P′) are final then ( f ′,F′) is final.
(2) If ( f ,F) is co-final and (p′,P′) co-initial, then ( f ′,F′) is co-final and (p,P) is co-initial.
(3) If ( f ,F) is co-open and (p′,P′) final, then ( f ′,F′) is co-open.
(4) If ( f ,F) is closed and (p′,P′) co-initial, then ( f ′,F′) is closed.

Proof. (1) Let A ∈ S3. We will show that int3(A) = f ′←(int4(F′→(A))). Firstly, we observe that

f ′←(int4(F′→(A))) ⊆ int3(A) ( ( f ′,F′) is continuous)
= p′←( f←(int2(F→(P′→(A))))) ( ( f ,F) and (p′,P′) are final)
= f ′←(p←(int2P→F′→(A))) ( (1) is commutative )
⊆ f ′←(int4(F′→(A)) ( (p,P) is continuous)

Then int3(A) = f ′←(int4(F′→(A))) for all A ∈ S3, and so ( f ′,F′) is final.

(2) Take B ∈ S4. We must show that cl4(B) = f ′→(cl3(F′←(B))) for co-finality of ( f ′,F′), and cl4(B) =
P←(cl2(p→(B))) for co-initiality of (p,P). We observe that

cl4(B) ⊆ P←(cl2(p→(B)) ( (p,P) is cocontinuous)
= P←( f→(cl1(F←(p→(B))))) ( ( f ,F) is co-final)
⊆ P←( f→cl1(p′→(F′←(B)))) ( BCP )
= f ′→(p′←cl1(p′→(F′←(B)))) ( BCP )
= f ′→(cl3(F′←(B)) ( (p′,P′) is co-initial)
⊆ cl4( f ′→(F′←(B))) ( ( f ′,F′) is co-continuous)
⊆ cl4(B)

These inclusion series show both cofinality of ( f ′,F′) and co-initiality of (p,P).

(3) Let A ∈ S3. We will show that F′→(int3(A)) = int4(F′→(A)).

int4(F′→(A)) ⊇ p←(int2(P→(F′→(A))) ( (p,P) is cocontinuous)
= p←(int2(F→(P′→(A))) ( (1) is commutative)
= p←(F→(int1(P′→(A)))) ( ( f ,F) is co-open)
= F′→(p′←(int1(P′→(A)))) ( BCP)
= F′→(int3(A)) ( (p′,P′) is initial)

On the other hand, int4(F′→(A)) ⊆ F′→(int3(A)) since ( f ′,F′) is continuous. Hence, ( f ′,F′) is co-open.

(4) Let A ∈ S3. We prove that f ′→(cl3(A)) = cl4( f ′→(A)). Note that

cl4( f ′→(A)) ⊆ P←(cl2(p→( f ′→(A)))) ( (p,P) is cocontinuous)
⊆ P←(cl2 f→(p′→(A))) ( (1) is commutative)
⊆ P←( f→(cl1(p′→(A)))) ( ( f ,F) is closed)
⊆ f ′→(p′←(cl1(p′→(A)))) ( BCP )
= f ′→(cl3(A)) ( (p′,P′) is co-initial)

Since ( f ′,F′) is cocontinuous we have f ′→(cl3(A)) ⊆ cl4( f ′→(A)) and so f ′→(cl3(A)) = cl4( f ′→(A)).

Theorem 4.15. (1) If ( f ′,F′) is closed and (p,P) co-final, then ( f ,F) is closed.
(2) If ( f ′,F′) is co-open and (p,P) final, then ( f ,F) is co-open.
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Proof. We prove only (1), leaving the dual proof of (2) to the interested reader. Let A ∈ S1. Then

cl2( f→(A)) = p→(cl4(P←( f→(A)))) ( (p,P) is co-final)
⊆ p→(cl4( f ′→(P′←(A)))) ( BCP)
⊆ p→( f ′→(cl3(P′←(A)))) ( ( f ′,F′) is closed)
⊆ f→(p′→(cl3((P′←(A))))) ( (1) is commutative)
⊆ f→(cl1(p′→(P′←(A)))) ( (p′,P′) is cocontinuous)
⊆ f→(cl1(A))

On the other hand, f→(cl1(A)) ⊆ cl2( f→(A)) since ( f ,F) is cocontinuous, and so ( f ,F) is closed.
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[6] L.M. Brown, R. Ertürk, Ş. Dost, Ditopological texture spaces and fuzzy topology, I. Basic concepts, Fuzzy Sets and Systems 147

(2004) 171–199.
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